 �

NetPhone Application Development Guide

� SAVEDATE * MERGEFORMAT �02/20/98 11:19 AM� PRELIMINARY

Information furnished by NetPhone, Inc. is believed to be accurate and reliable. However, no responsibility is assumed by NetPhone, Inc. for its use, nor for any infringements of patents or other rights of third parties which may result from its use. This document is for informational purposes only, and NetPhone makes no warranties, either express or implied, in this document.

No license is granted by implication or otherwise under any patent or patent rights of NetPhone, Inc. NetPhone, Inc. reserves the right to change specifications at any time without notice.

NetPhone is a registered trademark, and PhoneMaster, VoiceMaster and the NetPhone logo are trademarks of NetPhone, Inc.

Microsoft is a registered trademark and Windows, Windows 95 and Windows NT are trademarks of Microsoft Corporation.

Other products and company names are registered trademarks or trademarks of their respective holders.

Companies, names and/or data used in screens and sample output are fictitious unless otherwise noted.

Copyright (1998 NetPhone, Inc. Marlborough, Massachusetts. All rights reserved.

�

�Contents

� TOC \o "1-2" �1. Introduction	� GOTOBUTTON _Toc412608398 � PAGEREF _Toc412608398 �5��

1.1 About this guide	� GOTOBUTTON _Toc412608399 � PAGEREF _Toc412608399 �5��

1.2 NetPhone Overview	� GOTOBUTTON _Toc412608400 � PAGEREF _Toc412608400 �5��

1.3 How NetPhone works	� GOTOBUTTON _Toc412608401 � PAGEREF _Toc412608401 �6��

2. NetPhone System Architecture	� GOTOBUTTON _Toc412608402 � PAGEREF _Toc412608402 �8��

2.1 NetPhone PBX Board Specifications	� GOTOBUTTON _Toc412608403 � PAGEREF _Toc412608403 �9��

2.2 NetPhone System Capacity	� GOTOBUTTON _Toc412608404 � PAGEREF _Toc412608404 �12��

3. NetPhone Application Development	� GOTOBUTTON _Toc412608405 � PAGEREF _Toc412608405 �13��

3.1 Telephony Application Design Principles	� GOTOBUTTON _Toc412608406 � PAGEREF _Toc412608406 �13��

3.2 The NetPhone TSAPI Implementation	� GOTOBUTTON _Toc412608407 � PAGEREF _Toc412608407 �14��

3.3 Dialogic Windows Standard API for Voice Services	� GOTOBUTTON _Toc412608408 � PAGEREF _Toc412608408 �15��

3.4 S.100 (SCSA) Bus Hardware Interface	� GOTOBUTTON _Toc412608409 � PAGEREF _Toc412608409 �16��

4. Developing Server Applications Using Show N Tel	� GOTOBUTTON _Toc412608410 � PAGEREF _Toc412608410 �17��

4.1 Show N Tel Voice PowerBlocks	� GOTOBUTTON _Toc412608411 � PAGEREF _Toc412608411 �18��

4.2 Show N Tel Telephony PowerBlocks	� GOTOBUTTON _Toc412608412 � PAGEREF _Toc412608412 �20��

5. Developing Client Applications Using TAPI	� GOTOBUTTON _Toc412608413 � PAGEREF _Toc412608413 �22��

6. Developing Client or Server Applications Using TSAPI	� GOTOBUTTON _Toc412608414 � PAGEREF _Toc412608414 �23��

6.1 TSAPI Functions Supported by NetPhone	� GOTOBUTTON _Toc412608415 � PAGEREF _Toc412608415 �24��

6.2 Extra NetPhone Services	� GOTOBUTTON _Toc412608416 � PAGEREF _Toc412608416 �26��

7. Dialogic Standard API for Audio Services	� GOTOBUTTON _Toc412608417 � PAGEREF _Toc412608417 �35��

8. Resources	� GOTOBUTTON _Toc412608418 � PAGEREF _Toc412608418 �36��

8.1 CSTA	� GOTOBUTTON _Toc412608419 � PAGEREF _Toc412608419 �37��

8.2 Glossary of Acronyms	� GOTOBUTTON _Toc412608420 � PAGEREF _Toc412608420 �38��

�

Introduction

About this guide

The guide is written for the application designer programming custom client or server applications for the NetPhone platform in the Windows NT or NetWare environments. It assumes that you are already knowledgeable about LAN Server systems, NetPhone PBX use and administration, and telephony application design issues.

By adhering to industry standards for open telephony systems, portable telephony applications can be readily integrated into NetPhone systems. A growing number of software suppliers, including Brooktrout Technology, CallWare, Coresoft, Symex, and Ameritec �have delivered solutions based on the NetPhone platform.

This document discusses:

NetPhone application development options

Telephony application design principles

NetPhone system architecture

Developing server applications using Brooktrout Technology’s Show N Tel™

Developing client applications using TAPI

Developing client or server applications using TSAPI

Using the Dialogic Windows Standard API for audio services

Additional resources (source code examples, glossary, documentation resources, etc.)

NetPhone Overview

NetPhone Features

The on-board software performs full PBX call control, client/server message handling, and auto attendant functions.

Reliability - The on-board software continues to provide normal PBX functionality in the event of a PC server software crash and reboot. Emergency ringdown is provided on NetPhone analog PBX cards to connect one trunk per card in the event of a system power failure.

Integration - NetPhone is designed to use minimal server resources, performing all time-critical and CPU intensive functions in on-board software. This allows telephony functions to be combined with other business applications on a single server.

Scalability - NetPhone is scalable and cost-effective. Up to six NetPhone boards can be installed per server. Multiple NetPhone hardware boards are interconnected via the S.100 bus to provide system expansion, appearing as a single, fully matrixed and non-blocking switch with full conferencing and voice capabilities. The planned H.323 capability will enable NetPhone servers to operate in a distributed architecture using the corporate intranet for interconnection.

Standards - the NetPhone architecture provides industry standard APIs and uses industry standard, non-proprietary telephone handsets, including advanced display feature phones.

Compatibility

NetPhone is an open telephony system compatible with a number of industry standard platforms and Application Programming Interfaces (APIs) including:

Microsoft Windows NT and Novell NetWare PC LAN servers

PC server ISA and PCI bus standards

Microsoft Windows NT Telephony Services (TAPI)

Novell NetWare Telephony Services (TSAPI)

Lucent Windows NT Passageway Telephony Services (TSAPI)

Dialogic Windows Standard API for voice services

Enterprise Computer Telephony Forum (ECTF) S.100 / SCSA hardware interface

NetPhone client or server telephony applications can be developed or ported using a variety of tools and languages, interfacing to the NetPhone standard TAPI, TSAPI and Dialogic APIs. In addition, Show N Tel provides a graphical, object-oriented telephony application development system allowing easy creation of advanced IVR applications.

