
CentreVu Computer-Telephony

Release 10.1, Version 1

Telephony Services Application
Programming Interface

Programmer’s Reference

Issue 1
December 2001

Copyright © 2001 Avaya, Inc.
All Rights Reserved
Printed in USA
Notice
Every effort was made to ensure that the information in this book
was complete and accurate at the time of printing. However,
information is subject to change.

Preventing Toll Fraud
“Toll fraud” is the unauthorized use of your telecommunications sys-
tem by an unauthorized party (for example, a person who is not a
corporate employee, agent, subcontractor, or working on your com-
pany’s behalf). Be aware that there may be a risk of toll fraud associ-
ated with your system and that, if toll fraud occurs, it can result in
substantial additional charges for your telecommunications services.

Avaya Fraud Intervention
If you suspect you are being victimized by toll fraud and you need
technical support or assistance, call the appropriate BCS National
Customer Care Center telephone number. Users of the MERLIN®,
PARTNER®, and System 25 products should call 1 800 628-2888.
Users of the System 75, System 85, DEFINITY® Generic 1, 2 and 3,
and DEFINITY® ECS products should call 1 800 643-2353.

Providing Telecommunications Security
Telecommunications security (of voice, data, and/or video communi-
cations) is the prevention of any type of intrusion to (that is, either
unauthorized or malicious access to or use of your company’s tele-
communications equipment) by some party.
Your company’s “telecommunications equipment” includes both this
Avaya product and any other voice/data/video equipment that could
be accessed via this Avaya product (that is, “networked equip-
ment”).
An “outside party” is anyone who is not a corporate employee,
agent, subcontractor, or working on your company’s behalf.
Whereas, a “malicious party” is anyone (including someone who
may be otherwise authorized) who accesses your telecommunica-
tions equipment with either malicious or mischievous intent.
Such intrusions may be either to/through synchronous (time-multi-
plexed and/or circuit-based) or asynchronous (character-, mes-
sage-, or packet-based) equipment or interfaces for reasons of:

• Utilization (of capabilities special to the accessed equipment)
• Theft (such as, of intellectual property, financial assets, or

toll-facility access)
• Eavesdropping (privacy invasions to humans)
• Mischief (troubling, but apparently innocuous, tampering)
• Harm (such as harmful tampering, data loss or alteration,

regardless of motive or intent)
Be aware that there may be a risk of unauthorized intrusions associ-
ated with your system and/or its networked equipment. Also realize
that, if such an intrusion should occur, it could result in a variety of
losses to your company (including, but not limited to, human/data
privacy, intellectual property, material assets, financial resources,
labor costs, and/or legal costs).

Your Responsibility for Your Company’s
Telecommunications Security
The final responsibility for securing both this system and its net-
worked equipment rests with you – an Avaya customer’s system
administrator, your telecommunications peers, and your managers.
Base the fulfillment of your responsibility on acquired knowledge
and resources from a variety of sources including but not limited to:

• Installation documents
• System administration documents
• Security documents
• Hardware-/software-based security tools
• Shared information between you and your peers
• Telecommunications security experts

To prevent intrusions to your telecommunications equipment, you
and your peers should carefully program and configure your:

• Avaya provided telecommunications systems and their inter-
faces

• Avaya provided software applications, as well as their underly-
ing hardware/software platforms and interfaces

• Any other equipment networked to your Avaya products
Avaya does not warrant that this product or any of its networked
equipment is either immune from or will prevent either unauthorized
or malicious intrusions. Avaya will not be responsible for any
charges, losses, or damages that result from such intrusions.

Trademarks
Adobe, Adobe Acrobat, and the Adobe logo are registered

trademarks of Adobe Systems, Inc.
CallVisor, CentreVu, DEFINITY, and the Avaya logotype are

registered trademarks of Avaya, Inc.
DEFINITY ONE and DEFINTY PROLOGIX are trademarks of

Avaya, Inc.
Microsoft, DOS, Windows, Windows NT, Win32, and the Microsoft

logo are registered trademarks and Windows for WorkGroups,
Windows 95, and Windows 98 are trademarks of Microsoft.

Pentium is a registered trademark of Intel Corporation.
Sun, Sun Microsystems and the Sun logo are registered trademarks

and Java, Solaris, and Solaris SPARC are trademarks of Sun
Microsystems, Inc. in the USA and other countries.

UNIX is a registered trademark in the USA and other countries,
licensed exclusively through X/Open Company Limited.

UnixWare is a registered trademark of the Santa Cruz Operation,
Inc. in the USA and other countries.

All products and company names are trademarks or registered
trademarks of their respective holders.

Obtaining Products
To learn more about Avaya products and to order products, contact
Avaya at: 1 800 451 2100

Warranty
Avaya provides a limited warranty on this product. Refer to the
“Avaya Network Software License Agreement” provided with your
package.

Comments
If you have comments, complete and return the comment card at the
end of this document.

Contents
1 Abstract 1-1

2 Introduction 2-1

■ Purpose 2-1

■ Product Architecture 2-2

Telephony Services Applications 2-4

3 TSAPI Call Model 3-1

■ Terminology 3-1

Definitions 3-1

Acronyms 3-3

■ Architecture 3-4

Distribution of Computing and Switching Functions 3-4

API Services 3-5

Services and Objects 3-5

Functions 3-6

TSAPI Switching Sub-Domain Model 3-6

TSAPI Device 3-7
Call 3-10
TSAPI Connections 3-11
Call Status Event Reports 3-12
TSAPI Call States 3-13

Dynamic Identifier Management 3-15

4 Control Services 4-1

■ Opening, Closing and Aborting an ACS Stream 4-2

Opening an ACS Stream 4-2

Closing an ACS Stream 4-3

Aborting an ACS Stream 4-3

■ Sending CSTA Requests and Responses 4-4
Issue 1 — December 2001

iiiTSAPI.PDF R10.1 V1

Contents
■ Receiving Events 4-4

Blocking Event Reception 4-5

Non-Blocking Event Reception 4-5

■ TSAPI Version Control 4-6

■ Private Data Version Control 4-8

■ Querying for Available Services 4-9

■ API Control Services (ACS) Functions and
Confirmation Events 4-9

acsOpenStream () 4-9

ACSOpenStreamConfEvent 4-15

acsCloseStream() 4-17

ACSCloseStreamConfEvent 4-19

ACSUniversalFailureConfEvent 4-20

acsAbortStream() 4-22

acsGetEventBlock() 4-23

acsGetEventPoll() 4-25

acsGetFile() (UnixWare) 4-27

acsSetESR() (Windows) 4-28

acsSetESR() (Win32) 4-30

acsEventNotify() (Windows 3.1) 4-32

acsEventNotify() (Win32) 4-35

acsFlushEventQueue() 4-37

acsEnumServerNames() 4-38

acsQueryAuthInfo() 4-39

■ ACS Unsolicited Events 4-43

ACSUniversalFailureEvent 4-43

■ ACS Data Types 4-53

ACS Common Data Types 4-54

ACS Event Data Types 4-56

■ CSTA Control Services and Confirmation Events 4-57

cstaGetAPICaps() 4-57

CSTAGetAPICapsConfEvent 4-59

cstaGetDeviceList() 4-61

CSTAGetDeviceListConfEvent 4-63

cstaQueryCallMonitor() 4-66
Issue 1 — December 2001

TSAPI.PDF R10.1 V1iv

Contents
CSTAQueryCallMonitorConfEvent 4-67

■ CSTA Event Data Types 4-68

5 Switching Function Services 5-1

■ Basic Call Control Services 5-1

CSTAUniversalFailureConfEvent 5-2

cstaAlternateCall() 5-12

CSTAAlternateCallConfEvent 5-14

cstaAnswerCall() 5-16

CSTAAnswerCallConfEvent 5-17

cstaCallCompletion() 5-19

CSTACallCompletionConfEvent 5-20

cstaClearCall() 5-22

CSTAClearCallConfEvent 5-23

cstaClearConnection() 5-26

CSTAClearConnectionConfEvent 5-28

cstaConferenceCall() 5-29

CSTAConferenceCallConfEvent 5-31

cstaConsultationCall() 5-33

CSTAConsultationCallConfEvent 5-35

cstaDeflectCall() 5-37

CSTADeflectCallConfEvent 5-38

cstaGroupPickupCall() 5-40

CSTAGroupPickupCallConfEvent 5-42

cstaHoldCall() 5-43

CSTAHoldCallConfEvent 5-45

cstaMakeCall() 5-47

CSTAMakeCallConfEvent 5-50

cstaMakePredictiveCall() 5-51

CSTAMakePredictiveCallConfEvent 5-54

cstaPickupCall() 5-55

CSTAPickupCallConfEvent 5-57

cstaReconnectCall() 5-58
Issue 1 — December 2001

vTSAPI.PDF R10.1 V1

Contents
CSTAReconnectCallConfEvent 5-61

cstaRetrieveCall() 5-63

CSTARetrieveCallConfEvent 5-64

cstaTransferCall() 5-66

CSTATransferCallConfEvent 5-68

■ Telephony Supplementary Services 5-70

cstaSetMsgWaitingInd() 5-70

CSTASetMwiConfEvent 5-72

cstaSetDoNotDisturb() 5-73

CSTASetDndConfEvent 5-75

cstaSetForwarding() 5-76

CSTASetFwdConfEvent 5-78

cstaSetAgentState() 5-80

CSTASetAgentStateConfEvent 5-82

cstaQueryMsgWaitingInd() 5-83

CSTAQueryMwiConfEvent 5-85

cstaQueryDoNotDisturb() 5-86

CSTAQueryDndConfEvent 5-87

cstaQueryFwd () 5-89

CSTAQueryFwdConfEvent 5-90

cstaQueryAgentState() 5-93

CSTAQueryAgentStateConfEvent 5-95

cstaQueryLastNumber() 5-97

CSTAQueryLastNumberConfEvent 5-98

cstaQueryDeviceInfo() 5-100

CSTAQueryDeviceInfoConfEvent 5-102

6 Status Reporting Services 6-1

■ Status Reporting Functions and Confirmation Events 6-1

cstaMonitorDevice() 6-3

cstaMonitorCall() 6-6

cstaMonitorCallsViaDevice() 6-8

CSTAMonitorConfEvent 6-10
Issue 1 — December 2001

TSAPI.PDF R10.1 V1vi

Contents
cstaMonitorStop() 6-12

CSTAMonitorStopConfEvent 6-14

cstaChangeMonitorFilter() 6-15

CSTAChangeMonitorFilterConfEvent 6-18

CSTAMonitorEndedEvent 6-19

■ Call Event Reports (Unsolicited) 6-21

cstaCallClearedEvent 6-21

cstaConferencedEvent 6-24

CSTAConnectionClearedEvent 6-27

CSTADeliveredEvent 6-29

CSTADivertedEvent 6-32

CSTAEstablishedEvent 6-34

CSTAFailedEvent 6-36

CSTAHeldEvent 6-38

CSTANetworkReachedEvent 6-41

CSTAOriginatedEvent 6-43

CSTAQueuedEvent 6-45

CSTARetrieveEvent 6-48

CSTAServiceInitiatedEvent 6-50

CSTATransferredEvent 6-52

■ Feature Event Reports (Unsolicited) 6-55

CSTACallInfoEvent 6-55

CSTADoNotDisturbEvent 6-57

CSTAForwardingEvent 6-58

CSTAMessageWaitingEvent 6-61

■ Agent Status Event Reports (Unsolicited) 6-63

CSTALoggedOnEvent 6-63

CSTALoggedOffEvent 6-65

CSTANotReadyEvent 6-66

CSTAReadyEvent 6-68

CSTAWorkNotReadyEvent 6-69

CSTAWorkReadyEvent 6-71

■ Event Report Data Types (Unsolicited) 6-74

CSTAMonitorFilter_t 6-74

CSTAEventCause_t 6-75
Issue 1 — December 2001

viiTSAPI.PDF R10.1 V1

Contents
7 Snapshot Services 7-1

■ Call Snapshot Services 7-3

cstaSnapshotCallReq() 7-4

CSTASnapshotCallConfEvent 7-5

■ Device Snapshot Service 7-7

cstaSnapshotDeviceReq() 7-7

CSTASnapshotDeviceConfEvent 7-9

8 CSTA Computing Function Services 8-1

■ TSAPI Version 2 Routing 8-1

■ Application Call Routing 8-2

■ Routing Registration Functions and Events 8-4

cstaRouteRegisterReq() 8-4

CSTARouteRegisterReqConfEvent 8-6

cstaRouteRegisterCancel() 8-8

CSTARouteRegisterCancelConfEvent 8-10

CSTARouteRegisterAbortEvent 8-11

■ Routing Functions and Events 8-14

Register Request ID and the Routing Cross-Reference ID8-14

CSTARouteRequestEvent 8-15

CSTAReRouteRequestEvent 8-18

cstaRouteSelect() TSAPI Version 1 Only 8-20

cstaRouteSelectInv() 8-23

CSTARouteUsedEvent 8-25

CSTARouteEndEvent 8-27

cstaRouteEnd() TSAPI Version 1 Only 8-29

cstaRouteEndInv() 8-32

9 Escape and Maintenance Services 9-1

■ Escape Services 9-1

■ Maintenance Services 9-3
Issue 1 — December 2001

TSAPI.PDF R10.1 V1viii

Contents
■ Escape Services : Application as Client 9-5

cstaEscapeService() 9-5

CSTAEscapeServiceConfEvent 9-7

CSTAPrivateEvent 9-8

CSTAPrivateStatusEvent 9-9

■ Escape Service : Driver/Switch as the Client 9-11

CSTAEscapeServiceReq 9-11

cstaEscapeServiceConf() 9-12

cstaSendPrivateEvent() 9-14

■ Maintenance Services: Device Status 9-16

CSTABackInServiceEvent 9-17

CSTAOutOfServiceEvent 9-18

■ System Status - Application as the Client 9-20

cstaSysStatReq() 9-20

CSTASysStatReqConfEvent 9-22

cstaSysStatStart() 9-26

CSTASysStatStartConfEvent 9-28

cstaSysStatStop() 9-30

CSTASysStatStopConfEvent 9-32

cstaChangeSysStatFilter() 9-33

CSTAChangeSysStatFilterConfEvent 9-35

CSTASysStatEvent 9-37

CSTASysStatEndedEvent 9-39

■ System Status : Driver/Switch as the Client 9-40

CSTASysStatReqEvent 9-40

cstaSysStatReqConf() 9-43

cstaSysStatEvent() 9-44

10 Programming Notes 10-1

■ Introduction 10-1

■ TSAPI on Win32 Programming Overview 10-1

Development Platforms 10-1

Linking to the TSAPI Library 10-1
Issue 1 — December 2001

ixTSAPI.PDF R10.1 V1

Contents
Using Application Control Services 10-2

Event Notification 10-2

Receiving Events 10-2

Blocking Versus Polling 10-2
Receiving Events From Any Stream 10-2

Sharing ACS Streams Between Threads 10-3

Message Trace 10-3

■ TSAPI on UnixWare 10-4

Development Platforms 10-4

Linking to the TSAPI Library 10-4

Using Application Control Services 10-4

Event Notification 10-4

Receiving Events 10-5

Blocking Versus Polling 10-5
Receiving Events From Any Stream 10-5
Message Trace 10-5
Sample Code 10-6