How NetPhone works

Each NetPhone board is a smart switch PBX. This means that the NetPhone board operates its phone switching independently of the host PC. If the host memory or the device driver is not available, the NetPhone board will continue to offer switching services through the traditional telephone/DTMF interface (multiple NetPhone boards in the same server act as a single switch).

NetPhone moves audio data streams across the PC ISA or PCI bus, allowing integration with voice mail, Interactive Voice Response (IVR), and other applications, under the control of either the TSAPI or Dialogic Standard programming interfaces.

NetPhone Board Initialization

When the NetPhone device driver (Windows NT) or NLM (Novell) is started, it initiates Host to NetPhone board communication to the NetPhone board. A series of initialization messages are passed by the host processor through the base I/O port (default address 0x3e0). The Host processor determines if the NetPhone board has read each word by checking the base I/O port+2 (default address 0x302) for the NetPhone board's busy bit being cleared. The I/O port can be changed using messages. The IRQ line, DMA channel and memory buffer pointers are set using these initiation messages each time the PC initiates communication with the NetPhone board.

NetPhone Driver Operation

Software control uses long messages (CSTA messages). Software places the message in a PC based memory buffer and uses the I/O port to notify the NetPhone board that a message is in the buffer. The NetPhone board will then read the memory buffer using its DMA mechanism. This mechanism is limited to addresses within the first 16Mbytes by the ISA bus. (See � REF _Ref398089112 * MERGEFORMAT �CSTA� on page � PAGEREF _Ref398089123 �37� for more information.)

NetPhone Firmware Operation

The NetPhone board firmware decodes and executes both CSTA messages and private cstaEscapeService messages. The NetPhone board firmware initiates the proper CSTA Event messages back to the NT device driver or NLM. The firmware keeps track of all of the requester handles.

A Host reset will reset the NetPhone board ISA interface and post an interrupt to the NetPhone board microprocessor. It will not reset the NetPhone board, but will cause the NetPhone board to break communications with the PC until another initiation sequence is received. (NetPhone boards can be reset using the reset button on the board.)

In NetPhone multi-board configurations, the first board is the master, and all other boards are slaves. The boards act together as a single PBX. Communication between boards is through the S.100 SCSA bus. For more information, see � REF _Ref401391030 * MERGEFORMAT �S.100 (SCSA) Bus Hardware Interface� on page � PAGEREF _Ref401391047 �16�.

NetPhone System Architecture

NetPhone client/server messaging operates within an architectural framework defined by the Computer-Supported Telecommunications Applications (CSTA) Standard. This enables switch and computer application designers to enhance network capabilities using Computer Telecommunication Integration (CTI) technology. This means, for example, that a personal computer and a voice-switch network (typically a Private-Branch Exchange, or PBX) can be linked and use each other’s capabilities to implement functions that neither could do alone.

The NetPhone On-Board PBX Hardware: The NetPhone PBX boards support trunk lines and 2500-style style telephone extensions in a nonblocking, digital switching architecture. An SCSA (Signal Computing System Architecture) –bus allows multiple NetPhone boards to operate in a system, as well as to allow the interface of NetPhone boards to some other SCSA-compatible boards. (See � REF _Ref412605703 * MERGEFORMAT �NetPhone PBX Board Specifications� on page � PAGEREF _Ref398020044 �8� for details.)

The NetPhone boards support voice mail/audio text, unattended operator, extension phone switching, remote dialing, caller ID, conferencing, and interboard communication. NetPhone is designed to run in a networked environment which supports highly integrated phone services. The network is used to transport phone control functions and recorded messages between the user's PC and a NetPhone server.

The NetPhone On-Board PBX Software: The on-board software controls the PBX and allows third party call control using the client/server call control standard. The TSAPI call control interface is the basis of the NetPhone API. Audio services, DTMF (Dual Tone Multi Frequency) detection and other necessary functions that are not covered by the TSAPI standard are supported using cstaEscapeService extensions defined in nbprivat.h (See page � PAGEREF nbprivat �30�). These services are also available through the Dialogic standard API on the server.

NetPhone application software: NetPhone provides software to support voice mail, attendant console, and dialer applications with NetPhone PBX systems. Either VoiceMaster or PhoneMaster can be run as a single application using NetPhone in the Windows environment.

When the NetPhone PBX is installed in a Windows NT system, the device driver layer is provided as an NT service, and the TSAPI interface is provided by Lucent Technologies’ PassageWay. This provides a networked client/server CTI platform.

When the NetPhone PBX is installed in a NetWare server, the TSAPI interface is provided on NetWare client systems by the Novell NetWare Telephony Services (NTS) software. The service provider layer for the NetWare server is provided with every NetPhone board.

An API is provided to support Show N Tel Windows NT server applications.

�NetPhone PBX Board Specifications

NetPhone PBX-618

For Microsoft NT and Novell NetWare servers

Supports 6 trunks and 18 extensions per board.

Digital non-blocking TDM switch

Caller ID decoder

50-pin Telco connector (RJ-21X)

3.5 mm stereo jack for on-hold audio

Onboard line surge protection

Onboard ring voltage generator

FCC Part 68 registered equipment

FCC Par 15 Class A approved

CSA approved

�

NetPhone PBX-T124

Supports 24 trunks and 24 extensions per board (requires T1 service).

For Microsoft NT servers

Digital non-blocking TDM switch

Caller ID decoder

50-pin SCSI-2 connector to telephone extensions

RJ-45 connector for T1 line

3.5 mm stereo jack for on-hold audio

Onboard line surge protection

Onboard ring voltage generator

FCC Part 68 registered equipment

FCC Par 15 Class A approved

CSA approved

�

NetPhone PBX-024 Expansion Board

(Same design as T1 except for T1 connector)

Supports 24 extensions per board (used as slave with NetPhone PBX 618 or PBX-T124).

For Microsoft NT and Novell NetWare servers

Digital non-blocking TDM switch

Caller ID decoder

50-pin SCSI-2 connector to telephone extensions

3.5 mm stereo jack for on-hold audio

Onboard line surge protection

Onboard ring voltage generator

FCC Part 68 registered equipment

FCC Par 15 Class A approved

CSA approved

�

Notes:

Because the NetPhone architecture is optimized for use as a highly integrated LAN server PBX, there are aspects of the NetPhone architecture that must be considered when using NetPhone in telephony integration applications.