■ TSAPI on HP-UX 10-7

Development Platforms 10-7

Linking to the TSAPI Library 10-7

Using Application Control Services 10-7

Event Notification 10-7

Receiving Events 10-8

Blocking Versus Polling** 10-8
Receiving Events From Any Stream 10-8

Message Trace 10-8

■ Using High Memory on Windows Clients 10-9

11 CSTA Data Types 11-1

■ Introduction 11-1

Device Identifiers 11-1

■ Basic Call Control Confirmation Events 11-2

CSTAAlternateCallConfEvent structures 11-2

CSTAAnswerCallConfEvent structures 11-2
Issue 1 — December 2001

TSAPI.PDF R10.1 V1x

Contents
CSTACallCompletionConfEvent structures 11-2

CSTAClearCallConfEvent structures 11-2

CSTAClearConnectionConfEvent structures 11-2

CSTAConferenceConfEvent structures 11-3

CSTAConsultationCallConfEvent structures 11-3

CSTADeflectCallConfEvent structures 11-3

CSTAGroupPickupCallConfEvent structures 11-3

CSTAHoldCallConfEvent structures 11-3

CSTAMakeCallConfEvent structures 11-3

CSTAMakePredicitiveCallConfEvent structures 11-4

CSTAPickupCallConfEvent structures 11-4

CSTARetrieveCallConfEvent structures 11-4

CSTAUniversalFailureEvent structures 11-5

■ Telephony Supplementary Confirmation Events 11-6

CSTASetMsgWaitingConfEvent structures 11-6

CSTASetDndConfEvent structures 11-6

CSTASetFwdConfEvent structures 11-6

CSTASetAgentStateConfEvent structures 11-7

CSTAQueryMwiConfEvent structures 11-7

CSTAQueryDndConfEvent structures 11-7

CSTAQueryFwdConfEvent structures 11-8

CSTAQueryAgentStateConfEvent structures 11-8

CSTAQueryDeviceInfoConfEvent structures 11-9

■ Status Reporting Confirmation Events 11-10

cstaMonitorDevice structures 11-10

cstaMonitorCall structures 11-11

cstaMonitorCallsViaDevice structures 11-11

CSTAMonitorConfEvent structures 11-11

CSTAChangeMonitorFilterConfEvent structures 11-11

CSTAMonitorStopConfEvent structures 11-11

■ Call Event Reports 11-12

Call Event Report data structures 11-12

CSTACallClearedEvent structures 11-13

CSTAConferencedEvent structures 11-13

CSTAConnectionClearedEvent structures 11-14
Issue 1 — December 2001

xiTSAPI.PDF R10.1 V1

Contents
CSTADivertedEvent structures 11-14

CSTAEstablishedEvent structures 11-14

CSTAFailedEvent structures 11-15

CSTAHeldEvent structures 11-15

CSTANetworkReachedEvent structures 11-15

CSTAOrginatedEvent structures 11-15

CSTAQueuedEvent structures 11-15

CSTARetrievedEvent structures 11-16

CSTAServiceInitiatedEvent structures 11-16

CSTATransferredEvent structures 11-16

■ Feature Event Reports 11-16

CSTACallInformationEvent structures 11-16

CSTADoNotDisturbEvent structures 11-16

CSTAForwardingEvent structures 11-17

■ Agent Status Report Events 11-18

CSTALoggedOnEvent structures 11-18

CSTALoggedOffEvent structures 11-18

CSTANotReadyEvent structures 11-18

CSTAReadyEvent structures 11-18

CSTAWorkNotReadyEvent structures 11-18

CSTAWorkReadyEvent structures 11-18

■ Snapshot Services 11-19

CSTASnapshotDeviceConfEvent structures 11-19

CSTASnapshotCallConfEvent structures 11-19

CSTASnapshotDeviceConfEvent structures 11-20

■ Computing Function Services 11-21

cstaRouteRegisterReq structures 11-21

cstaRouteRegisterReqConfEvent structures 11-21

cstaRouteRegisterCancel structures 11-21

cstaRouteRegisterCancelConfEvent structures 11-21

cstaRouteRequestEvent structures 11-22

cstaRouteSelect structures 11-22

CSTAReRouteRequestEvent structures 11-23

cstaRouteUsedEvent structures 11-23

cstaRouteEndEvent structures 11-23
Issue 1 — December 2001

TSAPI.PDF R10.1 V1xii

Contents
cstaRouteEnd structures 11-23

■ Escape Services 11-24

cstaEscapeService structures 11-24

CSTAEscapeServiceConfEvent structures 11-24

PrivateStatusEvent structures 11-24

cstaPrivateStatusEvent structures 11-24

CSTAEscapeServiceEvent structures 11-24

cstaEscapeServiceConf structures 11-24

cstaSendPrivateEvent structures 11-24

■ Maintenance Services 11-25

CSTABackInServiceEvent structures 11-25

CSTAOutOfServiceEvent structures 11-25

cstaSysStatReq structures 11-25

CSTASysStatReqConfEvent structures 11-25

cstaSysStatStart structures 11-26

CSTASysStatStartConfEvent structures 11-26

cstaSysStatStop structures 11-26

CSTASysStatStopConfEvent structures 11-26

cstaChangeSysStatFilter structures 11-26

CSTAChangeSysStatFilterConfEvent structures 11-26

CSTASysStatReqEvent structures 11-27

cstaSysStatReqConf structures 11-27

cstaSysStatEventSend structures 11-27

■ CSTA Control Services 11-28

cstaGetAPICaps structures 11-28

CSTAGetAPICapsConfEvent structures 11-28

cstaGetDeviceList structures 11-29

CSTAGetDeviceListConfEvent structures 11-30

CSTA Event Structures 11-30

CSTA Request Event structure 11-30

CSTA Event Report structure 11-30

CSTA Unsolicited Event structure 11-31

CSTA Confirmation Event structure 11-32

CSTA Event_t structure 11-33
Issue 1 — December 2001

xiiiTSAPI.PDF R10.1 V1

Contents
A References 1
Issue 1 — December 2001

TSAPI.PDF R10.1 V1xiv

Issue 1 — December 2001

TSAPI.PDF R10.1 V1
1

Abstract
Telephony Services integrates server-based telephony control with desktop
(client) or server applications on enterprise-wide networks. More specifically,
Telephony Services logically integrates the existing telephones currently on the
user's desktop (analog, ISDN, or those specific to a switch) with
telephony-enabled applications running in a client or server. Server and client
software create and maintain this logical association; no special telephones,
special telephone connectors, PC boards, or other hardware are necessary at a
client's desktop. Server hardware terminates the physical control link between the
server and the switch (typically a Private Branch Exchange, or PBX) that provides
telephony services to the user. The link between Telephony Services and the
switch is a Computer Telephony Integration (CTI) link.

Software integration gives customers flexibility in deploying CTI applications in
environments as varied as the multimedia desktop and call centers. The
Telephony Services Application Programming Interface (TSAPI) supports
telephony applications for many different environments.

Telephony Services and TSAPI support telephony control capabilities in a generic,
switch-independent way (e.g., support PBXs from various vendors). The
architecture allows the incorporation of vendor-specific switch drivers to deliver
Telephony Services across various switch environments.

The Telephony Services API is based on international standards for CTI telephony
services. Specifically, the European Computer Manufacturers Association
(ECMA) CTI standard definition of Computer-Supported Telecommunications
Applications (CSTA) is the foundation for TSAPI. The CSTA standard is a
technical agreement reached by an open, multi-vendor consortium of major switch
and computer vendors. Since CSTA Services and Protocol definitions are the
basis for TSAPI, TSAPI provides a generic, switch-independent API.

Various vendors may support a subset of the TSAPI programming interface on
their CTI links. Programmers should consult corresponding vendor documentation
for application development.

The TSAPI programming interface definition incorporates ECMA CSTA telephony
call control services, call/device monitoring services, query services, and
1-1

Abstract
services. CSTA services logically integrate the two most common pieces of
equipment on users' desktops: the telephone and personal computer.

Security administration for Telephony Services allows administrators to restrict
user access to TSAPI features in various ways. For example, an administrator
may restrict a user to control and monitoring of the telephone at their desktop.
Similarly, an administrator can restrict a user to call control and monitoring of the
telephone at any desktop where they log in. Expanded security permissions can
increase a user's control in support of work group or departmental telephony
applications. Administrators can expand user permissions even further to include
any telephone or device that it is possible to control on a CTI link. An administrator
might assign an unrestricted security permission level to a server application that
processes calls before call delivery to user desktops in a call center environment.
Of course, an administrator can assign different users different permissions.

The Telephony Services API is compatible with the following clients: Microsoft
Windows, Microsoft Windows 95, Microsoft Windows NT (4.0 and higher),
Windows 2000, and UnixWare clients. The Telephony Services API is compatible
with Microsoft Windows NT (4.0 and higher) and Windows 2000 server
environments. The Telephony architecture permits future growth into other client
and server environments while preserving the TSAPI programming interface.

Future releases might extend Telephony Services to include desktop
communication services available from non-switch servers. Possible
enhancements could provide desktop voice messaging capabilities from a voice
messaging server, facsimile capabilities from a fax server, voice response
capabilities from a voice response server, etc.
Issue 1 — December 2001

TSAPI.PDF R10.1 V11-2

Issue 1 — December 2001

TSAPI.PDF R10.1 V1
2

Introduction
The native network operating systems (NOS) provide APIs that allow client and
server applications to offer users a variety of computing services (for example, file
and print services). Telephony Services expand the set of NOS services and bring
together the two most common pieces of equipment on an end user's desktop, the
telephone and personal computer. These two environments are integrated using
TSAPI, a switch-independent standards-based API.

Purpose

This document specifies Telephony Services Application Programming Interface
(TSAPI) services and C programming language syntax. TSAPI is compatible with
Microsoft Windows, Microsoft Windows 95, Microsoft Windows NT, UnixWare,
and HP-UX UNIX clients. TSAPI is also compatible with the Microsoft Windows
NT server environments. The Telephony architecture permits future growth into
other client and server environments while preserving the TSAPI programming
interface.

The reader should be familiar with telephony and the ECMA Computer-Supported
Telecommunications Application (CSTA) service, and protocol definitions, i.e.,
ECMA-179 and ECMA-180. The ECMA CSTA standard is the basis for TSAPI
service and parameter definition. Write to ECMA at the address below to obtain
copies of these standards.

European Computer Manufacturers Association
114 Rue du Rhône
CH-1204 Geneva
Switzerland
Telephone: 41 22 735 36 34

NOTE:
“41” above is the United States International Calling code for Switzerland.
2-1

Introduction
Product Architecture

This NOS environment, along with Telephony Services, supports stand-alone or
distributed telephony applications on multiple clients/servers. In the case of a
distributed application, client and server platforms contain the appropriate
application components. For example, the client platform may embody the user
interface and local control of the user's telephone. The server platform may use
call information to route calls or look up caller information before the switch
delivers calls to users' telephones. The NOS supports the client/server
communication and interaction between Telephony Services and the application
(client or server based).

Since Telephony Services provides a standard API (TSAPI), it facilitates the
development and use of telephony- enabled client and server applications. Figure
2-1 illustrates the architecture of Telephony Services. Note that a switch-specific
driver terminates the CTI link, thereby making the other Telephony Services
modules switch-independent.

Figure 2-1. Telephony Services Architecture

Telephony Services consists of the following hardware and software components
(refer to Figure 2-1):
Issue 1 — December 2001

TSAPI.PDF R10.1 V12-2

Introduction
■ CTI Link — a link that supports the Computer Telephony Integration (CTI)
protocol that logically integrates the telephone and the client workstation at
users' desktops. A CTI link connects link-specific hardware in the server
and the switch. It provides sessions between TSAPI applications and the
call processing software within the switch. The CTI link is PBX-specific.

■ CTI Link Hardware — server hardware that terminates the CTI link to a
switch. This hardware is PBX-vendor-specific.

■ Switch Driver — a set of software modules that supports and terminates
the switch-specific CTI link and protocol; maps the CTI protocol to the
TSAPI (if required); supports any Administration and Maintenance
capabilities of the switch driver (if any); and supports a driver interface to
the CTI Link Hardware. The Switch Driver modules are
PBX-vendor-specific.

■ Switch Driver Interface — a software interface between the Switch Driver
and the Telephony Services module that passes messages between
applications and the switch driver. Typically, the messages consist of CSTA
service requests, responses, and events for TSAPI clients. The messages
may also be administration and maintenance requests, responses, and
events for an application doing PBX Driver Administration or Maintenance.
The Switch Driver Interface is PBX-independent and supports any
Telephony Services compliant driver.

■ Telephony Services module — a software module that provides
communication between multiple telephony-enabled applications and the
switch driver. The Telephony Services module routes messages from the
Switch Driver to the applications waiting for telephony events and passes
the messages received from applications (TSAPI Service Requests) to the
Switch Driver. All messages between client applications and a PBX Switch
Driver pass across the Switch Driver Interface. The Telephony Services
module enforces user restrictions administered in the Telephony Server's
security database. This module is switch-independent and supports any
Telephony Services-compliant driver.

■ Telephony Server — an instance of the Telephony Services module
software running on a particular NOS server.

■ Telephony Services API (TSAPI) — the CSTA-based, C language
definition of the functions (services), data types (parameters and
structures), and event messages that telephony-enabled applications use
to access Telephony Services. This document specifies TSAPI. TSAPI is
switch-independent and supports any Telephony Services-compliant driver.

■ Telephony Services Library — server-based applications use this
software module to access TSAPI functions. This library accepts TSAPI
Service Requests and delivers responses and events to server
applications. This library can run on the same physical NOS server as
Telephony Services or on any NOS server in the network. This module is
switch-independent and supports any Telephony Services-compliant driver.
Issue 1 — December 2001

2-3TSAPI.PDF R10.1 V1

Introduction
■ Telephony Client Library — client-based applications use this software
module to access TSAPI functions. This library accepts TSAPI Service
Requests and delivers responses and events to client applications. This
module is switch-independent and supports any Telephony
Services-compliant driver.

In summary, the following software modules and interfaces are
switch-independent and support any Telephony Services-compliant driver:

■ Switch Driver Interface

■ Telephony Services

■ Telephony Services API (TSAPI)

■ Telephony Services Library

■ Telephony Client Library

The following software/hardware modules are switch-specific:

■ CTI Link

■ CTI Link Hardware, and the

■ Switch Driver

Telephony Services Applications

Telephony Services supports a variety of telephony-enabled applications. It can
support voice control applications that allow the user to manage and control
incoming and outgoing calls at the desktop or more complex applications for the
office work group or call center environment. Applications can provide a variety of
features to enhance user telephone control from the client workstation.
Application features may include:

■ call management

■ call screening

■ call logging

■ directory dialing from personal (client), workgroup (server), and
corporate directories

■ dialing and integration with other applications, and

■ integration of message waiting indicator for email or other
messaging applications

Telephony-enabled applications can meet customer needs in many markets. For
example, a customer service application can allow agents to interact with both the
''telephony” and “caller database” aspects of the job. An easy-to-use graphical
user interface (GUI) application can include the caller information on a “screen
pop” at agents' PCs. Any server on the network (PC, mini-computer, or
mainframe) can contain a caller database. The application integrates access to all
Issue 1 — December 2001

TSAPI.PDF R10.1 V12-4

Introduction
the different information (voice and data) needed to support an inbound customer
service center. Another example of such an application is call routing. Here, the
switch requests that the server provide a destination for incoming calls.
Applications may also request outbound calls for Outbound Call Management
(OCM) applications such as predictive dialing.
Issue 1 — December 2001

2-5TSAPI.PDF R10.1 V1

Introduction
Issue 1 — December 2001

TSAPI.PDF R10.1 V12-6

Issue 1 — December 2001

TSAPI.PDF R10.1 V1
3

TSAPI Call Model
This chapter describes concepts from the ECMA CSTA standard that are
important for TSAPI application programming. The information presented here is
summarized from the CSTA specifications. The complete specification is available
from ECMA at the address given in Chapter 2.

Terminology

The following sections provide TSAPI definitions and acronyms.

Definitions

ACD Agent: A telephony user that is a member of an inbound or outbound
Automatic Call Distribution (ACD) group. ACD Agents first sign on (Login) to an
ACD group and then the ACD will distribute calls to the agent.

Active Call: The call (at a station) that is connected (in a talking state) at that
station. More specifically, the Connection (see Connection) for the Active Call is in
the Connected State (see TSAPI Connections section, Connection State
definition).

Alerting Call: A call that is ringing at a Device. More specifically, the Connection
(see Connection) for an Alerting Call is in the Alerting State. When the Device is a
telephone, the Alerting Call is ringing the telephone instrument.

Application: A cooperative process distributed between a Switching Function
(see Switching Function) and a Computing Function (see Computing Function).

Application Domain: The union of one Switching Sub-Domain (see Switching
Sub-Domain) and one Computing Sub-Domain (see Computing Sub-Domain).

Basic Call: A Call (see Call) between exactly two Devices (see Device).
3-1

TSAPI Call Model
Call (TSAPI programming object): A Switching Function communications
relationship. Typically, a Call is a communications relationship between two or
more Devices. Note, however, during call set-up and release, there may be only
one Device on the Call. A Call is a TSAPI programming object.

Call Identifier: A TSAPI programming handle that identifies a Call.

Complex Call: A Call between more than two Devices.

Computing Domain: Those computers (and their Objects) accessible from a
Switching Function. Where a switch has multiple CTI links to multiple computers,
the Computing Domain is the union of all computers connected to the switch.

Computing Function: A computer or other resource in a Computing
Sub-domain.

Computing Sub-Domain: Those computers (and their Objects) accessible from
the Switching Function using a specific CTI link. Where a switch has multiple CTI
links to multiple computers, the Computing Sub-Domain is a subset of the
Computing Domain. Where the switch has a single CTI link, the Computing
Sub-Domain is equivalent to the Computing Domain.

Connection (TSAPI programming object): A relationship between a Call and a
Device. A Connection is in one of a number of states (alerting, held, connected,
etc.). Note that when a Call connects (for example) three Devices, there are three
Connections for the Call. Each Connection reflects the state of the Call at one of
the Devices.

Connection Identifier (TSAPI programming handle): A TSAPI programming
handle that identifies a Connection. A Call Identifier and a Device Identifier
comprise a TSAPI Connection Identifier.

Device (TSAPI programming object): An Object that abstracts the interface
between a user and the communications signaling in the Switching Function. A
Device can be a single endpoint (such as a telephone), or multiple endpoints that
form a group (ACD group or trunk group).

Device Identifier (TSAPI programming handle): A TSAPI programming handle
that identifies a Device.

Directory Number: The phone number for a Device. Directory Numbers typically
denote telephone station Devices, but ACD groups and other Devices may have
Directory Numbers also.

Domain: The union of a Switching Domain and a Computing Domain. It is the
switching and computing objects that an application can access.

Event: A stimulus of interest to an Application that (typically) causes a change in
the state of a Device object.
Issue 1 — December 2001

TSAPI.PDF R10.1 V13-2

TSAPI Call Model
Event Report: A message from a Switching Sub-Domain to a Computing
Sub-Domain indicating that an Event has occurred.

Held Call: A call (at a station) that is held (in a hold state) at that station. More
specifically, the Connection (see Connection) for a Held Call is in the Hold State
(see TSAPI Connections section, Connection State definition).

Interconnection Service Boundary: An abstraction of the boundary between the
Switching Domain and the Computing Domain. In practice, CTI links bridge the
Interconnection Service Boundary.

Object: TSAPI programming objects include Connections, Calls, and Devices.
Each has a corresponding programming handle, or identifier.

Party: A telephony user. A Party may be a human, application, or other resource
(such as a port on a voice response unit).

Service: The benefit provided by an Application to a User.

Service Boundary: A specific CTI interface between a Computing Function and a
Switching Function. All Service boundaries cross the Interconnection Service
Boundary.

State: An object's current condition. Specifically, TSAPI Connections have an
associated state.

Switching Domain: Those switches (and their Objects) accessible from a
Computing Function. Where a computer has multiple CTI links to multiple
switches, the Switching Domain is the union of all switches connected to the
computer.

Switching Function: A switch in a Switching Sub-domain.

Switching Sub-Domain: Those switches (and their Objects) accessible from a
Computing Function using a specific CTI link. Where a computer has multiple CTI
links to multiple switches, the Switching Sub-Domain is a subset of the Switching
Domain. Where the computer has a single CTI link, the Switching Sub-Domain is
equivalent to the Switching Domain.

User: A person, process or piece of equipment that receives direct benefit (e.g.
new feature, improved performance) from an Application's Services.

Acronyms

ACD: Automatic Call Distributor

CSTA: Computer-Supported Telecommunications Applications

ID: Identifier
Issue 1 — December 2001

3-3TSAPI.PDF R10.1 V1

TSAPI Call Model
ISDN: Integrated Services Digital Network

Architecture

This section summarizes the functional architecture underlying ECMA CSTA and
TSAPI. CSTA defines the interworking between Computing and Switching
Functions in a way that is independent of their physical implementation. This
section introduces the concepts of

■ distribution of Computing and Switching Functions

■ TSAPI Service

■ client/server model

■ TSAPI objects

An Application is a cooperative process distributed between a Switching Function
(switch) and a Computing Function (computer). This section describes the
interactions between them.

Distribution of Computing and Switching
Functions

One (or several) computers in a computing network provide the Computing
Functions and one (or several) switches provide the Switching Functions for a
TSAPI Application. The TSAPI application appears to a User (human or machine)
to be a single application, not as two separate functions on two separate networks
(as it is, in fact, implemented).

Since the applications use distributed resources, communications must occur
between the distributed entities. Figure 3-1 shows an abstract communications
model. Note that each of the distributed functions is expanded into:

■ a client application component that provides the TSAPI interactions

■ a server communications component that exchanges messages

■ networking support, or lower layer interconnection
Issue 1 — December 2001

TSAPI.PDF R10.1 V13-4

TSAPI Call Model
■

Figure 3-1. Model Showing the Relationship Between TSAPI Elements

Figure 3-1 shows that distributed Application components use TSAPI definitions
to interact with their peers. TSAPI defines the Service descriptions and provides
the service interface between the Application functions and the Server providing
communications with the switch. TSAPI supports various switches, and as a
consequence, some of the TSAPI elements are optional and their use is
implementation-dependent.

API Services

Unless otherwise qualified, the TSAPI definition uses the term 'Service' to refer to
the benefit that an application server provides to a client application. TSAPI
Services are independent of the specific CTI link connecting the switch with the
application server. Since TSAPI is independent of the particular telephone
terminal types, the Switching Function must determine how to support a given
TSAPI request for its specific telephone types. For example, TSAPI does not
specify how to provide the Make Call Service for analog or ISDN telephones. A
Switching Function will use its existing service definitions to provide TSAPI
Services on telephones where that service already exists.

TSAPI definitions do not embody the specific details of how the Switching
Function accomplishes TSAPI Services. The Switching Function does provide an
abstraction to the TSAPI Service requester, via Event Reports, of the steps taken
to accomplish the Service.

Services and Objects

A server provides services to a client that consist of monitoring and controlling
Switching Sub-Domain objects. TSAPI defines the client application interface for
monitoring and controlling these objects.
Issue 1 — December 2001

3-5TSAPI.PDF R10.1 V1

TSAPI Call Model
Functions

A Domain is the union of a Switching Domain and a Computing Domain. In other
words, it is those switching and computing objects that an application can access.
Figure 3-2 shows an example of a Domain. A heavy line divides the Domain into
Switching and Computing Domains. The Switching Domain consists of Switching
Functions S1, S2, and S3. Similarly, the Computing Domain consists of
Computing Functions C1, C2, and C3. Each Function has a view of the Domain
where it resides. Note that if multiple Functions provide an application with the
same view, then the Functions are in the same Sub-Domain. TSAPI Applications
(shown in Figure 3-2 as “Application Domains”) are distributed across at least one
Switching Sub-Domain and at least one Computing Sub-Domain.

Figure 3-2. Domains and Sub-Domains

TSAPI Switching Sub-Domain Model

The Switching Sub-Domain Model defines an abstract view of a Switching
Function. TSAPI defines several Switching Sub-Domain Model Objects for use in
Application programming, Call, and Connection.

Computing Domain Switching Domain
Issue 1 — December 2001

TSAPI.PDF R10.1 V13-6

TSAPI Call Model
TSAPI Device

A TSAPI application can monitor and control Devices of various types (including
telephones). However, a TSAPI application may not be able to monitor or control
all Devices. In CSTA, a Device can refer to either a physical device (such as
buttons, lines, trunks, and stations) or a logical device (such as groups of devices,
pilot numbers, and ACDs). Devices have associated attributes, which allow
applications to monitor and control them.

TSAPI Device attributes are:

1. Device Type - A Device has one of the following types:

■ ACD - An Automatic Call Distributor (ACD) is a Switching Function
mechanism that distributes calls to ACD agents. An ACD (as
opposed to ACD group) consists only of the distribution mechanism
and not the ACD agents (or their Devices) to which the mechanism
can distribute calls.

■ ACD group - An Automatic Call Distributor (ACD) group is the
mechanism that distributes calls within a Switching Function as well
as the ACD agent Devices to which that mechanism distributes
calls.

■ Button - an instance of a call manipulation point at an individual
station. Simple analog stations often have no physical buttons but
behave as if they have one. Some advanced stations can emulate
several analog stations and often represent those stations with
several buttons. In some situations it is desirable to identify a given
button on a multi-button station. Note that a station with several line
appearance buttons could have either the same telephone number
or different telephone numbers assigned to those buttons.

■ Button group - two or more instances of a Button at an individual
station.

■ Line - a communications interface to one or more stations typically
associated with a directory number. In some situations it may be
impossible to identify individual stations that share a line (a single
directory number).

■ Line group - a set of communications interfaces to one or more
stations.

■ Operator - also known as Attendant, a device used to interact with a
party to assist in call setup or to provide other telecommunications
service. This device is different from other devices in that it is often
involved in setting up other calls, and is usually not part of the call
after the call is connected.

■ Operator group - two or more operator devices used
interchangeably or addressed identically.

■ Station - the traditional telephone device. A station is a physical unit
of one or more buttons and one or more lines.
Issue 1 — December 2001

3-7TSAPI.PDF R10.1 V1

TSAPI Call Model
■ Station group - two or more stations used interchangeably or
addressed identically.

■ Trunk - a device that spans switching sub-domains. In order to
monitor and control calls that cross switching sub-domains, it may
be desirable to address the point at which the call crosses the
boundary. This point is generally a trunk or trunk group.

■ Trunk group - often, many trunks connect to the same place. These
trunks are often placed in groups and accessed using a single
identifier. In such a configuration the individual trunks are used
interchangeably.

2. Device Class - An application may monitor or control TSAPI Devices in the
various Device Classes in different ways. A Device must belong to one,
and may belong to more than one, of the following classes:

■ Data - a device that is used to make digital data calls (either circuit
switched or packet switched). This class includes computer
interfaces and G4 facsimile machines.

■ Image - a device that is used to make digital data calls involving
imaging, or high-speed circuit-switched data in general. This class
includes video telephones and CODECs.

■ Voice - a device that is used to make audio calls. This class includes
all normal telephones, as well as computer modems and G3
facsimile machines.

■ Other - a type of device not covered by data, image, or voice.

3. Device Identifier - a TSAPI programming handle for a Device that allows
an application to identify uniquely each device at the API. Devices are
identified using static and/or dynamic identifiers:

■ Static Device Identifier - A Static Device Identifier is stable over time.
It remains constant and unique over calls. A Static Device Identifier
is typically the dialed number for the Device known by both the
Computing and Switching Functions.

It is sometimes useful for the Switching Function to convert long
phone number identifiers to another, usually shorter, static form for
subsequent use in service interaction. An example of this would be
the transformation of a Public Directory Number to a Private
Directory Number.

This transformation allows service interactions to be independent of
the identification mechanism and allows reduction in the amount of
data exchanged. This transformed number is known as a Short
Form Static Device Identifier.

Some Switching Functions allow the same dialed number to be
Issue 1 — December 2001

TSAPI.PDF R10.1 V13-8

TSAPI Call Model
assigned to Devices of different types. Thus, a TSAPI application
may also need to use the Device Type to uniquely address the
Device.
Issue 1 — December 2001

3-9TSAPI.PDF R10.1 V1

TSAPI Call Model
■ Dynamic Device Identifier - A Switching Function may not always
make a Static Device Identifier available for every Device on a call.
This may occur because a static identifier may not be available
(there is no dialed number identifier for the device), or because a
dialed number does not unambiguously refer to a single device (i.e.
a group identifier). In these cases, the Switching Function assigns a
Dynamic Device Identifier as a handle for the Device for the duration
of the call. Management of the Dynamic Device Identifier is
discussed in a later section, Dynamic Identifier Management.

4. Device State - a list of the Connection States for all the calls associated
with the Device. For information about Connection states see TSAPI
Connections later in this chapter.

Call

TSAPI applications can monitor and control calls (including call establishment and
release). In certain operations, such as conference and transfer, one Device in a
Call is replaced with another Device or two Calls merged into a single Call. In
these situations, the TSAPI Call object is maintained as long as the
communications relationship remains across each operation (i.e., the call survives
transfer, conference, and forwarding operations). TSAPI Call object attributes are:

1. Call Identifier - a TSAPI programming handle that the Switching Function
assigns to each Call. The Call ID may or may not be unique among all calls
within a Switching Sub-Domain, but coupled with a Device ID, the pair will
form a unique Connection ID within a Switching Sub-Domain. To allow
reference to a nascent call, the switch will assign a Call ID before a call is
fully established. For example, a switch will assign a Call ID to an incoming
call when the called Device is Alerting (the assignment is done before the
call is answered).

Certain Services merge multiple calls into a single call. Examples of such
TSAPI Services are Transfer and Conference. During operations of
Services that merge multiple calls, the call identifier may change, but the
call continues as a TSAPI object. The management of the call identifier is
described in a later section, Dynamic Identifier Management.

2. Call state - a list of the Connection states for all the Devices that are a part
of the Call.

For simplicity, common call states for two-party calls have been given a
single descriptive name. For example, a two-party call with a Connection
State of “Connected” at one station and a Connection State of “Alerting” at
the other has a Call State of “Delivered”. Table 3-1 gives the mapping of
descriptive names to Connection State lists for two-party calls. Simple call
states are provided as single values, whereas uncommon call states are
Issue 1 — December 2001

TSAPI.PDF R10.1 V13-10

TSAPI Call Model
provided as a list. For more information on Connection States, see the
following section, TSAPI Connections. The Call States section of this
chapter gives further information about Call States.

TSAPI Connections

A Connection is a relationship between a Call and a Device. A TSAPI application
can monitor or control a Connection. For example, TSAPI Services Hold Call,
Reconnect Call, and Clear Call all control Connections. Connections are TSAPI
programming objects with the following attributes:

1. Connection Identifier – is a TSAPI handle that is made up of a Call
Identifier and Device Identifier. For a call, there are as many Connection
identifiers as there are associated devices. Similarly, for a device there are
as many Connection identifiers as there are associated calls. The
Connection Identifier is unique within a Switching Sub-Domain and within
a single TSAPI server. A TSAPI application cannot use a Connection
Identifier until it has received the identifier from the Switching Function.

2. Connection State - is the state of a call at a Device. The Connection state
always refers to a single Call/Device relationship. Snapshot Services report
Connection States for Calls and Devices. Monitors report Events, which are
changes in Connection States for the monitored entity. Figure 3-3 shows a
sample Connection state model. Note that since TSAPI is
switch-independent, and since switch features vary from switch to switch
(and therefore interact differently on different switches), there is no
definitive TSAPI Connection State model to which all switches comply.

Figure 3-3. Sample Connection State Model
Issue 1 — December 2001

3-11TSAPI.PDF R10.1 V1

TSAPI Call Model
The transitions between states, shown by arrows, form the basis for providing
Event Reports.

The TSAPI Connection states are defined as follows.

■ Null - the state where there is no relationship between the call and device.

■ Initiated - the state where the device is requesting service. Usually this
results in the creation of a call. Often this is thought of as the “dialing” state.

■ Alerting - the state where a device is alerting (ringing).

■ Connected - the state where a device can communicate with other Devices
on a call (cannot be a held call).

■ Held - the call is “on hold” at the Device.