No DSP (Digital Signal Processing) hardware - NetPhone has hardware based, fixed-band audio energy and frequency detection. This hardware is suitable for basic call progress detection (dialtone, ringing, busy), but is not suitable for more sophisticated functions such as voice detection or recognition. Because there is only one such detector on a NetPhone board its use is limited to dialtone detect for outbound calling. This resource is not available to client applications at this time.

DTMF detection - EachThe NetPhone PBX-618 has a pool of 5 DTMF detectors available for assignment to any call. The DTMF detectors must be dedicated to a specific call whenever DTMF detection is to be performed for that call.

Call progress detection - The initial NetPhone software currently supports only detection of dialtone for outbound calling. This detection is an automatic low level service and not available to client applications. When a client requests that an outside call be made, NetPhone finds a trunk, waits for dialtone on that trunk and then outdials the number, all as a consequence of the cstaMakeCall request.

Audio services - NetPhone PBX-618 on-board software supports 8 simultaneous (4 in / 4 out) audio channels across the PC bus. The format of the audio is Mu-law, 8kbit/sec. Additional channels will be available on the PBX-T124

International approvals - NetPhone currently has only USA FCC Part 68 and Part 15 Class approval. The current hardware is not designed to meet European standards.

�NetPhone System Capacity

The NetPhone implementation permits each CSTA stream to monitor any and all objects exactly once. In addition, the stream can create one monitor for calls on each device. Future implementations may also limit the total number of monitors per stream. NetPhone will permit at least 50 monitors per stream.

NetPhone permits eight connected members in a call (8 way conference), but has no limit on the total number of devices that can be involved in a call (other devices might have the call on hold without being connected).

NetPhone Application Development

The NetPhone telephony platform supports several application development methods, and provides a number of APIs for application control of the system. The optimum development method depends on the application requirements, programming experience, time-to-market, and other factors. Applications may run on PC clients or on the NetPhone PBX server. The NetPhone platform provides the client/server messaging for the applications. Applications are also classified by whether they perform call control for the local client (first party), or perform call control on multiple devices (third party).

Supported development tools

Any tool that can call a DLL can use CSTA to talk to NetPhone. Netphone has built applications using:

Show N Tel graphical, object-oriented development system

Microsoft Visual J++, C++ and C programming languages (

Borland C and C++)

Microsoft Visual Basic programming language

Borland Delphi rapid application development system

(Borland C++ Builder)

NetPhone provides sample applications for all the different development options. Refer to � REF _Ref398014230 * MERGEFORMAT �Resources� on page � PAGEREF _Ref398014230 �36� for information.

You will also need a functioning NetPhone PBX (preferably on an Microsoft NT server) to test and run your custom NetPhone application Refer to the documentation supplied with your NetPhone PBX for installation details.

Note: NetPhone recommends using the Windows NT platform for software development. This will allow you to develop and test on the same server.

Telephony Application Design Principles

Designing computer telephony applications requires correct application of several design disciplines, including computer programming and interactive voice user interface design. Correct design of computer telephony applications is critical to achieve high levels of user satisfaction. One of the best books about computer telephony and IVR design is Computer Telephony Strategies, by Jeffrey R. Shapiro (see � REF _Ref398014230 * MERGEFORMAT �Resources� section).

The design process may include:

Determination of functional requirements - objectives, ports, loading

Legacy database or application interface design - DDE, ActiveX, SQL

Designing the call flow - prompts, character/image/identity, filtering, levels, languages

Pilot project implementation - testing, staff education, caller education, phased implementation

To simplify and speed the design process when designing with Show N Tel, NetPhone provides a variety of vertical market and horizontal market applications (templates) that can be used as the basis for customization. Developer training courses for Show N Tel are also available. Contact NetPhone for more details.

To simplify and speed the design process when designing with TAPI, TSAPI or the Dialogic voice API, NetPhone provides example application source and library code. For more information see the � REF _Ref398014230 * MERGEFORMAT �Resources� section.

The NetPhone TSAPI Implementation

In the Windows NT environment, the device driver layer is provided as an NT service, and the TSAPI interface is provided by Lucent Technologies’ CSTA32.DLL.

In the Novell environment, the public TSAPI API is provided by Novell’s CSTA.DLL. The hardware and its driver NLM reside on the server.

The client application can reside on the Novell
server

o
r
 on a Windows platform acting as a

N
o
v
e
l
l

c
l
i
e
n
t

(Novell
 does not currently provide the CSTA client services in a DOS environment
)
. The public TSAPI API provided by CSTA.DLL
 is supported by AT&T switches, among others. An application written against the TSAPI API will work against most vendors’ switches.

Lucent’s Passageway (on NT), or Novell’s TSAPI (on Novell) provides software which supports communication between a client application and a PBX driver over the LAN. Figure 1 shows how the NetPhone board and software integrate into either environment. The application you are writing fits into the applications layer shown in the NetPhone TSAPI Client box. This client software can reside on the
server
local platform
 or on a remote client platform connected via a network.

The public TSAPI API provided by CSTA.DLL
 or CSTA32.DLL
 is supported by AT&T switches, among others. An application written against the TSAPI API will work against most vendors’ switches.

� EMBED Word.Picture.6 ���

Figure 1: The NetPhone System in the Novell Telephony System Architecture�

The NetPhone API supports Windows NT and NetWare platforms, and is identical on both. This interface consists of the standard TSAPI services plus NetPhone extensions using the standard cstaEscapeService mechanism. This guide explains the details of the NetPhone extensions which are invoked using the TSAPI Escape Service mechanism. Nbprivat.h contains the public interface for NetPhone’s TSAPI extensions.

This guide does not explain the details of standard TSAPI services. For a complete description of the calling format and structures of these standard services, please refer to the Lucent Technologies TSAPI documentation provided. See � REF _Ref398014230 * MERGEFORMAT �Resources� section for information.

Dialogic Windows Standard API for Voice Services

NetPhone Windows NT PBX servers provide a Dialogic Windows Standard API for existing IVR applications that interface to that API. This API provides access to NetPhone voice, DTMF and call progress functions using the standard Dialogic programming interface. This eases the job of porting existing telephony applications to the NetPhone platform, and is the interface used by the Show N Tel voice functions. The NetPhone Dialogic interface includes synchronous support for most of the common voice functions supported by Dialogic voice cards.

See � REF _Ref398018711 * MERGEFORMAT �Dialogic Standard API for Audio Services� on page � PAGEREF _Ref398018723 �35� for additional information.

S.100 (SCSA) Bus Hardware Interface

NetPhone uses the S.100 (originally called the Dialogic SCSA SC-Bus) hardware interface for inter-board communications. This allows the NetPhone platform to be able to perform core PBX functions even if the PC server is down, bus-locked, or resetting. S.100 bus channel resources are controlled by the NetPhone PBX board software. This differs from the higher level architecture of S.100, which is built around PC server software control. As the S.100 higher level specifications become more standardized and implemented by other vendors, NetPhone may include API support for those S.100 functions in the future. This would allow third party S.100 compatible telephony boards to be included in the NetPhone platform at the S.100 bus interface level.

Developing Server Applications Using �Show N Tel

Brooktrout Technology’s Show N Tel Development System is the most powerful and easiest to use method for generating NetPhone Windows NT Server applications. Show N Tel is a graphical, object-oriented development environment for computer telephony applications on the NetPhone family of PBX servers. With Show N Tel you can quickly and easily build a wide variety of voice, call processing, messaging and fax applications by creating a diagram of your call flow using Show N Tel’s Graphical Design Tool. The flow diagrams created include PowerBlocks, representing high-level program tasks.

�

Show N Tel includes 22 categories of PowerBlocks supporting a wide range of voice, telephony, fax, database, voice recognition, logical operations, string operations, and many more.

Show N Tel runs on Windows NT, and includes the following features:

Drag-and-Drop Application Generation

PBX, Voice, Database, Fax Integration

Library of over 300 PowerBlocks

No Voice Boards Required

Seamless Voice and Text-to-Speech

Connectivity to Distributed Databases

Client/Server Applications

Up to 128 Show N Tel applications can be assigned to NetPhone trunks or extensions.

NetPhone provides a variety of horizontal and vertical application "templates". These templates are complete Show N Tel applications you can use as starting points for custom applications. (See Resources section for Show N Tel template information.)

Refer to the Show N Tel product documentation and release notes for additional information.

Show N Tel Voice PowerBlocks

The following SNT Voice PowerBlocks interface to the Dialogic Emulation, and will be tested with sample SNT applications:

CLEAR KEYS - Clears any tones that may be in the voice board tone buffer.

CLOSE VOICE FILE - Closes a voice file that is open. When recording or playing a file, you can elect to leave the file open. This will close the file.

DELETE FROM FILE - Deletes a portion of a voice file, given the starting and ending positions.

ENTER DIGITS - Takes caller input via DTMF (touchtones). Parameters include:

Max Digits

Keys to Accept

Keys to Ignore

Keys to Terminate Entry

Keys to Terminate and Save

Keys to Abort Entry

First Keys to Abort Entry

Clear Previous Type-Ahead

Time to Wait for Response

GET FILE POSITION - Gets the current position in a specified voice file.

GET KEY STRING - Gets a string of touch-tone digits from the caller, without checking of data. Uses a subset of the ENTER DIGITS parameters.

GET VOICE PARMS - Gets up to 8 parameters and define their values for the voice settings.1

INSERT TO FILE - Inserts a voice file into another voice file

MENU - Offers a caller a voice menu, consisting of an introductory message, a set of valid single-key choices and option error messages for invalid responses. Uses a subset of the ENTER DIGITS parameters.

PLAY VOICE - Plays a voice file, which can be a specified file or a voice sentence composed of concatenated fragments. Parameters include:

Continue Playing

Ignore - Keys to ignore during play.

Top - Keys to go to the top of the voice file.

Large Skip Forward - Keys to skip forward the amount indicated.

Large Skip Backward - Keys to skip backward the amount indicated.

Small Skip Forward - Keys to skip forward the amount indicated.

Small Skip Backward - Keys to skip backward the amount indicated.

Terminate and Consume - Keys to terminate playing of the file and do not save keys pressed.

Terminate and Save - Keys to terminate playing of the file and save keys pressed.

Large Skip Definition - Defines a large skip amount in bytes or milliseconds.

Small Skip Definition - Defines a small skip amount in bytes or milliseconds.

Clear Previous Type Ahead.

Ignore ‘File Not Found’ Errors.

Leave File Open.

RECORD EDIT - Records a voice file and optionally allows for editing of the recording, including listen, re-record, delete, etc. Parameters include:

Maximum record time in bytes or milliseconds.

Ignore - Keys to ignore during recording.

Terminate - Keys to terminate recording.

Terminate and Save - Keys to terminate recording and save key pressed for type ahead.

Ignore ‘File Not Found’ Errors.	

Clear Previous Type Ahead.

Allow Interrupt of Prompts.

Time to Wait - Time to wait for caller to respond before prompt is repeated in milliseconds.

Allow Interrupt on Errors - Allows caller to interrupt error prompts by entering digits.

Terminate on Silence.2

Silence Suppression. 1

Wait for Sound. 1

Use Talk Down Tone. 1

Use Automatic Gain Control1

Play Tone Before Record.

Minimum Recording - Minimum recording to keep; otherwise the PowerBlock will assume there is “no file”. Specify in bytes or milliseconds.

Warning Tone - Plays a warning tone just before the maximum recording time is reached.

Warning Tone Lag Time - Time before maximum recording time to play warning tone.

Notes:

1. Not supported by NetPhone PBX-618

2. Not supported by NetPhone PBX-618, supported by NetPhone PBX-T124

RECORD VOICE - Records a voice file. Uses the same parameters as RECORD EDIT with the addition of:

File Options	

SET LANGUAGE1

SET VOLUME1

SPEED VOLUME KEYS1

STOP CHANNEL - Instructs the voice hardware driver to stop all activity on the specified line. This can be used by a SNT program to stop a channel other than the one on which the program is running.

Show N Tel Telephony PowerBlocks

The following SNT Telephony PowerBlocks interface to the NetPhone TSAPI services, and will be tested with sample SNT applications:

CALL HOLD - Places a call on hold.

CALL OUT - Dials a phone number. (Wait for Dialtone, Timeout, and Answer Supervision are not supported by NetPhone PBX-618.)

CALL PARK1

CALL PICKUP - Picks up a call from hold.

COMPLETE TRANSFER - Completes a call transfer that started using a TRANSFER CALL.

DIAL NUMBER - Dials a phone number without any answer supervision.

GET ISDN INFO1

GO OFF HOOK - Takes phone “off hook”.

GO ON HOOK - Puts phone back “on hook”.