■ Queued - the state where normal state progression has been stalled. For
example, a call being processed by an ACD that is waiting for an ACD
agent to become available is “queued.”

■ Failed - the state where normal state progression has been aborted. A
“Failed” state can result because of failure to connect to the calling
(originator) device, failure to connect the called (destination) device, failure
to create the call, and other reasons.

Call Status Event Reports

The Switching Sub-Domain model is an abstract view of call states and events.
This abstract view is probably more detailed than most applications require, but it
introduces a precise language for describing Event Reports, Call States, and
Service functional descriptions. Connection state changes correspond to
telecommunications signaling at a Device.

ISDN specifications model network access as a distributed state machine. ECMA
CSTA borrows from this ISDN model. One part of this access state machine
resides in the Device. There is another similar distributed access state machine
which resides across the ISDN network at the egress device.

Thus, a call can be modeled as a collection of Connection state machines.
Network signaling causes changes in the state machines across the network.
When signaling occurs, a state change occurs at the affected Connection.

Many simple Connection events are of interest to applications. Certain
telecommunications operations involve changes to many Connections. TSAPI
reports these compound events (such as Transfer, Conference and Clear Call) in
a single Event Report. Each TSAPI Event Report defines which Connections have
changed state.
Issue 1 — December 2001

TSAPI.PDF R10.1 V13-12

TSAPI Call Model
TSAPI Call States

A Call State is defined as the list of Connection states for all the Devices involved
in the call. This list is also called the Compound Call State. Listing the
Connection states can describe any possible call state. However, most calls are
often in a small number of widely recognized states.
Issue 1 — December 2001

3-13TSAPI.PDF R10.1 V1

TSAPI Call Model
TSAPI defines those states as the Simple Call States shown in Table 3-1. Note
that Simple Call States can differ by the order of the Connection state list.
Alerting-Connected is not equal to Connected-Alerting. The first is the Simple Call
State “Received” and the second is “Delivered”.

Null can be a known Connection state, so for a “newly created” call it is possible to
have a Call state with only one non-Null Connection (see Table
3-1).

For calls with two Connections, Table 3-1 summarizes the Simple Call States
assigned to the combinations of Connection States. If there is no entry in Table
3-1 for the combination of Connection states, then TSAPI provides the list.

For calls with more than two non-Null Connection states, the Call State is a
compound call state. TSAPI (at times) simplifies the compound call state by
relating it to a particular device. The Connection State related to a particular
device in this way is called the Local Connection State. Other Connection States
are not differentiated from one another. A three-party conference call that is on
hold at a given Device and connected to the other two devices has a Local
Connection State of “Held” at that given Device.

Table 3-1. TSAPI Simple Call States

Local Connection State
Other Connection
State Simple Call State

Alerting Connected Received

Alerting Hold Received-On-Hold

Connected Alerting Delivered

Connected Connected Established

Connected Failed Failed

Connected Hold Established-On-Hold

Connected Null Originated

Connected Queued Queued

Hold Alerting Delivered-Held

Hold Connected Established-Held

Hold Failed Failed-Held

Hold Queued Queued-Held

Initiated Null Pending

Null Null Held
Issue 1 — December 2001

TSAPI.PDF R10.1 V13-14

TSAPI Call Model
Dynamic Identifier Management

Since Connection Identifiers comprise a Device ID and a Call ID, proper
management of Connection Identifiers will, in turn, provide proper management of
Dynamic Device Identifiers and Call Identifiers.

The Switching Function provides Connection Identifiers when either a new Call or
Device Identifier is needed. When a call is made, the switch provides a
Connection Identifier. The switch then provides the Connection ID in any following
Event Reports that pertain to that call. Similarly, the switch provides Connection
IDs containing a Device ID for a device involved in a call.

The switch updates identifiers when needed. If a Conference or Transfer (merging
two calls) changes a Call ID, then the switch provides Event Reports containing
Connection IDs that link the old call identifier to the new call identifier. Similarly, if
a Dynamic Device Identifier is changed, the switch provides new Connection
Identifiers for the devices in the call. Both Service Acknowledgments and Event
Reports may contain information necessary to manage identifiers.

Identifiers cease to be valid when their context vanishes. If a call ends, its call
identifier is no longer valid. Similarly, if a device is removed from service or from a
call, its dynamic device identifier becomes invalid. Many Event Reports and
Services specify when a Connection Identifier has lost or will lose its context.

Identifiers can be reused. Once an identifier has lost its context it may be re-used
to identify another object. Most implementations will not reuse identifiers
immediately.

Call and Device Identifiers can be, but are not guaranteed to be, globally unique.
The TSAPI server ensures that the combination of Call and Device Identifier is
globally unique within a Switching Sub-Domain. To accomplish this, compliant
PBX drivers ensure that either the call identifier or the device identifier (or both) is
globally unique. In many cases, the Connection Identifier requires the use of both
the Call and Device Identifiers to uniquely refer to Connections in a call.
Issue 1 — December 2001

3-15TSAPI.PDF R10.1 V1

TSAPI Call Model
Issue 1 — December 2001

TSAPI.PDF R10.1 V13-16

Issue 1 — December 2001

TSAPI.PDF R10.1 V1
4

Control Services
TSAPI provides two kinds of control services: API1 Control Services, or ACS, and
CSTA Control Services. Applications use ACS to manage their interactions with
Telephony Services. While most applications will use ACS to access CSTA
services, applications that administer PBX drivers use ACS to interface to the
PBX Driver. ACS functions manage the interface, while CSTA functions
(chapters 5 through 9) provide the CSTA services. Applications use ACS to:

■ Open an ACS stream for CSTA services.

■ Open an ACS stream to do PBX Driver administration.

■ Close an ACS stream.

■ Block or poll for events.

■ Initialize an operating system event notification facility. On a Windows,
Windows NT client, this initializes an Event Service Routine (ESR).

■ Get a list of available advertised services (PBX Driver Services and PBX
Driver administration services).

■ Select the TSAPI version for use on the stream.

■ Select a private data version for use on the stream

Applications use the CSTA Control Services, discussed in the later sections of this
chapter, to:

■ Query for the CSTA Services available on an open ACS Stream

■ Query for a list of Devices that CSTA Services can monitor, control or route
for on an open ACS Stream

■ Query to determine if CSTA Call/Call Monitoring is available on an open
ACS Stream.

1. An API is an Application Programming Interface.
4-1

Control Services
Opening, Closing and Aborting an
ACS Stream

To obtain Telephony Services, an application must open an ACS stream (or
session). This stream establishes a logical link between the application and call
processing software on the switch. The application requests CSTA services (such
as making a call) over the stream. Within a Telephony Server, the Telephony
Server module and the PBX Driver module cooperate to provide ACS Streams.
The Telephony Server also does security checking to ensure that an application
receives CSTA services only for permitted Devices. Each application must open
an ACS Stream before it requests any services.

An application should only open one stream per advertised service. An
application may open multiple ACS streams to multiple advertised services. As
PBX drivers initialize, they register the services that they offer (administrative as
well as CSTA) with a Telephony Server. . The system then advertises these
services to applications. An application opens an ACS Stream to use an
advertised service. Each stream carries messages for the application to one
advertised service. Since the PBX Drivers are switch specific, some drivers may
provide services on a single CTI link, while others provide services on multiple
CTI links. An application cannot correlate advertised telephony services with
underlying physical CTI links.

Opening an ACS Stream

1. The application calls acsOpenStream().

acsOpenStream() is a request to establish an ACS Stream with a
Telephony Server. The acsOpenStream() function returns an acsHandle
to the application. The application will use this acsHandle to access the
ACS Stream (make requests and receive events).

2. The application receives an ACSOpenStreamConfEvent event message
that corresponds to the acsOpenStream() request.

The application monitors the acsHandle (returned from the
acsOpenStream() request) for the corresponding
ACSOpenStreamConfEvent. The application should not request services
on the ACS Stream until it receives this corresponding
ACSOpenStreamConfEvent.

After an application successfully receives the ACSOpenStreamConfEvent, it
may request CSTA Services such as Device (telephone) monitoring.

NOTE:
The application should always check the ACSOpenStreamConfEvent to
ensure that the ACS Stream has been successfully established before
making any CSTA Service requests.
Issue 1 — December 2001

TSAPI.PDF R10.1 V14-2

Control Services
An application is responsible for releasing its ACS Stream(s). To release the
system resources associated with an ACS Stream, the application may either
close the stream or abort the stream. Failing to release the resources may corrupt
the client system, resulting in client failure.

NOTE:
An acsHandle is a local process identifier and should not be shared across
processes.

Closing an ACS Stream

1. The application calls acsCloseStream() to initiate the orderly shutdown of
an ACS Stream.

After the application calls acsCloseStream() to close an ACS Stream, the
application may not request any further services on that Stream. The
acsCloseStream() function is a non-blocking call. The application passes
an acsHandle indicating which ACS Stream to close. Although the
application cannot make requests on that Stream, the acsHandle remains
valid until the application receives the corresponding
ACSCloseStreamConfEvent.

NOTE:
After an application calls acsCloseStream(), it may still receive events on
the acsHandle for that ACS Stream. The application must continue to poll
until it receives the ACSCloseStreamConfEvent so that the system
releases all stream resources. The stream remains open until the
application receives the ACSCloseStreamConfEvent.

2. The application receives an ACSCloseStreamConfEvent event message
that corresponds to the acsCloseStream() request.

An ACSCloseStreamConfEvent indicates that the acsHandle for the
Stream is no longer valid and that the system has freed all system
resources associated with the ACS Stream. The last event the application
will receive on the ACS Stream is the ACSCloseStreamConfEvent.
Closing an ACS Stream terminates any CSTA call control sessions on that
Stream. Terminating CSTA call control sessions in this way does not affect
the switch processing of controlled calls. The application can no longer
control them on this Stream.

Aborting an ACS Stream

1. The application calls acsAbortStream().

An application may use acsAbortStream() to unilaterally (and
synchronously) terminate an ACS Stream when

■ it does not require confirmation of successful Stream closure, and
Issue 1 — December 2001

4-3TSAPI.PDF R10.1 V1

Control Services
■ it does not need to receive any events that may be queued for it on that
Stream.

The application passes an acsHandle indicating which ACS Stream to abort. The
acsAbortStream() function is non-blocking and returns to the application
immediately. When acsAbortStream() returns, the acsHandle is invalid (unlike
acsCloseStream()). The system frees all resources associated with the aborted
ACS Stream, including any events queued on this Stream. Aborting an ACS
Stream terminates any CSTA call control on that Stream. Aborting CSTA call
control in this way does not affect the switch processing of controlled calls. It
terminates the application's control of them on this Stream. There is no
confirmation event for an acsAbortStream() call.

Sending CSTA Requests and
Responses

After an application opens an ACS Stream (including reception of the
ACSOpenStreamConfEvent) it may request CSTA services and receive events.
In each service request, the application passes the acsHandle of the Stream over
which it is making the request.

Each service request requires an invokeID that the system will return in the
confirmation event (or failure event) for the function call. Since applications may
have multiple requests for the same service outstanding within the same ACS
Stream, invokeIDs provide a way to match the confirmation event (or failure
event) to the corresponding request. When an application opens an ACS Stream,
it specifies (for that Stream) whether it will:

■ specify whether it will generate and manage invokeIDs internally, or

■ have the TSAPI library generate unique invokeID for each service request.

Once an application specifies this invokeID type for an ACS stream, the
application cannot change invokeID type for the stream.

In general, having the TSAPI library generate unique invokeIDs simplifies
application design. However, when service requests correspond to entries in a
data structure, it may simplify application design to use indexes into the data
structure as invokeIDs. Application-generated invokeIDs might also point to
window handles. Application-generated invokeIDs may take on any 32-bit value.

Receiving Events

When an application successfully opens an ACS Stream, the TSAPI Library
queues the ACSOpenStreamConfEvent event message for the application. To
receive this event, and subsequent event messages, the application must use one
of two event reception methods:
Issue 1 — December 2001

TSAPI.PDF R10.1 V14-4

Control Services
■ a blocking mode, which blocks the application from executing until an
event becomes available. Blocking is appropriate in threaded or
preemptive operating system environments only (e.g., Windows NT, Novell,
etc.).

■ a non-blocking mode that returns control to the application regardless of
whether an event is available.

NOTE:
Blocking on event reports may be appropriate for applications that monitor a
Device and only require processing cycles when an event occurs. However,
there may be operating system specific implications. For example, if a
Windows application blocks waiting for CSTA events, then it cannot process
events from its Windows event queue.

Regardless of the mode that an application uses to receive events, it may elect to
receive an event either from a designated ACS Stream (that it opened) or from
any ACS Stream (that it has opened). TSAPI gives the application the events in
chronological order from the selected Stream(s). Thus, if the application receives
events from all ACS Streams, then it receives the events in chronological order
from all the Streams.

Blocking Event Reception

1. The application calls acsGetEventBlock()

acsGetEventBlock() function gets the next event or blocks if no events
are available. The application passes an acsHandle parameter containing
the handle of an open ACS Stream or a zero value (indicating that it
desires events from any open ACS Stream).

2. acsGetEventBlock() returns when an event is available.

Non-Blocking Event Reception

1. The application calls acsGetEventPoll()

Applications use acsGetEventPoll() to poll for events at their own pace.
An application calls acsGetEventPoll() any time it wants to process an
event. The application passes an acsHandle containing the handle of an
open ACS Stream or a zero value (indicating that it desires events from any
open ACS Stream). In addition, the numevents parameter tells the
application how many events are on the queue.

2. acsGetEventPoll() returns immediately

a. If one or more events are available on the ACS Stream,
acsGetEventPoll() returns the next event from the specified
Stream (or from any Stream, if the application selected that option).

b. When the event queue is empty, the function returns immediately
with a "no message" indication.
Issue 1 — December 2001

4-5TSAPI.PDF R10.1 V1

Control Services
NOTE:
The application must receive events (using either the blocking or polling
method) frequently enough so that the event queue does not overflow.
TSAPI will stop acknowledging messages from the Telephony Server when
the queue fills up, ultimately resulting in a loss of the stream. When a
message is available, it does not matter which function an application uses
to retrieve it.

In some operating system environments (Windows, Windows NT), an application
can use an Event Service Routine (ESR) to receive asynchronous notification of
arriving events. The ESR mechanism notifies the application of arriving events. It
does not remove the events from the event queue. The application must use
acsGetEventBlock(), acsGetEventPoll(), or eventNotify() to receive the
message. The application can use an ESR to trigger a specific action when an
event arrives in the event queue (i.e. post a Windows message for the
application). See the manual page for acsSetESR() for more information about
ESR use in specific operating system environments.

TSAPI makes one other event handling function available to applications:
acsFlushEventQueue(). An application uses acsFlushEventQueue() to flush
all events from an ACS Stream event queue (or, if the application selects, from all
ACS Stream event queues).

TSAPI Version Control

As TSAPI evolves over time to support more services, TSAPI will include new
functions and event reports. Similarly, PBX driver manufacturers will enhance
their private data over time. To ensure that applications written to earlier versions
of the system will continue to operate with newer TSAPI libraries and newer PBX
drivers, TSAPI provides Version Control.

An application provides a list of the TSAPI versions that it is willing to accept in the
apiVer parameter of the acsOpenStream() function. This parameter contains a
string beginning with the characters “TS” followed by an ASCII encoding of one or
more version numbers. An application may use the “-” (hyphen) character to
specify a range of versions and the “:” (colon) character to separate a list of
versions. For example, the string “TS1-3:5” specifies that the application is willing
to accept TSAPI versions 1, 2, 3, or 5.

As the system processes the open stream request, each system component
checks to see which of the requested versions it supports. If a component cannot
support a requested version, it removes that version from the list before passing
the request on to the next component. The system opens the stream using the
highest (latest) TSAPI version remaining and returns that version to the
application in the ACSOpenStreamConfEvent. Once a stream is opened, the
version is fixed for the duration of the stream. If the system cannot find a suitable
version, the open stream request fails and the application receives an
ACSUniversalFailureConfEvent.
Issue 1 — December 2001

TSAPI.PDF R10.1 V14-6

Control Services
The system returns the selected TSAPI version in the apiVer field of the
ACSOpenStreamConfEvent. The version begins with the letters “ST” (the “S”
and the “T” are intentionally reversed) followed by a single TSAPI version number.
If the contents of the apiVer field do not begin with the letters “ST”, then the
application should assume TSAPI version 1.
Issue 1 — December 2001

4-7TSAPI.PDF R10.1 V1

Control Services
A set of function calls and events comprise a TSAPI version. New TSAPI
functions are given new names, and new events are assigned new event type
values. It is the programmer’s responsibility to ensure that the program uses only
TSAPI functions from the appropriate version set.

Releases 2.10 and 2.21 of Telephony Services provide two TSAPI versions: “TS1”
and “TS2”.

Versions also exist on a stream-type basis. In Releases 2.10 and 2.21, while
there are two TSAPI stream versions (“TS1” and “TS2”), there is a single OAM
stream version, version “TS1”.

Private Data Version Control

Private Data versions allow an application to request specific version(s) of a
specific vendor(s) private data. The application can also specify that a PBX Driver
is not to provide any private data and thereby save the LAN bandwidth that the
private data will consume.

Although similar in format to the TSAPI version negotiation, the Private Data
version negotiation is independent.

To request specific version(s) of specific vendor(s) private data, an application
passes negotiation information in the private data of acsOpenStream(). To
indicate that the private data is to negotiate the version, the application sets the
vendor field in the Private Data structure to the null-terminated string “VERSION”.
The application specifies the acceptable vendor(s) and version(s) in the data field
of the private data. The data field contains a one byte manifest constant
PRIVATE_DATA_ENCODING followed by a null-terminated ASCII string
containing a list of vendors and versions. The string contains vendor/version pairs
with the “#” character separating the vendor and version. The “#” character also
delimits the vendor/version pairs. The “:” and “-” characters are used as they are
for TSAPI version negotiation. For example, the string
“VENDORA#1-3#VENDORB#1:3-5” indicates that the application requests
VENDORA private data versions 1, 2, or 3; or, VENDORB private data versions 1,
3, 4, or 5.

The Private Data in the ACSOpenStreamConfEvent indicates what vendor and
version Private Data the PBX driver will provide on the stream. In the Private
Data, the vendor field will contain the vendor name and the data field in the
Private_Data_t structure contains a one byte discriminator PRIVATE_DATA_
ENCODING followed by an ASCII string identifying the version of the private data
that will be supplied.
Issue 1 — December 2001

TSAPI.PDF R10.1 V14-8

Control Services
An application that does not use Private Data should not pass any private data to
the acsOpenStream() request. Drivers that do private data version negotiation
interpret the lack of private data in the open stream request to mean that the
application does not want private data. They will then refrain from sending private
data on that stream, thereby saving the LAN bandwidth that the private data would
otherwise consume. Applications that do not send any private data in
acsOpenStream() must be prepared to receive private data since they may
request service from a PBX Driver that does not do private data version
negotiation.

Querying for Available Services

Applications can use the acsEnumServerNames() function to obtain a list of the
advertised service names. The presence of an advertised service name in the list
does not mean that it is available.

API Control Services (ACS) Functions
and Confirmation Events

This section defines the ACS function calls and their confirmation events. Applications use these
functions to open ACS streams and to and manage events on ACS Streams between client worksta-
tions and the Telephony Server.

acsOpenStream ()

An application uses acsOpenStream() to open an ACS stream to an advertised
service. An application needs an ACS stream to access other ACS Control
Services or CSTA Services. Thus, an application must call acsOpenStream()
before requesting any other ACS or CSTA service. acsOpenStream()
immediately returns an acsHandle; a confirmation event arrives later.
Issue 1 — December 2001

4-9TSAPI.PDF R10.1 V1

Control Services
Syntax

#include <acs.h>

#include <csta.h>

RetCode_t acsOpenStream(

ACSHandle_t *acsHandle, /* RETURN */

InvokeIDType_t invokeIDType, /* INPUT */

InvokeID_t invokeID, /* INPUT */

StreamType_t streamType, /* INPUT */

ServerID_t *serverID, /* INPUT */

LoginID_t *loginID, /* INPUT */

Passwd_t *passwd, /* INPUT */

AppName_t *applicationName, /* INPUT */

Level_t acsLevelReq /* INPUT */

Version_t *apiVer, /* INPUT */

unsigned short sendQSize, /* INPUT */

unsigned short sendExtraBufs, /* INPUT */

unsigned short recvQSize, /* INPUT */

unsigned short recvExtraBufs /* INPUT */

PrivateData_t *privateData); /* INPUT */

Parameters

acsHandle

acsOpenStream() returns this value that identifies the ACS Stream that
was opened. TSAPI sets this value so that it is unique to the ACS Stream.
Once acsOpenStream() is successful, the application must use this
acsHandle in all other function calls to TSAPI on this stream. If
acsOpenStream() is successful, TSAPI guarantees that the application
has a valid acsHandle. If acsOpenStream() is not successful, then the
function return code gives the cause of the failure.

invokeIDType

The application sets the type of invoke identifiers used on the stream being
opened.

The possible types are: Application-Generated invokeIDs (APP_GEN_ID)
or Library generated invokeIDs (LIB_GEN_ID).

When APP_GEN_ID is selected then the application will provide an
invokeID with every TSAPI function call that requires an invokeID. TSAPI
will return the supplied invokeID value to the application in the confirmation
event for the service request. Application-generated invokeID values can
be any 32-bit value.

When LIB_GEN_ID is selected, the ACS Library will automatically
generate an invokeID and will return its value upon successful completion
of the function call. The value will be the return from the function call
(RetCode_t). Library-generated invoke IDs are always in the range 1 to
32767.

invokeID
Issue 1 — December 2001

TSAPI.PDF R10.1 V14-10

Control Services
The application supplies this handle for matching the acsOpenStream()
service request with its confirmation event. An application supplies a value
for invokeID only when the invokeIDtype parameter is set to APP_GEN_ID.
TSAPI ignores the invokeID parameter when invokeIDtype parameter is set
to LIB_GEN_ID.

streamType

The application provides the type of stream in streamType. The possible
values are:

ST_CSTA - requests a CSTA call control stream. This stream can
be used for TSAPI service requests and responses which begin with
the prefix "csta" or "CSTA".

ST_OAM - requests an OAM stream.

serverID

The application provides a null-terminated string of maximum size ACS_
MAX_SERVICEID. This string contains the name of an advertised service
(in ASCII format). The application must ensure that the serverID provides
services of the type given in the streamType parameter.

loginID

The application provides a pointer to a null terminated string of maximum
size ACS_MAX_LOGINID. This string contains the login ID of the user
requesting access to the advertised service given in the serviceID
parameter.

passwd

The application provides a pointer to a null terminated string of maximum
size ACS_MAX_PASSWORD. This string contains the password of the
user given loginID.

applicationName

The application provides a pointer to a null terminated string of maximum
size ACS_MAX_APPNAME. This string contains an application name.
The system uses the application name on certain administration and
maintenance status displays.

acsLevelReq

This version of TSAPI ignores this parameter.

apiVer

An application gives the version of TSAPI that it desires in apiVer.

This parameter contains a string beginning with the characters “TS”
followed by an ASCII encoding of one or more version numbers. An
application may use the “-” (hyphen) character to specify a range of
versions and the “:” (colon) character to separate a list of versions. For
Issue 1 — December 2001

4-11TSAPI.PDF R10.1 V1

Control Services
example, the string “TS1-3:5” specifies that the application is willing to
accept TSAPI versions 1, 2, 3, or 5. See the preceding TSAPI Version
Control section for more information about version negotiation.

Releases 2.10 and 2.21 of Telephony Services support versions “TS1” and
“TS2” on CSTA streams and version “TS1” on OAM streams.

Release 1 applications should supply the Version 1 value for CSTA_API_
VERSION in the Version 1 csta.h header file in apiVer.

sendQSize

The application specifies in sendQSize the maximum number of outgoing
messages the TSAPI Client Library will queue before returning ACSERR_
QUEUE_FULL. If the application supplies a zero (0) value, then a default
queue size will be used. The UnixWare TSAPI client library does not use
the sendQSize parameter.

sendExtraBufs

The application specifies the number of additional packet buffers TSAPI
allocates for the send queue. If sendExtraBufs is set to zero (0), the
number of buffers is equal to the queue size (i.e., one buffer per message).
If messages will exceed the size of a network packet, as in the case where
private data is used extensively, or the application frequently sees the
ACSERR_NOBUFFERS error, then the application does not use
sendExtraBuf to allocate enough buffers. The UnixWare TSAPI client
library does not use the sendExtraBufs parameter.

recvQSize

The application specifies the maximum number of incoming messages the
TSAPI Client Library queues before it ceases acknowledgment to the
Telephony Server. TSAPI uses a default queue size when recvQSize is set
to zero (0). The UnixWare TSAPI client library does not use the recvQSize
parameter.

recvExtraBufs

The application specifies the number of additional packet buffers that
TSAPI allocates for the receive queue. If recvExtraBufs is set to zero (0),
the number of buffers is equal to the queue size (i.e., one buffer per
message). If messages will exceed the size of a network packet, as in the
case where private data is used extensively, or the application frequently
sees ACSERR_STREAM_FAILED, then the application does not use
recvExtraBufs to allocate enough buffers. The UnixWare TSAPI client
library does not use the recvExtraBufs parameter.

privateData

The application may provide a pointer to a data structure that contains any
implementation-specific (PBX Driver specific) initialization. TSAPI does not
interpret the data in this structure. Some PBX Drivers may use Private
Data as an “escape mechanism” to provide implementation specific
information between the application and the PBX Driver. An application
gives a NULL pointer when Private Data is not present.
Issue 1 — December 2001

TSAPI.PDF R10.1 V14-12

Control Services
In an open stream request, an application may use the private data to negoti-
ate a specific version(s) of a specific vendor(s) private data on the stream. To
indicate that the private data is to negotiate the version, the application sets
the vendor field in the PrivateData structure to the null-terminated string
“VERSION”. The application specifies the acceptable vendor(s) and ver-
sion(s) in the data field of the private data. The data field contains a one byte
manifest constant PRIVATE_DATA_ENCODING followed by a null terminated
ASCII string containing a list of vendors and versions. The string contains
vendor/version pairs with the “#” character separating the vendor and version.
The “#” character also delimits the vendor/version pairs. The “:” and “-” char-
acters are used as they are for TSAPI version negotiation. For example, the
string “VENDORA#1-3#VENDORB#1:3-5” indicates that the application
requests VENDORA private data versions 1, 2, or 3; or, VENDORB private
data versions 1, 3, 4, or 5. No private data on an open stream request is a
request to the PBX driver not to send any private data. Only those PBX driv-
ers that support private data version negotiation will honor this request.

See the preceding Private Data Version Control section for information on pri-
vate data version negotiation.

Return Values

acsOpenStream() returns the following values depending on whether the
application is using library or application-generated invoke identifiers:

Library-generated invokeIDs - if the function call completes
successfully it will return a positive value, i.e. the invoke identifier. If
the call fails a negative error (<0) condition will be returned. For
library-generated identifiers the return will never be zero (0).

Application-generated invokeIDs - if the function call completes
successfully it will return a zero (0) value. If the call fails a negative
error (<0) condition will be returned. For application-generated
identifiers the return will never be positive (>0).

An application should always check the ACSOpenStreamConfEvent message to
ensure that the Telephony Server has acknowledged the acsOpenStream()
request.

acsOpenStream() returns the negative error conditions below:

ACSERR_APIVERDENIED

The requested API version (apiVer) is invalid or the client library
does not support it.

ACSERR_BADPARAMETER

One or more of the parameters is invalid.

ACSERR_NODRIVER

No TSAPI Client Library Driver was found or installed on the system.
Issue 1 — December 2001

4-13TSAPI.PDF R10.1 V1

Control Services
ACSERR_NOSERVER

The advertised service (serverID) is not available in the network.

ACSERR_NORESOURCE

There are insufficient resources to open a ACS Stream.

Comments

An application uses acsOpenStream() to open a network or local
communication channel (ACS Stream) with an advertised service (PBX
Driver). The stream will establish an ACS client/server session between the
application and the server. The application can use the ACS stream to
access all the server-provided services (e.g. for a typical PBX Driver this
would include cstaMakeCall, cstaTransferCall, etc.). acsOpenStream()
returns an acsHandle for the stream. The application uses the acsHandle
to wait for a ACSOpenStreamConfEvent. The application uses the
ACSOpenStreamConfEvent to determine whether the stream opened
successfully. The application then uses the acsHandle in any further
requests that it sends over the stream. An application should only open
one stream for any advertised service.

When an application calls acsOpenStream() the call may block for up to
ten (10) seconds while TSAPI obtains names and addresses from the
network Name Server.

Applications should not open multiple streams to the same advertised
service since this results in inefficient use of system resources.

NOTE:
The UnixWare TSAPI client library does not use the sendQsize,
sendExtraBufs, recvQsize, or recvExtraBufs parameters.

Application Notes

A Telephony Server advertises services for each registered PBX Driver. A
PBX Driver may support a single CTI link or multiple CTI links. Each
advertised service name is unique on the network.

TSAPI guarantees that the ACSOpenStreamConfEvent is the first event
the application will receive on ACS Stream if no errors occurred during the
ACS Stream initialization process.

The application is responsible for terminating ACS streams. To do so, an
application either calls acsCloseStream() (and receives the
ACSCloseStreamConfEvent), or calls acsAbortStream(). It is
imperative that an application close all active stream(s) during its exit or
cleanup routine in order to free resources in the client and server for other
applications on the network.

The application must be prepared to receive an
ACSUniversalFailureConfEvent (for any stream type),
CSTAUniversalFailureConfEvent (for a CSTA stream type) or an
Issue 1 — December 2001

TSAPI.PDF R10.1 V14-14

Control Services
ACSUniversalFailureEvent (for any stream type) anytime after the
acsOpenStream() function completes. These events indicate that a
failure has occurred on the stream.

ACSOpenStreamConfEvent

This event is generated in response to the acsOpenStream() function and
provides the application with status information regarding the requested open of
an ACS Stream with the Telephony Server. The application may only perform the
ACS functions acsEventNotify(), acsSetESR(), acsGetEventBlock(),
acsGetEventPoll(), and acsCloseStream() on an acsHandle until this
confirmation event has been received.

Syntax

The following structure shows only the relevant portions of the unions for
this message. See section 4.3, ACS Data Types and 4.6, CSTA Data
Types for a more complete description of the event structure.

typedef struct

{

ACSHandle_t acsHandle;

EventClass_t eventClass;

EventType_t eventType;

} ACSEventHeader_t;

typedef struct

{

ACSEventHeader_teventHeader;

union

{

struct

{

InvokeID_t invokeID;

union

{

ACSOpenStreamConfEvent_t acsopen;

} u;

} acsConfirmation;

} event;

} CSTAEvent_t;

typedef struct ACSOpenStreamConfEvent_t

{

Version_tapiVer;

Version_tlibVer;

Version_ttsrvVer;

Version_tdrvrVer;

} ACSOpenStreamConfEvent_t;

Parameters

acsHandle
Issue 1 — December 2001

4-15TSAPI.PDF R10.1 V1

Control Services
This is the handle for the ACS Stream.

eventClass

This is a tag with the value ACSCONFIRMATION, which identifies this
message as an ACS confirmation event.

eventType

This is a tag with the value ACS_OPEN_STREAM_CONF, which identifies
this message as an ACSOpenStreamConfEvent.

invokeID

This parameter specifies the requested instance of the function or event. It
is used to match a specific function request with its confirmation events.

apiVer

This parameter indicates which version of the API was granted. The
version begins with the letters “ST” (the “S” and the “T” are intentionally
reversed. Note that the application supplied string had the letters in the
order “TS”) followed by a single TSAPI version number. If the contents of
the apiVer field do not begin with the letters “ST”, then the application
should assume TSAPI version 1. See the preceding Private Data Version
Control section for information on private data version negotiation.

libVer

This parameter indicates which version of the Library is running.

tsrvVer

This parameter indicates which version of the TSERVER is running.

drvrVer

This parameter indicates which version of the Driver is running.