LISTEN1

MESSAGE LAMP - Sets the message waiting lamp on a phone to on or off.

TRANSFER CALL - Transfers a call within a phone system.

WAIT FOR CALL - Waits for a call, and optionally answers the call upon receipt.

Parameters include:

Timeout (mSeconds) - Time to wait for call in milliseconds.

Wait Forever - Wait forever to receive call; do not timeout.

Answer Call When Received - Check this box to answer the call when it is received.

Get Incoming Call Information - Check this box to get information about the incoming call.

Process Call Fwd Busy/No Answer1

Called Party - Number of the dialed party.

DNIS/ANI/DID/PBX/Called Party Incoming call information - CallerID of the calling party.

Calling Party - Subscriber name of the calling party.

Notes:

1. Not supported by NetPhone PBX-618

2. Not supported by NetPhone PBX-618, supported by NetPhone PBX-T124

Developing Client Applications Using TAPI

NetPhone provides a Microsoft Windows TAPI 2.1 client API for existing or new TAPI applications. A TAPI-compliant client application is able to control the NetPhone PBX telephony functions for that client, including placing, receiving and transferring calls, obtaining caller and calling ID information, plus a variety of other functions. (Personal information management applications such as Goldmine, Symantec’s ACT!, and the Microsoft Office applications use TAPI for call control.) TAPI support components are also available for all the popular Windows programming environments, including Microsoft Visual C++, J++, Visual Basic, Borland Delphi, and Symantec Visual Cafe.

Discussion of
 how TAPI applications talk to NetPhone �(Add a diagram?) - TAPI application-TAPI-TAPISRV.DLL (Windows)-T SPI (Service Provider Interface) - TMAP.TSP - CSTA.API - Client TSAPI driver (Lucent CSTA32.DLL) - TCP/IP network to server - TSERV - PBX driver - NetPhone board.

Due to the differences among SPIs, you may need to build your TAPI application based on the samples provided with the Microsoft Developer’s Toolkit. You can then test to determine which calls are or are not supported by a particular SPI.

The following TAPI calls are/are not supported Get additional information and example from Bob K about supported TAPI calls.

Delphi TAPI component?

Use a simple outline example (visual basic)?

Provide an example of a TAPI application on this site

For additional information and an example of a TAPI application, see � REF _Ref398014230 * MERGEFORMAT �Resources� section.

Developing Client or Server Applications Using TSAPI

The Telephony Services Application Programming Interface (TSAPI) was written using the ECMA CSTA as its foundation. It is a complete, generic, switch-independent API specification. NetPhone uses the TSAPI interface for its own application interface.

Although CSTA Services should work the same in every standards-based switch, individual switches are implemented with different capabilities, limitations, or restrictions. There are some optional protocol elements defined in the CSTA standard that provide services that an individual switch vendor may choose not to implement. On the other hand, some implementations (such as the NetPhone switch) make use of a capability provided within the CSTA standard to provide a “private data” or “escape service” mechanism. This allows for support of services not included in CSTA

NetPhone provides a TSAPI client and server API for existing or new TSAPI applications. Server TSAPI application support is provided on Windows NT. For NetPhone PBX servers running on NetWare, you can develop Windows client applications that control server telephony functions. TSAPI is a complete, generic, switch-independent network-capable API specification. TSAPI interfaces are available for a number of high-end PBXs, allowing TSAPI applications to be build that can work with a number of different PBXs. Show N Tel, and the NetPhone PhoneMaster and VoiceMaster applications use the TSAPI interface for their primary call control interface.

On NetPhone Windows NT PBX servers, the TSAPI client/server messaging is provided by Lucent Technologies’ PassageWay software that is installed as part of the NetPhone platform. The same service is provided by Novell's NetWare Telephony Services on NetPhone NetWare PBX servers.

TSAPI was originally developed by AT&T and Novell as a call control standard, and did not include voice or DTMF functions. The NetPhone platform provides these functions and additional services through the standard TSAPI extension mechanism.

In the Novell Networking environment, NetPhone provides an NLM (NetWare Loadable Module) device driver that runs on the server and interfaces the hardware to the TSAPI driver side of Novell’s TSERV software. The PBX software on the NetPhone board handles telephony services using the CSTA standard model.

Application code interfaces to the front end of CSTA.DLL or CSTA32.DLL. Novell Telephony or Lucent Passageway Services provide all functions between the driver and the application
, using their TSERV NLM and their CSTA.DLL
.

You create a custom NetPhone application by coding to the TSAPI standard and using the NetPhone private data extensions. Your TSAPI client application can run locally on the server or on a remote Windows platform acting as a TSAPI client.

TSAPI Functions Supported by NetPhone

NetPhone includes support for the generic TSAPI/CSTA functions and events listed in Table 1. The functions and events listed in Table 2 are not currently supported in the NetPhone software. The additional services listed in Table 3 are provided using the TSAPI/CSTA private data mechanism. The host application software can use the cstaGetAPICaps function to determine which TSAPI functions or events are supported by the current version of NetPhone software.

For a complete description of the behavior and function of the services listed in Table 1 refer to the Lucent Technologies TSAPI documentation.

Table 1: Supported TSAPI Functions and Events

answerCall�clearCall��alternateCall�clearConnection��consultationCall�conferenceCall��deflectCall�pickupCall��holdCall�makeCall��queryMwi�queryDnd��queryFwd�queryLastNumber��queryDeviceInfo�retrieveCall��setMwi�setDnd��setFwd�transferCall��eventReport�callClearedEvent��conferencedEvent�connectionClearedEvent��deliveredEvent�establishedEvent��failedEvent�heldEvent��networkReachedEvent�originatedEvent��retrievedEvent�serviceInitiatedEvent��transferredEvent�doNotDisturbEvent��forwardingEvent�messageWaitingEvent��monitorDevice�monitorCall��monitorCallsViaDevice�monitorStop��snapshotDeviceReq�snapshotCallReq��escapeService�privateStatusEvent��escapeServiceEvent�escapeServiceConf��sendPrivateEvent�changeMonitorFilter��

Table 2: Unsupported TSAPI Functions and Events

callCompletion�groupPickupCall��makePredictiveCall�queryAgentState��reconnectCall�setAgentState��divertedEvent�queuedEvent��callInformationEvent�loggedOnEvent��loggedOffEvent�notReadyEvent��readyEvent�workNotReadyEvent��workReadyEvent�backInServiceEvent��outOfServiceEvent�privateEvent��routeRequestEvent�reRoute��routeSelect�routeUsedEvent��routeEndEvent�sysStatReq��monitorEnded�sysStatStop��sysStatStart�sysStatReqEvent��changeSysStatFilter�sysStatEvent��sysStatReqConf���

�Extra NetPhone Services

The Escape Services in CSTA-based TSAPI provide NetPhone API access to switch configuration, audio play/record and DTMF detection/play extensions not supported by generic TSAPI. The NetPhone API extension requests (see Table 3) are invoked with the TSAPI cstaEscapeService request.