Comments

This message is an indication that the ACS Stream requested by the
application via the acsOpenStream() function is available to provide
communication with the Telephony Server. The application may now
request call control services from the Telephony Server on the acsHandle
identifying this ACS Stream. This message contains the Level of the
stream opened, the identification of the server that is providing service, and
any Private data returned by the Telephony Server.

The Private Data in the ACSOpenStreamConfEvent indicates what
vendor and version Private Data the PBX driver will provide on the stream.
In the Private Data, the vendor field will contain the vendor name and the
data field in the Private_Data_t structure contains a one byte discriminator
PRIVATE_DATA_ENCODING followed by an ASCII string identifying the
version of the private data that will be supplied.

Application Notes
Issue 1 — December 2001

TSAPI.PDF R10.1 V14-16

Control Services
The ACSOpenStreamConfEvent is guaranteed to be the first event on the
ACS Stream the application will receive if no errors occurred during the
ACS Stream initialization.

acsCloseStream()

This function closes an ACS Stream to the Telephony Server. The application will
be unable to request services from the Telephony Server after the
acsCloseStream() function has returned. The acsHandle is valid on this stream
after the acsCloseStream() function returns, but can only be used to receive
events via the acsGetEventBlock() or acsGetEventPoll() functions. The
application must receive the ACSCloseStreamConfEvent associated with this
function call to indicate that the ACS Stream associated with the specified
acsHandle has been terminated and to allow stream resources to be freed.

Syntax

#include <acs.h>

#include <csta.h>

RetCode_t acsCloseStream (

ACSHandle_tacsHandle,/* INPUT */

InvokeID_tinvokeID,/* INPUT */

PrivateData_t*privateData);/* INPUT */

Parameters

acsHandle

This is the handle for the active ACS Stream which is to be closed. Once
the confirmation event associated with this function returns, the handle is
no longer valid.

invokeID

A handle provided by the application to be used for matching a specific
instance of a function service request with its associated confirmation
event. This parameter is only used when the Invoke ID mechanism is set
for Application-generated IDs in the acsOpenStream(). The parameter is
ignored by the ACS Library when the Stream is set for Library-generated
invoke IDs.

privateData

This points to a data structure which defines any implementation-specific
information needed by the server. The data in this structure is not
interpreted by the API Client Library and can be used as an escape
mechanism to provide implementation specific commands between the
application and the Telephony Server.
Issue 1 — December 2001

4-17TSAPI.PDF R10.1 V1

Control Services
Return Values

This function returns the following values depending on whether the
application is using library or application-generated invoke identifiers:

Library-generated Identifiers - if the function call completes successfully, it
will return a positive value, i.e. the invoke identifier. If the call fails, a
negative error (<0) condition will be returned. For library-generated
identifiers, the return will never be zero (0).

Application-generated Identifiers - if the function call completes
successfully, it will return a zero (0) value. If the call fails, a negative error
(<0) condition will be returned. For application-generated identifiers, the
return will never be positive (>0).

The application should always check the ACSCloseStreamConfEvent
message to ensure that the service request has been acknowledged and
processed by the Telephony Server and the switch.

acsCloseStream() returns the negative error conditions below:

ACSERR_BADHDL

This indicates that the acsHandle being used is not a valid handle
for an active ACS Stream. No changes occur in any existing streams
if a bad handle is passed with this function.

Comments

Once this function returns, the application must also check the
ACSCloseStreamConfEvent message to ensure that the ACS Stream
was closed properly and to see if any Private Data was returned by the
server.

No other service request will be accepted to the specified acsHandle after
this function successfully returns. The handle is an active and valid handle
until the application has received the ACSCloseStreamConfEvent.

Application Notes

The Client is responsible for receiving the ACSCloseStreamConfEvent
which indicates resources have been freed.

The application must be prepared to receive multiple events on the ACS
Stream after the acsCloseStream() function has completed, but the
ACSCloseStreamConfEvent is guaranteed to be the last event on the
ACS Stream.

The acsGetEventBlock() and acsGetEventPoll() functions can only be
called after the acsCloseStream() function has returned successfully.
Issue 1 — December 2001

TSAPI.PDF R10.1 V14-18

Control Services
ACSCloseStreamConfEvent

This event is generated in response to the acsCloseStream() function and
provides information regarding the closing of the ACS Stream The acsHandle is
no longer valid after this event has been received by the application, so the
ACSCloseStreamConfEvent is the last event the application will receive for this
ACS Stream.

Syntax

The following structure shows only the relevant portions of the unions for
this message. See section 4.2 ACS Data Types and 4.6 CSTA Data
Types for a complete description of the event structure.

typedef struct

{

ACSHandle_tacsHandle;

EventClass_teventClass;

EventType_teventType;

} ACSEventHeader_t;

typedef struct

{

ACSEventHeader_teventHeader;

union

{

struct

{

InvokeID_tinvokeID;

union

{

ACSCloseStreamConfEvent_t acsclose;

} u;

} acsConfirmation;

} event;

} CSTAEvent_t;

typedef struct ACSCloseStreamConfEvent_t

{

Nulltype null;

} ACSCloseStreamConfEvent_t;

Parameters

acsHandle

This is the handle for the opened ACS Stream.

eventClass

This is a tag with the value ACSCONFIRMATION, which identifies this
message as an ACS confirmation event.
Issue 1 — December 2001

4-19TSAPI.PDF R10.1 V1

Control Services
eventType

This is a tag with the value ACS_CLOSE_STREAM_CONF, which
identifies this message as an ACSCloseStreamConfEvent.

invokeID

This parameter specifies the requested instance of the function. It is used
to match a specific acsCloseStream() function request with its
confirmation event.

Comments

This message indicates that the ACS Stream to the Telephony Server has
closed and that the associated acsHandle is no longer valid. This message
contains any Private data returned by the Telephony Server.

ACSUniversalFailureConfEvent

This event can occur at any time in place of a confirmation event for any of the
CSTA functions which have their own confirmation event and indicates a problem
in the processes of the requested function. It does not indicate a failure or loss of
the ACS Stream with the Telephony Server. If the ACS Stream has failed, then an
ACSUniversalFailureEvent (unsolicited version of this confirmation event) is sent
to the application.

Syntax

The following structure shows only the relevant portions of the unions for
this message. See section ACS Data Types and CSTA Data Types for a
complete description of the event structure.
Issue 1 — December 2001

TSAPI.PDF R10.1 V14-20

Control Services
typedef struct

{

ACSHandle_tacsHandle;

EventClass_teventClass;

EventType_teventType;

} ACSEventHeader_t;

t typedef struct

{

ACSEventHeader_t eventHeader;

union

{

struct

{

union

{

ACSUniversalFailureConfEvent_t failureEvent;

} u;

} acsConfirmation;

} event;

} CSTAEvent_t;

typedef struct

{

ACSUniversalFailure_terror;

} ACSUniversalFailureConfEvent_t;

Parameters

acsHandle

This is the handle for the ACS Stream.

eventClass

This is a tag with the value ACSCONFIRMATION, which identifies this
message as an ACS confirmation event.

eventType

This is a tag with the value ACS_UNIVERSAL_FAILURE_CONF, which
identifies this message as an ACSUniversalFailureConfEvent.

error

This parameter indicate the cause value for the failure of the original
Telephony request. These cause values are the same set as those shown
for ACSUniversalFailureEvent.
Issue 1 — December 2001

4-21TSAPI.PDF R10.1 V1

Control Services
Comments

This event will occur anytime when a non-telephony problem (no memory,
Tserver Security check failed, etc.) in processing a Telephony request in
encountered and is sent in place of the confirmation event that would
normally be received for that function (i.e., CSTAMakeCallConfEvent in
response to a cstaMakeCall() request). If the problem which prevents the
telephony function from being processed is telephony based, then a
CSTAUniversalFailureConfEvent will be received instead.

acsAbortStream()

This function unilaterally closes an ACS Stream to the Telephony Server. The
application will be unable to request services from the Telephony Server or
receive events after the acsAbortStream() function has returned. The
acsHandle is invalid on this stream after the acsAbortStream() function returns.
There is no associated confirmation event for this function.

Syntax

#include <acs.h>

#include <csta.h>

RetCode_t acsAbortStream (

ACSHandle_t acsHandle, /* INPUT */

PrivateData_t *privateData); /* INPUT */

Parameters

acsHandle

This is the handle for the active ACS Stream which is to be closed. There is
no confirmation event for this function. Once this function returns success,
the ACS Stream is no longer valid.

privateData

This points to a data structure which defines any implementation-specific
information needed by the server. The data in this structure is not
interpreted by the API Client Library and can be used as an escape
mechanism to provide implementation specific commands between the
application and the Telephony Server.

Return Values

This function always returns zero (0) if successful.

The following are possible negative error conditions for this function:
Issue 1 — December 2001

TSAPI.PDF R10.1 V14-22

Control Services
ACSERR_BADHDL

This indicates that the acsHandle being used is not a valid handle for an
active ACS Stream. No changes occur in any existing streams if a bad
handle is passed with this function.

Comments

Once this function returns, the ACS stream is dismantled and the
acsHandle is invalid.

acsGetEventBlock()

This function is used when an application wants to receive an event in a Blocking
mode. In the Blocking mode, the application will be blocked until there is an event
from the ACS Stream indicated by the acsHandle. If the acsHandle is set to zero
(0), then the application will block until there is an event from any ACS stream
opened by this application. The function will return after the event has been
copied into the applications data space.

Syntax

#include <acs.h>

#include <csta.h>

RetCode_t acsGetEventBlock (

ACSHandle_t acsHandle, /* INPUT */

void *eventBuf, /* INPUT */

unsigned short *eventBufSize, /* INPUT/RETURN */

PrivateData_t *privateData, /* RETURN */

unsigned short *numEvents); /* RETURN */

Parameters

acsHandle

This is the value of the unique handle to the opened ACS Stream. If a
handle of zero (0) is given, then the next message on any of the open ACS
Streams for this application is returned.

eventBuf

This is a pointer to an area in the application address space large enough
to hold one incoming event that is received by the application. This buffer
should be large enough to hold the largest event the application expected
to receive. Typically the application will reserve a space large enough to
hold a CSTAEvent_t.

eventBufSize

This parameter indicates the size of the user buffer pointed to by eventBuf.
If the event is larger the eventBuf, then this parameter will be returned with
the size of the buffer required to receive the event. The application should
call this function again with a larger buffer.
Issue 1 — December 2001

4-23TSAPI.PDF R10.1 V1

Control Services
privateData

This parameter points to a buffer which will receive any private data that
accompanies this event. The length field of the PrivateData_t structure
must be set to the size of the data buffer. If the application does not wish to
receive private data, then privateData should be set to NULL.

numEvents

The library will return the number of events queued for the application on
this ACS Stream (not including the current event) via the numEvents
parameter. If this parameter is NULL, then no value will be returned.

On a UnixWare client, numEvents will have a value of 0 or 1 indicating that
the event queue is empty or non-empty (respectively); this value on a
UnixWare client does not indicate the number of events in the queue. On a
UnixWare client when acsHandle is 0, the numEvents value refers only to
the stream for which the event was retrieved (and is not an aggregate
count).

Return Values

This function returns a positive acknowledgment or a negative error
condition (< 0). There is no confirmation event for this function. The
positive return value is:

ACSPOSITIVE_ACK

The function completed successfully as requested by the
application, and an event has been copied to the application data
space. No errors were detected.

Possible local error returns are (negative returns):

ACSERR_BADHDL

This indicates that the acsHandle being used is not a valid handle
for an active ACS Stream. No changes occur in any existing streams
if a bad handle is passed with this function.

ACSERR_UBUFSMALL

The user buffer size indicated in the eventBufSize parameter was
smaller than the size of the next available event for the application
on the ACS stream. The eventBufSize variable has been reset by
the API Library to the size of the next message on the ACS stream.
The application should call acsGetEventBlock() again with a larger
buffer. The ACS event is still on the API Library queue.
Issue 1 — December 2001

TSAPI.PDF R10.1 V14-24

Control Services
Comments

The acsGetEventBlock() and acsGetEventPoll() functions can be
intermixed by the application. For example, if bursty event message traffic
is expected, an application may decide to block initially for the first event
and wait until it arrives. When the first event arrives the blocking function
returns, at which time the application can process this event quickly and
poll for the other events which may have been placed in queue while the
first event was being processed. The polling can be continued until a
ACSERR_NOMESSAGE is returned by the polling function. At this time
the application can then call the blocking function again and start the whole
cycle over again.

There is no confirmation event for this function.

Application Notes

The application is responsible for calling the acsGetEventBlock() or
acsGetEventPoll() function frequently enough that the API Client Library
does not overflow its receive queue and refuse incoming events from the
Telephony Server.

acsGetEventPoll()

This function is used when an application wants to receive an event in a
Non-Blocking mode. In the Non-Blocking mode the oldest outstanding event
from any active ACS Stream will be copied into the applications data space and
control will be returned to the application. If no events are currently queued for the
application, the function will return control immediately to the application with an
error code indicating that no events were available.

Syntax

#include <acs.h>

#include <csta.h>

RetCode_t acsGetEventPoll (

ACSHandle_t acsHandle, /* INPUT */

void *eventBuf, /* INPUT */

unsigned short *eventBufSize, /* INPUT/RETURN */

PrivateData_t *privateData, /* RETURN */

unsigned short *numEvents; /* RETURN */

Parameters

acsHandle

This is the value of the unique handle to the opened ACS Stream. If a
handle of zero (0) is given, then the next message on any of the open ACS
Streams for this application is returned.
Issue 1 — December 2001

4-25TSAPI.PDF R10.1 V1

Control Services
eventBuf

This is a pointer to an area in the application address space large enough
to hold one incoming event that is received by the application. This buffer
should be large enough to hold the largest event the application expected
to receive. Typically the application will reserve a space large enough to
hold a CSTAEvent_t.

eventBufSize

This parameter indicates the size of the user buffer pointed to by eventBuf.
If the event is larger the eventBuf, then this parameter will be returned with
the size of the buffer required to receive the event. The application should
call this function again with a larger buffer.

privateData

This parameter points to a buffer which will receive any private data that
accompanies this event. The length field of the PrivateData_t structure
must be set to the size of the data buffer. If the application does not wish to
receive private data, then privateData should be set to NULL.

numEvents

The library will return the number of events queued for the application on
this ACS Stream (not including the current event) via the numEvents
parameter. If this parameter is NULL, then no value will be returned.

Return Values

This function returns a positive acknowledgment or a negative error
condition (< 0). There is no confirmation event for this function. The
positive return value is:

ACSPOSITIVE_ACK

The function completed successfully as requested by the
application, and an event has been copied to the application data
space. No errors were detected.

Possible local error returns are (negative returns):

ACSERR_BADHDL

This indicates that the acsHandle being used is not a valid handle
for an active ACS Stream. No changes occur in any existing streams
if a bad handle is passed with this function.

ACSERR_NOMESSAGE

There were no messages available to return to the application.

ACSERR_UBUFSMALL

The user buffer size indicated in the eventBufSize parameter was
smaller than the size of the next available event for the application
on the ACS stream. The eventBufSize variable has been reset by
Issue 1 — December 2001

TSAPI.PDF R10.1 V14-26

Control Services
the API Library to the size of the next message on the ACS stream.
The application should call acsGetEventPoll() again with a larger
buffer. The ACS event is still on the API Library queue.

Comments

When this function is called, it returns immediately, and the user must
examine the return code to determine if a message was copied into the
user's data space. If an event was available, the function will return
ACSPOSITIVE_ACK.

If no events existed on the ACS Stream for the application, this function will
return ACSERR_NOMESSAGE.

The acsGetEventBlock() and acsGetEventPoll() functions can be
intermixed by the application. For example, if bursty event message traffic
is expected, an application may decide to block initially for the first event
and wait until it arrives. When the first event arrives the blocking function
returns, at which time the application can process this event quickly and
poll for the other events which may have been placed in queue while the
first event was being processed. The polling may continue until the
ACSERR_NOMESSAGE is returned by the polling function. At this time
the application can then call the blocking function again and start the whole
cycle over again.

There is no confirmation event for this function.

Application Notes

The application is responsible for calling the acsGetEventBlock() or
acsGetEventPoll() function frequently enough that the API Client Library
does not overflow its receive queue and refuses incoming events from the
Telephony Server.

acsGetFile() (UnixWare)

The acsGetFile() function returns the Unix file descriptor associated with an ACS
stream. This is to enable multiplexing of input sources via, for example, the
poll() system call.

Syntax

#include <acs.h>

#include <csta.h>

RetCode_t acsGetFile (ACSHandle_t acsHandle);

Parameters

acsHandle

This is the value of the unique handle to the opened ACS Stream whose
Unix file descriptor is to be returned.
Issue 1 — December 2001

4-27TSAPI.PDF R10.1 V1

Control Services
Return Values

This function returns either a Unix file descriptor greater than or equal to
zero(0), or ACSERR_BADHDL if the acsHandle being used is not a valid
handle for an active ACS Stream.

Application Notes

The acsGetFile() function returns the UNIX file descriptor used by an ACS
stream. This enables an application to simultaneously block on the stream
and any other file-oriented input sources by using poll(), select(),
XtAddInput() or similar multiplexing functions. The application should
never perform any direct I/O operations on this file descriptor.

There is no confirmation event for this function.

acsSetESR() (Windows)

The acsSetESR() function also allows the application to designate an Event
Service Routine (ESR) that will be called when an incoming event is available.

Syntax (Windows)

#include <acs.h>

#include <csta.h>

#typedef void (*EsrFunc)(unsigned short esrParam)

RetCode_t acsSetESR (

ACSHandle_t acsHandle,

EsrFunc esr,

unsigned shortesrParam,

Boolean notifyAll);

Parameters

acsHandle

This is the value of the unique handle to the opened Stream for which this
ESR routine will apply. Only one ESR is allowed per active acsHandle.

esr

This is a pointer to the ESR (the address of a function). An application
passes a NULL pointer indicates to clear an existing ESR.
Issue 1 — December 2001

TSAPI.PDF R10.1 V14-28

Control Services
esrParam

This is a user-defined parameter which will be passed to the ESR when it is
called.

notifyAll

If this parameter is TRUE then the ESR will be called for every event. If it is
FALSE then the ESR will only be called each time the receive queue
becomes non-empty, i.e. the queue count changes from zero (0) to one (1).
This option may be used to reduce the overhead of notification.

Return Values

This function returns a positive acknowledgment or a negative error
condition (< 0). There is no confirmation event for this function. The
positive return value is:

ACSPOSITIVE_ACK

The function completed successfully as requested by the
application. No errors were detected.

Possible local error returns are (negative returns):

ACSERR_BADHDL

This indicates that the acsHandle being used is not a valid handle
for an active ACS Stream. No changes occur in any existing streams
if a bad handle is passed with this function.

Comments

The ESR mechanism can be used by the application to receive an
asynchronous notification of the arrival of an incoming event from the ACS
Stream. The ESR routine will receive one user-defined parameter.
Windows calls the ESR function with interrupts disabled (not normal
application context). The ESR should not call ACS functions, TSAPI
functions, and many of the Windows APIs or the results will be
indeterminate. The ESR should note the arrival of the incoming event, and
complete its operation as quickly as possible. The application must still call
acsGetEventBlock() or acsGetEventPoll() to retrieve the event from the
Client API Library queue.

If there are already events in the receive queue waiting to be retrieved
when acsSetESR() is called, the esr will be called for each of them.

The esr in the acsSetESR() function will replace the current ESR
maintained by the API Client Library. A NULL esr will disable the current
ESR mechanism.

There is no confirmation event for this function.

Application Notes

The application can use the ESR mechanism to trigger platform specific
events (e.g. post a Windows message for the applicationt).
Issue 1 — December 2001

4-29TSAPI.PDF R10.1 V1

Control Services
The application may use the ESR mechanism for asynchronous notification
of the arrival of incoming events, but most API Library environments
provide other mechanisms for receiving asynchronous notification.

The application should not call ACS functions from within the ESR.

The application should complete its ESR processing as quickly as possible.

The ESR function may be called while (some level of) interrupts are
disabled. This is API implementation specific, so the application
programmer should consult the API documentation. Under Windows, the
ESR function must be exported and its address obtained from
MakeProcInstance().

Windows Client Note:

Use acsSetESR() with care. ESR code and data must be immune to
swapping (i.e., fixed and page locked). The ESR must reside in a DLL so
as to be fixed. Interrupts are disabled when an ESR is called. Within the
ESR, do not call any function that may enable interrupts (including most
Windows APIs) or which is not “nailed down”.

acsSetESR() (Win32)

The acsSetESR() function also allows the application to designate an Event
Service Routine (ESR) that will be called when an incoming event is available.

Syntax

#include <acs.h>

#include <csta.h>

typedef void (*EsrFunc)(unsigned long esrParam)

RetCode_t acsSetESR (

ACSHandle_t acsHandle,

EsrFunc esr,

unsigned long esrParam,

Boolean notifyAll);

Parameters

acsHandle

This is the value of the unique handle to the opened Stream for which this
ESR routine will apply. Only one ESR is allowed per active acsHandle.

esr

This is a pointer to the ESR (the address of a function). An application
passes a NULL pointer indicates to clear an existing ESR.

esrParam
Issue 1 — December 2001

TSAPI.PDF R10.1 V14-30

Control Services
This is a user-defined parameter which will be passed to the ESR when it is
called.

notifyAll

If this parameter is TRUE then the ESR will be called for every event. If it is
FALSE then the ESR will only be called each time the receive queue
becomes non-empty, i.e. the queue count changes from zero (0) to one (1).
This option may be used to reduce the overhead of notification.

Return Values

This function returns a positive acknowledgment or a negative error
condition (< 0). There is no confirmation event for this function. The
positive return value is:

ACSPOSITIVE_ACK

The function completed successfully as requested by the
application. No errors were detected.

Possible local error returns are (negative returns):

ACSERR_BADHDL

This indicates that the acsHandle being used is not a valid handle
for an active ACS Stream. No changes occur in any existing streams
if a bad handle is passed with this function.

Comments

The ESR mechanism can be used by the application to receive an
asynchronous notification of the arrival of an incoming event from the ACS
Stream. The ESR routine will receive one user-defined parameter. The
ESR should not call TSAPI functions, or the results will be indeterminate.
The ESR should note the arrival of the incoming event, and complete its
operation as quickly as possible. The application must still call
acsGetEventBlock() or acsGetEventPoll() to retrieve the event from the
Client API Library queue.

Use acsSetESR() with care. The ESR code will be executed in the
context of a background thread created by the API Client Library, not an
application thread.

If there are already events in the receive queue waiting to be retrieved
when acsSetESR() is called, the esr will be called for each of them.

The esr in the acsSetESR() function will replace the current ESR
maintained by the API Client Library. A NULL esr will disable the current
ESR mechanism.

There is no confirmation event for this function.
Issue 1 — December 2001

4-31TSAPI.PDF R10.1 V1

Control Services
acsEventNotify() (Windows 3.1)

The acsEventNotify() function allows a Windows application to request that a
message be posted to its application queue when an incoming ACS event is
available.

Syntax

#include <acs.h>

#include <csta.h>

RetCode_tacsEventNotify (

ACSHandle_t acsHandle,

HWND hwnd,

UINT msg,

Boolean notifyAll);

Parameters

acsHandle

This is the value of the unique handle to the opened ACS Stream for which
event notification messages will be posted.

hwnd

This is the handle of the window which is to receive event notification
messages. If this parameter is NULL, event notification is disabled.

msg

This is the user-defined message to be posted when an incoming event
becomes available. The wParam and lParam parameters of the message
will contain the following members of the ACSEventHeader_t structure:

wParamacsHandle

HIWORD(lParam)eventClass

LOWORD(lParam)eventType

notifyAll

If this parameter is TRUE then a message will be posted for every event. If
it is FALSE then a message will only be posted each time the receive
queue becomes non-empty, i.e. the queue count changes from zero (0) to
one (1). This option may be used to reduce the overhead of notification, or
the likelihood of overflowing the application's message queue (see below).

Return Values

This function returns a positive acknowledgment or a negative error
condition (< 0). There is no confirmation event for this function. The
positive return value is:
Issue 1 — December 2001

TSAPI.PDF R10.1 V14-32

Control Services
ACSPOSITIVE_ACK

The function completed successfully as requested by the
application. No errors were detected.

Possible local error returns are (negative returns):

ACSERR_BADHDL

This indicates that the acsHandle being used is not a valid handle
for an active ACS Stream. No changes occur in any existing streams
if a bad handle is passed with this function.

Application Notes

This function only enables notification of an incoming event. Use
acsGetEventPoll() to actually retrieve the complete event structure.

If there are already events in the receive queue waiting to be retrieved
when acsEventNotify() is called, a message will be posted for each of
them.

Applications which process a high volume of incoming events may cause
the default application queue (8 messages max) to overflow. In this case,
use the Windows API call SetMessageQueue() to increase the size of the
application queue. Also, the rate of notifications may be reduced by setting
notifyAll to FALSE.

There is no confirmation event for this function.
Issue 1 — December 2001

4-33TSAPI.PDF R10.1 V1

Control Services
Example

This example uses the acsEventNotify function to enable event
notification.

#define WM_ACSEVENT WM_USER + 99

// or use RegisterWindowMessage()

long FAR PASCAL

WndProc (HWND hwnd, UINT msg, WPARAM wParam, LPARAM lParam)

{

// declare local variables...

switch (msg)

{

case WM_CREATE:

// post WM_ACSEVENT to this window

// whenever an ACS event arrives

acsEventNotify (acsHandle, hwnd, WM_ACSEVENT, TRUE);

// other initialization, etc...

return 0;

case WM_ACSEVENT:

// wParam contains an ACSHandle_t

// HIWORD(lParam) contains an EventClass_t

// LOWORD(lParam) contains an EventType_t

// dispatch the event to user-defined

// handler function here

return 0;

// process other window messages...

}

return DefWindowProc (hwnd, msg, wParam, lParam);

}

Issue 1 — December 2001

TSAPI.PDF R10.1 V14-34

Control Services
acsEventNotify() (Win32)

The acsEventNotify() function allows a Win32 application to request that a
message be posted to its application queue when an incoming ACS event is
available.

Syntax

#include <acs.h>

#include <csta.h>

RetCode_t acsEventNotify (

ACSHandle_t acsHandle,

HWND hwnd,

UINT msg,

Boolean notifyAll);

Parameters

acsHandle

This is the value of the unique handle to the opened ACS Stream for which
event notification messages will be posted.

hwnd

This is the handle of the window which is to receive event notification
messages. If this parameter is NULL, event notification is disabled.

msg

This is the user-defined message to be posted when an incoming event
becomes available. The wParam and lParam parameters of the message
will contain the following members of the ACSEventHeader_t structure:

wParam acsHandle

HIWORD(lParam) eventClass

LOWORD(lParam) eventType

notifyAll

If this parameter is TRUE then a message will be posted for every event. If
it is FALSE then a message will only be posted each time the receive
queue becomes non-empty, i.e. the queue count changes from zero (0) to
one (1). This option may be used to reduce the overhead of notification, or
the likelihood of overflowing the application's message queue (see below).

Return Values

This function returns a positive acknowledgment or a negative error
condition (< 0). There is no confirmation event for this function. The
positive return value is:

ACSPOSITIVE_ACK

The function completed successfully as requested by the
application. No errors were detected.
Issue 1 — December 2001

4-35TSAPI.PDF R10.1 V1

Control Services
Possible local error returns are (negative returns):

ACSERR_BADHDL

This indicates that the acsHandle being used is not a valid handle
for an active ACS Stream. No changes occur in any existing streams
if a bad handle is passed with this function.

Application Notes

This function only enables notification of an incoming event. Use
acsGetEventPoll() to actually retrieve the complete event structure.

If there are already events in the receive queue waiting to be retrieved
when acsEventNotify() is called, a message will be posted for each of
them.

The rate of notifications may be reduced by setting notifyAll to FALSE.

There is no confirmation event for this function.

Example

This example uses the acsEventNotify function to enable event
notification.

#define WM_ACSEVENT WM_USER + 99

// or use RegisterWindowMessage()

long FAR PASCAL

WndProc (HWND hwnd, UINT msg, WPARAM wParam, LPARAM lParam)

{

// declare local variables...

switch (msg)

{

case WM_CREATE:

// post WM_ACSEVENT to this window

// whenever an ACS event arrives

acsEventNotify (acsHandle, hwnd, WM_ACSEVENT, TRUE);

// other initialization, etc...

return 0;

case WM_ACSEVENT:

// wParam contains an ACSHandle_t

// HIWORD(lParam) contains an EventClass_t

// LOWORD(lParam) contains an EventType_t

// dispatch the event to user-defined

// handler function here

return 0;
Issue 1 — December 2001

TSAPI.PDF R10.1 V14-36

Control Services
// process other window messages...

}

return DefWindowProc (hwnd, msg, wParam, lParam);

acsFlushEventQueue()

This function removes all events for the application on a ACS Stream associated
with the given handle and maintained by the API Client Library. Once this function
returns the application may receive any new events that arrive on this ACS
Stream.

Syntax

#include <acs.h>

#include <csta.h>

RetCode_t ACSFlushEventQueue (ACSHandle_t acsHandle);

Parameters

acsHandle

This is the handle to an active ACS Stream. If the acsHandle is zero (0),
then TSAPI will flush all active ACS Streams for this application.

Return Values

This function returns a positive acknowledgment or a negative error
condition (< 0). There is no confirmation event for this function. The
positive return value is:

ACSPOSITIVE_ACK

The function completed successfully as requested by the
application. No errors were detected.

Possible local error returns are (negative returns):

ACSERR_BADHDL

This indicates that the acsHandle being used is not a valid handle
for an active ACS Stream. No changes occur in any existing streams
if a bad handle is passed with this function.

Comments

Once this function returns the API Client Library will not have any events
queued for the application on the specified ACS Stream. The application is
ready to start receiving new events from the Telephony Server.

There is no confirmation event for this function.

Application Notes
Issue 1 — December 2001

4-37TSAPI.PDF R10.1 V1

Control Services
The application should exercise caution when calling this function, since all
events from the switch on the associated ACS Stream have been
discarded. The application has no way to determine what kinds of events
have been destroyed, and may have lost events that relay important status
information from the switch.

This function does not delete the ACSCloseStreamConfEvent, since this
function can not be called after the acsCloseStream() function.

The acsFlushEventQueue() function will delete all other events queued
to the application on the ACS Stream. The ACSUniversalFailureEvent
and the CSTAUniversalFailureConfEvent, in particular, will be deleted if
they are currently queued to the application.

acsEnumServerNames()

This function is used to enumerate the names of all the advertised services of a
specified stream type. This function is a synchronous call and has no associated
confirmation event.

Syntax

#include <acs.h>

typedef Boolean (*EnumServerNamesCB)(

char *serverName,

unsigned long lParam);

RetCode_tacsEnumServerNames(

StreamType_t streamType,

EnumServerNamesCB callback ,

unsigned long lParam);

Parameters

streamType

indicates the type of stream requested. The currently defined stream types
are ST_CSTA and ST_OAM.

callback

This is a pointer to a callback function which will be invoked for each of the
enumerated server names, along with the user-defined parameter lParam.
If the callback function returns FALSE (0), enumeration will terminate.

lParam

A user-defined parameter which is passed on each invocation of the
callback function.