Table 3: NetPhone API Audio and DTMF Extension Requests

npPvtUnknown���npPvtStartPrivateStatus�npPvtStopPrivateStatus��npPvtPlay�npPvtPlayStarted��npPvtPlayStop�npPvtPlayEnded��npPvtPlayNextFile���npPvtRecord�npPvtRecordStarted��npPvtRecordStop�npPvtRecordEnded��npPvtGetDigits�npPvtStopGetDigits��npPvtDigitsSeen�npPvtPlayDigits��npPvtGetDialedDigits�npPvtReportDialedDigits��npPvtRequestSwrID�npPvtReportSwrID��npPvtRequestHdwrID�npPvtReportHdwrID��npPvtRequestDriverID�npPvtReportDriverID��npPvtGetTranslation�npPvtSetTranslation��npPvtReportTranslation���npPvtSetLineUserInfo�npPvtSetLineInfo��npPvtGetLineInfo�npPvtReportLineInfo��npPvtSetCTIctrl�npPvtGetCTIctrl��npPvtReportCTIctrl���npPvtEnableAdministration�npPvtSetAdminPassword��npPvtSetSystemInfo�npPvtGetSystemInfo��npPvtReportSystemInfo���npPvtRequestBroadcast�npPvtReportBroadcast��npPvtGetROMboardOrder�npPvtReportROMboardOrder��npPvtGetBoardOrder�npPvtSetBoardOrder��npPvtReportBoardOrder���npPvtGetStatusInfo�npPvtReportStatusInfo��npPvtConnectSound�npPvtDisconnectSound��npPvtGetSound�npPvtReportSound��npPvtRequestInterlock�npPvtReleaseInterlock��npPvtReportInterlock���

As an illustration of NetPhone’s implementation of TSAPI, the source code for the NPAdmin (NetPhone’s administration utility) has been provided. See � REF _Ref398014230 * MERGEFORMAT �Resources� section for information.

NetPhone Private Message Extensions

NetPhone uses CSTA-based TSAPI Escape Services to provide access to switch configuration, audio play/record and DTMF detection/play extensions not supported by generic TSAPI. These extension requests are invoked with the TSAPI cstaEscapeService subroutine.

NetPhone, Inc. provides data types and the declarations for these “private message extensions” in a C header file called nbprivat.h. This file provides the data structure and data type declarations associated with the NetPhone private message extensions.

The nbprivat.h include file describes the messages recognized when these TSAPI escape service subroutines are used. The confirmation event will contain a private structure of the same form as the structure in the original message. The confirmation and unsolicited messages produced by the NetPhone board are obtained with the normal acsGetEventPoll routine.

The messages used for client-to-server and server-to-client communications share the same structure and definitions but use different message types. Receipt of an incorrect message type should be handled by ignoring the message or by sending a failure acknowledgment.

The data portion of the NetPhonePrivateMessage_t –has different values and structures for the various NetPhone message types. The structures required for each message type are defined in nbprivat.h and explained in this chapter.

NetPhonePrivateMessage_t

The private data parameter in the TSAPI calls points to the structure NetPhonePrivateMessage_t, defined in NetPhone’s nbprivat.h. The NetPhone private message structure is used both for sending requests to the NetPhone board and for reporting results, activity and status. The structure consists of a NetPhonePrivateHeader_t portion (header) which is independent of message type, followed by a data portion which does depend on the message type. The data portion is defined as a union of all the possible message types that might appear there. The beginning of the header exactly matches the vendor and length fields defined in the Novell TSAPI specification’s PrivateData_t structure.

Parameters:	

	NetPhonePrivateHeader_t

union {

	NetPhonePrivateFile_t

	NetPhonePrivateDTMF_t

	NetPhonePrivateText_t

	NetPhonePrivateXlate_t

	NetPhonePrivateLineInfo_t

	NetPhonePrivateSystemInfo_t

	NetPhonePrivateCTIinfo_t

	NetPhonePrivateBroadcast_t

	NetPhonePrivateBoardList_t

	NetPhonePrivateStatus_t

	NetPhonePrivateSound_t

	NetPhonePrivateInterlock_t

	NetPhonePrivateCallerIDinfo_t

 } data;

NetPhonePrivateHeader_t

The first 34 bytes of this structure contain the header and length fields of the TSAPI PrivateData_t –structure. These two fields from the TSAPI structure correspond to the NetPhone vendor ID string and the length. The remainder of NetPhonePrivateHeader_t –consists of the message type and a connection ID. The length field is the size of the entire private data structure for the particular message. The vendor ID string recognized by NetPhone and the message types are defined in nbprivat.h and explained in this chapter.

Parameters:	

	vendor name			NetPhone vendor ID string

	length				Size of the private data structure

	privateMessageID			NetPhone Message Type

	PvtConnectionID_t		NetPhone connection ID

PvtConnectionID_t

Each header contains a PvtConnectionID_t –structure. This ID specifies the device and call involved in or controlled by this message. This connection defines only a single line/call pairing. A call is an abstract device which describes shared audio. Each line connected to a call can talk and listen to the call. In the few cases which do not involve a device or call, the line and call fields of the ConnectionID_t –field are ignored. See the individual messages for details.

The ConnectionID_t data structure is 69 bytes long on the WATCOM platforms, 70 bytes long on Windows platforms, and 72 bytes long on Windows NT.

So that the private data structures do not need to be converted on the fly, we define a special PvtConnectionID_t that matches the 69 byte form of the ConnectionID_t. This special structure is used on those platforms which would otherwise have a 2 byte enum to make the field devIDType an 8 bit cell in the correct location.

Nbprivat.h thus creates a structure that is the same on all platforms with the same field names as ConnectionID_t.

To prevent problems with code that copies an entire ConnectionID_t by explicit length into our structure, we ensure that we always create a 70 byte data space, padding as required.

We also validate that we are getting expected sizes for TSAPI data structures. (Some compilers do not permit this validation, and it is turned off in those environments.)