Return Values
Issue 1 — December 2001

TSAPI.PDF R10.1 V14-38

Control Services
This function returns a positive acknowledgment or a negative error
condition (< 0). There is no confirmation event for this function. The
positive return value is:

ACSPOSITIVE_ACK

The function completed successfully as requested by the
application. No errors were detected.

The following are possible negative error conditions for this function:

ACSERR_UNKNOWN

The request has failed due to unknown network problems.

ACSERR_NOSERVER

The request has failed because the client is using TCP/IP and IP
addresses are not configured properly.

Comments

This function enumerates all the known advertised services, invoking the
callback function for each advertised service name. The serverName
parameter points to automatic storage; the callback function must make a
copy if it needs to preserve this data. Under Windows, the callback
function must be exported and its address obtained from
MakeProcInstance().

An active ACS Stream is NOT required to call this function.

acsQueryAuthInfo()

Use acsQueryAuthInfo() to determine the login and password requirements
when opening an ACS stream to a particular advertised CSTA service. This
function call places the result of a query in a user-provided structure before
returning; there is no confirmation event.

Syntax

#include <acs.h>

RetCode_t acsQueryAuthInfo(

ServerID_t *serverID, /* INPUT */

ACSAuthInfo_t *authInfo); /* RETURN */

Parameters

serverID

The application provides a null-terminated string of maximum size ACS_
MAX_SERVICEID. This string contains the name of an advertised CSTA
service (in ASCII format).

authInfo
Issue 1 — December 2001

4-39TSAPI.PDF R10.1 V1

Control Services
The application provides a pointer to a pre-allocated structure into which
the acsQueryAuthInfo() returns authentication information about the
CSTA service named in serverID. The ACSAuthInfo_t structure is defined
as follows:
Issue 1 — December 2001

TSAPI.PDF R10.1 V14-40

Control Services
typedef enum

{

REQUIRES_EXTERNAL_AUTH = -1,

AUTH_LOGIN_ID_ONLY = 0,

AUTH_LOGIN_ID_IS_DEFAULT = 1,

NEED_LOGIN_ID_AND_PASSWD = 2,

ANY_LOGIN_ID = 3

} ACSAuthType_t;

typedef struct

{

ACSAuthType_t authType;

LoginID_t authLoginID;

} ACSAuthInfo_t;

Return Values

acsQueryAuthInfo() returns the negative error conditions below:

ACSERR_BADPARAMETER

One or more of the parameters is invalid.

ACSERR_NODRIVER

No TSAPI Client Library Driver was found or installed on the system.

ACSERR_NOSERVER

The advertised service (serverID) is not available in the network.

ACSERR_NORESOURCE

There are insufficient resources to query the advertised service.

Background

The Telephony Services architecture allows network administrators to grant
telephony privileges to users. Depending on the implementation of a
telephony server and its client libraries, a user may convince telephony
servers of his or her identity – authenticate – by different means.

Version 1 of TSAPI required applications to supply a login name and
password when calling acsOpenStream() – the point at which a telephony
server must be convinced of a user's identity.

Version 2 and future versions offer support for multiple types of
authentication. A telephony service may still require – or simply accept – a
login and password, or it may rely on an external authentication service to
establish a user's identity.

The Telephony Services architecture offers support for both methods in any
combination.
Issue 1 — December 2001

4-41TSAPI.PDF R10.1 V1

Control Services
Usage

Call acsQueryAuthInfo() to determine the authentication requirements for
an advertised service (PBX Driver). The caller must provide the name of
the advertised service and a pointer to storage into which
acsQueryAuthInfo() will place the query results.

When an application calls acsQueryAuthInfo(), the application may block
while the telephony services library queries the specified service.

Examine authInfo.authType upon return from acsQueryAuthInfo() to
determine what loginID and passwd parameters to supply to
acsOpenStream() for the service queried.

REQUIRES_EXTERNAL_AUTH:

The service specified in the query requires the user to authenticate
with an external authentication service before opening a stream. If
authInfo.authType contains this value, acsOpenStream() will fail
for the service queried.

AUTH_LOGIN_ID_ONLY:

The application can only open a stream using the loginID returned
in authInfo.authLoginID.

acsOpenStream() will ignore passwd for the queried service. The
loginID must contain the same value as authInfo.authLoginID. An
application should not collect a password from its user for this
service.

AUTH_LOGIN_ID_IS_DEFAULT:

The loginID returned in authInfo.authLoginID is the default user
for this service. If the application subsequently specifies this
loginID or a NULL pointer as loginID to acsOpenStream(),
passwd will be ignored and may be NULL.

Alternatively, to open a stream as a different user than
authInfo.authLoginID, the application must supply loginID and
passwd to acsOpenStream().

NOTE:
An application should take care to not collect a password if its user wants to
be identified as authInfo.authLoginID. If an application does not
remember the last loginID selected by its user in a preferences file or other
persistent storage, the application should use authInfo.authLoginID as the
default loginID when prompting its user for login information.

NEED_LOGIN_ID_AND_PASSWD:

The application must supply loginID and passwd to
acsOpenStream().

ANY_LOGIN_ID:
Issue 1 — December 2001

TSAPI.PDF R10.1 V14-42

Control Services
The application may supply any loginID to acsOpenStream();
passwd should not be collected and will be ignored. Applications
should default to authInfo.authLoginID if it is non-empty.

ACS Unsolicited Events

This section describes unsolicited ACS Status Events.

ACSUniversalFailureEvent

This event can occur at any time (unsolicited) and can indicate, among other
things, a failure or loss of the ACS Stream with the Telephony Server.

Syntax

The following structure shows only the relevant portions of the unions for this
message. See the ACS Data Types and CSTA Data Types sections for a
complete description of the event structure.

typedef struct

{

ACSHandle_tacsHandle;

EventClass_teventClass;

EventType_teventType;

} ACSEventHeader_t;

typedef struct

{

ACSEventHeader_teventHeader;

union

{

struct

{

union

{

ACSUniversalFailureEvent_t failureEvent;

} u;

} acsUnsolicited;

} event;

} CSTAEvent_t;

typedef struct

{

ACSUniversalFailure_t error;

}

ACSUniversalFailureEvent_t;

Parameters

acsHandle
Issue 1 — December 2001

4-43TSAPI.PDF R10.1 V1

Control Services
This is the handle for the ACS Stream.
Issue 1 — December 2001

TSAPI.PDF R10.1 V14-44

Control Services
eventClass

This is a tag with the value ACSUNSOLICITED, which identifies this
message as an ACS unsolicited event.

eventType

This is a tag with the value ACS_UNIVERSAL_FAILURE, which identifies
this message as an ACSUniversalFailureEvent.

error

This parameter contains a Tserver operation error (or “cause value”),
Tserver security database error, or driver error for the ACS Stream given in
acsHandle.

NOTE:
Not all of the errors listed below will occur in an ACS Universal Failure
message. Some of the errors occur only in error logs generated by the
Tserver.

The possible values are:

typedef enum ACSUniversalFailure_t {

TSERVER_STREAM_FAILED = 0,

TSERVER_NO_THREAD = 1,

TSERVER_BAD_DRIVER_ID = 2,

TSERVER_DEAD_DRIVER = 3,

TSERVER_MESSAGE_HIGH_WATER_MARK = 4,

TSERVER_FREE_BUFFER_FAILED = 5,

TSERVER_SEND_TO_DRIVER = 6,

TSERVER_RECEIVE_FROM_DRIVER = 7,

TSERVER_REGISTRATION_FAILED = 8,

TSERVER_TRACE = 10,

TSERVER_NO_MEMORY = 11,

TSERVER_ENCODE_FAILED = 12,

TSERVER_DECODE_FAILED = 13,

TSERVER_BAD_CONNECTION = 14,

TSERVER_BAD_PDU = 15,

TSERVER_NO_VERSION = 16,

TSERVER_ECB_MAX_EXCEEDED = 17,

TSERVER_NO_ECBS = 18,

TSERVER_NO_SDB = 19,

TSERVER_NO_SDB_CHECK_NEEDED = 20,

TSERVER_SDB_CHECK_NEEDED = 21,

TSERVER_BAD_SDB_LEVEL = 22,

TSERVER_BAD_SERVERID = 23,

TSERVER_BAD_STREAM_TYPE = 24,

TSERVER_BAD_PASSWORD_OR_LOGIN = 25,

TSERVER_NO_USER_RECORD = 26,

TSERVER_NO_DEVICE_RECORD = 27,

TSERVER_DEVICE_NOT_ON_LIST = 28,

TSERVER_USERS_RESTRICTED_HOME = 30,

TSERVER_NO_AWAYPERMISSION = 31,

TSERVER_NO_HOMEPERMISSION = 32,
Issue 1 — December 2001

4-45TSAPI.PDF R10.1 V1

Control Services
TSERVER_NO_AWAY_WORKTOP = 33,

TSERVER_BAD_DEVICE_RECORD = 34,

TSERVER_DEVICE_NOT_SUPPORTED = 35,

TSERVER_INSUFFICIENT_PERMISSION = 36,

TSERVER_NO_RESOURCE_TAG = 37,

TSERVER_INVALID_MESSAGE = 38,

TSERVER_EXCEPTION_LIST = 39,

TSERVER_NOT_ON_OAM_LIST = 40,

TSERVER_PBX_ID_NOT_IN_SDB = 41,

TSERVER_USER_LICENSES_EXCEEDED = 42,

TSERVER_OAM_DROP_CONNECTION = 43,

TSERVER_NO_VERSION_RECORD = 44,

TSERVER_OLD_VERSION_RECORD = 45,

TSERVER_BAD_PACKET = 46,

TSERVER_OPEN_FAILED = 47,

TSERVER_OAM_IN_USE = 48,

TSERVER_DEVICE_NOT_ON_HOME_LIST = 49,

TSERVER_DEVICE_NOT_ON_CALL_CONTROL_LIST = 50,

TSERVER_DEVICE_NOT_ON_AWAY_LIST = 51,

TSERVER_DEVICE_NOT_ON_ROUTE_LIST = 52,

TSERVER_DEVICE_NOT_ON_MONITOR_DEVICE_LIST = 53,

TSERVER_DEVICE_NOT_ON_MONITOR_CALL_DEVICE_LIST = 54,

TSERVER_NO_CALL_CALL_MONITOR_PERMISSION = 55,

TSERVER_HOME_DEVICE_LIST_EMPTY = 56,

TSERVER_CALL_CONTROL_LIST_EMPTY = 57,

TSERVER_AWAY_LIST_EMPTY = 58,

TSERVER_ROUTE_LIST_EMPTY = 59,

TSERVER_MONITOR_DEVICE_LIST_EMPTY = 60,

TSERVER_MONITOR_CALL_DEVICE_LIST_EMPTY = 61,

TSERVER_USER_AT_HOME_WORKTOP = 62,

TSERVER_DEVICE_LIST_EMPTY = 63,

TSERVER_BAD_GET_DEVICE_LEVEL = 64,

TSERVER_DRIVER_UNREGISTERED = 65,

TSERVER_NO_ACS_STREAM = 66,

TSERVER_DROP_OAM = 67,

TSERVER_ECB_TIMEOUT = 68,

TSERVER_BAD_ECB = 69,

TSERVER_ADVERTISE_FAILED = 70,

TSERVER_TDI_QUEUE_FAULT = 72,

TSERVER_DRIVER_CONGESTION = 73,

TSERVER_NO_TDI_BUFFERS = 74,

TSERVER_OLD_INVOKEID = 75,

TSERVER_HWMARK_TO_LARGE = 76,

TSERVER_SET_ECB_TO_LOW = 77,

TSERVER_NO_RECORD_IN_FILE = 78,

TSERVER_ECB_OVERDUE = 79,

TSERVER_BAD_PW_ENCRYPTION = 80,

TSERVER_BAD_TSERV_PROTOCOL = 81,

TSERVER_BAD_DRIVER_PROTOCOL = 82,

TSERVER_BAD_TRANSPORT_TYPE = 83,

TSERVER_PDU_VERSION_MISMATCH = 84,

TSERVER_VERSION_MISMATCH = 85,

TSERVER_LICENSE_MISMATCH = 86,

TSERVER_BAD_ATTRIBUTE_LIST = 87,
Issue 1 — December 2001

TSAPI.PDF R10.1 V14-46

Control Services
TSERVER_BAD_TLIST_TYPE = 88,

TSERVER_BAD_PROTOCOL_FORMAT = 89,

TSERVER_OLD_TSLIB = 90,

TSERVER_BAD_LICENSE_FILE = 91,

TSERVER_NO_PATCHES = 92,

TSERVER_SYSTEM_ERROR = 93,

TSERVER_OAM_LIST_EMPTY = 94,-

TSERVER_TCP_FAILED = 95,

TSERVER_TCP_DISABLED = 97,

TSERVER_REQUIRED_MODULES_NOT_LOADED = 98,

TSERVER_TRANSPORT_IN_USE_BY_OAM = 99,

TSERVER_NO_NDS_OAM_PERMISSION = 100,

TSERVER_OPEN_SDB_LOG_FAILED = 101,

TSERVER_INVALID_LOG_SIZE = 102,

TSERVER_WRITE_SDB_LOG_FAILED = 103,

TSERVER_NT_FAILURE = 104,

TSERVER_LOAD_LIB_FAILED = 105,

TSERVER_INVALID_DRIVER = 106,

TSERVER_REGISTRY_ERROR = 107,

TSERVER_DUPLICATE_ENTRY = 108,

TSERVER_DRIVER_LOADED = 109,

DRIVER_DUPLICATE_ACSHANDLE = 1000,

DRIVER_INVALID_ACS_REQUEST = 1001,

DRIVER_ACS_HANDLE_REJECTION = 1002,

DRIVER_INVALID_CLASS_REJECTION = 1003,

DRIVER_GENERIC_REJECTION = 1004,

DRIVER_RESOURCE_LIMITATION = 1005,

DRIVER_ACSHANDLE_TERMINATION = 1006,

DRIVER_LINK_UNAVAILABLE = 1007

DRIVER_OAM_IN_USE = 1008

} ACSUniversalFailure_t;

Tserver Operation errors

Tserver operation errors indicate that there is an error in the Service
Request. These include the following specific error values:

TSERVER_STREAM_FAILED

The Client Library detected that the ACS Stream failed.

TSERVER_NO_THREAD

One or more the threads (processes) that make up the Tserver
could not be created.

TSERVER_BAD_DRIVER_ID

One of the threads (processes) that make up the Tserver
encountered a bad Driver Identification number during processing.

TSERVER_DEAD_DRIVER
Issue 1 — December 2001

4-47TSAPI.PDF R10.1 V1

Control Services
A Driver has not sent a heart beat messages to the Tserver form the
last three minutes. The Driver may be in an inoperable state.

TSERVER_MESSAGE_HIGH_WATER_MARK

The message rate between a client and the Tserver or the Tserver
and a Driver has exceeded the high water mark rate.

TSERVER_FREE_BUFFER_FAILED

The Tserver was unable to free Tserver Driver Interface (TDI)
memory.

TSERVER_SEND_TO_DRIVER

The Tserver was unable to send a message to a Driver.

TSERVER_RECEIVE_FROM_DRIVER

The Tserver was unable to receive a message from a Driver.

TSERVER_REGISTRATION_FAILED

A Driver's attempt to register with the Tserver failed.

TSERVER_TRACE

Used by the Tserver for debugging purposes only.

TSERVER_NO_MEMORY

The Tserver was unable to allocate a piece of memory.

TSERVER_ENCODE_FAILED

The Tserver was unable to encode a message for shipment to a
client workstation.

TSERVER_DECODE_FAILED

The Tserver was unable to decode a message from a client
workstation.

TSERVER_BAD_CONNECTION

The Tserver tried to process a request with a bad client connection
ID number.

TSERVER_BAD_PDU

The Tserver’s internal table of Protocol Descriptor Units is corrupted.

TSERVER_NO_VERSION

The Tserver processed a