Parameters:	

	callID				Identifier of the call to be controlled

	DeviceID_t			Identifier of the device

	devIDType			Device ID type

NetPhone Private Message Failure Codes

Only four different error results can be returned from the NetPhone board for private message failure. In general, a positive return value signifies success while a negative return value signifies some type of failure. See the individual messages to determine which errors can be returned for each case. The possible errors are:

RESOURCE_LIMITATION_REJECTION;

INVALID_CSTA_DEVICE_IDENTIFIER;

INVALID_CSTA_CALL_IDENTIFIER;

INVALID_CSTA_CONNECTION_IDENTIFIER.

Using nbprivat.h

NetPhone boards recognize private messages where the “vendor” field of the TSAPI PrivateData_t –structure contains the NUL terminated string defined by the compile time constant:

	NETPHONE_VENDOR_NAME

As the version number embedded in this name changes, NetPhone will support old version numbers with the same initial name.

Each NetPhone private message uses the NetPhonePrivateMessage_t –structure described previously. Each message contains a message type and the appropriate message related data structure. The next section describes the message types in detail, listing possible error returns and any data structure requirements. The data structures themselves are described after all the message types.

For convenience, Table 4 contains a complete list of the message types, who originates the message, and what structure is required.

�Table 4: Message Types, Source and Data Structures

Message Type�Originator�Data������npPvtUnknown��null data field��Administrative Control and ID Information��npPvtRequestSwrID�application�NetPhonePrivateText_t��npPvtReportSwrID�NetPhone�NetPhonePrivateText_t��npPvtRequestHdwrID�application�NetPhonePrivateText_t��npPvtReportHdwrID�NetPhone�NetPhonePrivateText_t��npPvtRequestDriverID�application�NetPhonePrivateText_t��npPvtReportDriverID�NetPhone�NetPhonePrivateText_t��npPvtEnableAdministration�application�NetPhonePrivateText_t��npPvtSetAdminPassword�application�NetPhonePrivateText_t��npPvtSetSystemInfo�application�NetPhonePrivateText_t��npPvtGetSystemInfo�application�NetPhonePrivateText_t��npPvtReportSystemInfo�NetPhone�NetPhonePrivateText_t��npPvtSetOperatorNumber�application�NetPhonePrivateText_t��npPvtGetOperatorNumber�application�NetPhonePrivateText_t��npPvtReportOperatorNumber�NetPhone�NetPhonePrivateText_t��Audio Play and Record Control��npPvtPlay �application�NetPhonePrivateFile_t��npPvtPlayStarted�NetPhone�NetPhonePrivateFile_t��npPvtPlayStop�application�NetPhonePrivateFile_t��npPvtPlayEnded�NetPhone�NetPhonePrivateFile_t��npPvtPlayNextFile�NetPhone�NetPhonePrivateFile_t��npPvtRecord�application�NetPhonePrivateFile_t��npPvtRecordStarted�NetPhone�NetPhonePrivateFile_t��npPvtRecordStop�application�NetPhonePrivateFile_t��npPvtRecordEnded�NetPhone�NetPhonePrivateFile_t��Broadcast Control��npPvtRequestBroadcast�application�NetPhonePrivateBroadcast_t��npPvtReportBroadcast�NetPhone�NetPhonePrivateBroadcast_t��Caller ID��npPvtGetCallerIDinfo�application�NetPhonePrivateCallerIDinfo_t��npPvtReportCallerIDinfo�NetPhone�NetPhonePrivateCallerIDinfo_t��CTI Control��npPvtSetCTIctrl�application�NetPhonePrivateCTIinfo_t��npPvtGetCTIctrl�application�NetPhonePrivateCTIinfo_t��npPvtReportCTIctrl�NetPhone�NetPhonePrivateCTIinfo_t��npPvtMakeCTIcall�application�NetPhonePrivateCTIinfo_t��DTMF Digit Control��npPvtGetDigits�application�NetPhonePrivateDTMF_t��npPvtStopGetDigits�application�NetPhonePrivateDTMF_t��npPvtDigitsSeen�NetPhone�NetPhonePrivateDTMF_t��npPvtPlayDigits�application�NetPhonePrivateDTMF_t��npPvtGetDialedDigits �application �NetPhonePrivateDTMF_t��npPvtReportDialedDigits�NetPhone�NetPhonePrivateDTMF_t��npPvtPlayTillDTMF�application�NetPhonePrivateDTMF_t��npPvtRecordTillDTMF�application�NetPhonePrivateDTMF_t��Interlock Control��npPvtRequestInterlock�application�NetPhonePrivateInterlock_t��npPvtReleaseInterlock�application�NetPhonePrivateInterlock_t��npPvtReportInterlock�NetPhone�NetPhonePrivateInterlock_t��Line Information��npPvtSetLineInfo�application�NetPhonePrivateLineInfo_t��npPvtSetLineUserInfo�application �NetPhonePrivateLineInfo_t��npPvtGetLineInfo�application�NetPhonePrivateLineInfo_t��npPvtReportLineInfo�NetPhone�NetPhonePrivateLineInfo_t��Private Status Control��npPvtStartPrivateStatus �application�null data field��npPvtStopPrivateStatus �application�null data field��Board Information��npPvtGetROMboardOrder�application�NetPhonePrivateBoardList_t��npPvtReportROMboardOrder�NetPhone�NetPhonePrivateBoardList_t��npPvtGetBoardsPresent�application�NetPhonePrivateBoardList_t��npPvtReportBoardsPresent�NetPhone�NetPhonePrivateBoardList_t��npPvtGetBoardOrder�application�NetPhonePrivateBoardList_t��npPvtSetBoardOrder�application�NetPhonePrivateBoardList_t��npPvtReportBoardOrder�NetPhone�NetPhonePrivateBoardList_t��Status Information��npPvtGetStatusInfo�application�NetPhonePrivateStatus_t��npPvtReportStatusInfo�NetPhone�NetPhonePrivateStatus_t��Stream Information��npPvtGetStreamInfo�application�NetPhoneStreamInfo_t��npPvtReportStreamInfo�NetPhone�NetPhoneStreamInfo_t��Sound Control��npPvtConnectSound�application�NetPhonePrivateSound_t��npPvtDisconnectSound�application�NetPhonePrivateSound_t��npPvtGetSound�application�NetPhonePrivateSound_t��npPvtReportSound�NetPhone�NetPhonePrivateSound_t��Translation Control��npPvtGetTranslation�application�NetPhonePrivateXlate_t��npPvtSetTranslation�application�NetPhonePrivateXlate_t��npPvtReportTranslation�NetPhone�NetPhonePrivateXlate_t��

Dialogic Standard API for Audio Services

The NetPhone platform emulates the Dialogic standard API for Windows NT in a set of DLLs. This emulation is primary intended to allow existing applications that interface to Dialogic hardware to be easily ported to the NetPhone platform. An alternative approach is to use the TSAPI voice services described in the previous chapter. The NetPhone Dialogic emulation is designed for multithreaded, multitasking applications. The following synchronous programming model Dialogic calls are supported:

Resource Management Functions: Open and close devices.

dx_close()	close a board or channel			

dx_open()	open a board or channel			

Configuration Functions: Examine, and control the physical configuration of an open device.

dx_clrdigbuf()	Clear the digit buffer

dx_setdigtyp()	Set digit collection type			

dx_sethook()	Set hookswitch state			

dx_wtring()	Wait for number of rings			

I/O Functions: Transfer data to and from an open idle channel.

dx_dial()	Dial an AXCIIZ string of digits			

dx_getdig()	Get digits from channel digit buffer			

dx_play()	Play voice data from multiple sources			

dx_playf()	Play voice data from a single file			

dx_recf()	Record voice data to a single file			

dx_stopch()	Stop current I/O			

Resources

ECMA (European Computer Manufacturers Association)

You can obtain information about the CSTA standard from:

ECMA (European Computer Manufacturers Association)

114 Rue du Rhône

CH1204 Geneva

Switzerland

http://www.ecma.ch/

Books/Publications

Computer Telephony Strategies, by Jeffrey R. Shapiro

Published by IDG Books Worldwide

Publication date: September 1, 1996

ISBN: 0764530135

Internet Resources

You can also find a number of web sites and usenet groups with information pertaining telephony development.

Web Sites:

For information about TAPI, and to download TAPI 2.1, visit the Microsoft web site (Windows Developer Network Online): www.microsoft.com

News Groups:

Microsoft.public.win32.programmer.tapi

TAPI and TSAPI development issues are also discussed in the newsgroups for specific programming languages.

Source Code Examples available on this site:

Source code for NPAdm (NetPhone’s administration utility) is provided as an example of the NetPhone implementation of TSAPI.

TAPI

(---) is provided as an example of TAPI programming.

Any notes or restrictions on this?

TSAPI

Nbprivat.h defines the TSAPI Escape Service extensions used by NetPhone.

Administration utility?

Show N Tel Application Templates

The following Show N Tel application templates are available for download:�(C. Holland)

Documentation available on this site:

Lucent TSAPI Documentation - TSAPI.PDF

Provides a complete description of the Lucent Technologies TSAPI services and programming syntax.

CSTA

CSTA (Computer-Supported Telephony Applications) was created by the European Computer Manufacturers Association (ECMA). This internationally agreed-upon standard provides switch and telephony vendors with a consistent foundation for the implementation of switches and telephony services. Standard ECMA-179 defines the CSTA Services standard. Standard ECMA-180 defines the application protocol data units for the CSTA Services. These documents provide CSTA application programmers with the necessary information to support the same set of telephony services independent of platform type.

Specifically, CSTA provides telephony services such as the following:

API management – typical functions include API Control Services (ACS); CSTA Functions and Confirmation Events, such as acsOpenStream(), acsGetEventBlock(), acsEnumServerNames(), and cstaGetDeviceList().

Switching function – typical functions include basic call control services, such as cstaAnswerCall and cstaConferenceCall; telephony supplemental services, such as cstaSetMsgWaitingInd() and cstaSetForwarding().

Status reporting – typical functions include status reporting functions and confirmation events, such as cstaMonitorCall() and cstaMonitorConfEvent; call event reports such as cstaEstablishedEvent and cstaFailedEvent; feature event reports such as cstaCallInfoEvent and cstaMessageWaitingEvent; agent status event reports such as cstaLoggedOnEvent and cstaNotReadyEvent; event report data types such as cstaMonitorFilter and cstaEventCause.

CSTA computing function – typical functions include application-based call routing such as cstaRouteRegisterReq() and cstaRouteRequestEvent.

Escape and maintenance – typical functions include escape services with the application as client such as cstaEscapeService(); escape services with driver/switch as client such as cstaEscapeServiceReq; system status with application as the client such as cstaStatusReq(); system status with driver/switch as client such as cstaSysStatReqEvent; maintenance such as cstaOutOfServiceEvent.

The Telephony Services Application Programming Interface (TSAPI) was written using the ECMA CSTA as its foundation. It is a complete, generic, switch-independent API specification. NetPhone uses the TSAPI interface for its own application interface.

Although CSTA Services should work the same in every standards-based switch, individual switches are implemented with different capabilities, limitations, or restrictions. There are some optional protocol elements defined in the CSTA standard that provide services that an individual switch vendor may choose not to implement. On the other hand, some implementations (such as the NetPhone switch) make use of a capability provided within the CSTA standard to provide a “private data” or “escape service” mechanism. This allows for support of services not included in CSTA.

Glossary of Acronyms

ACD		Automatic Call Distributor

ACS		API Control Services

API		Application Programming Interface

ASAl		Adjunct Switch Application Interface

ASCIZ		A NUL terminated string of bytes

BRI		Basic Rate Interface

CSTA		Computer-Supported Telephony Application

CTI		Computer Telephony Integration

DLL		Dynamically Loaded Library (Windows)

DSP		Digital Signal Processing

DTMF		Dual Tone Multi-Frequency (Touch-tone)

ECMA		European Computer Manufacturers Association

ID		Identifier

IDE		Integrated Development Environment

IVR 		Interactive Voice Response

LAN		Local Area Network

TSERV		The service layer of Novell Telephony services

NLM 		NetWare Loadable Module

NTS 		NetWare Telephony Services

OA&M		Operations, Administration and Maintenance

PBX		Private-Branch Exchange

PC ISA bus 	The memory and device bus of a PC

POTS		Plain Old Telephone System

SCSA		Dialogic Signal Computing System Architecture

SDK 		Software Developer’s Kit

SPI		Service Provider Interface

TAPI		Microsoft’s Telephony API

TSAPI		Telephony Services API

�PAGE �
22
38
�

	NetPhone Application Development Guide

�PAGE �
23
39
�

NetPhone Application Development Guide

�PAGE \# "'Page: '#'�'" ��Decisive, Tobit

�PAGE \# "'Page: '#'�'" �Page: 11���John Clayton will supply additional information on PBX H.323

�PAGE \# "'Page: '#'�'" �Page: 15���Can a generic diagram be used for NT and Novell?

�

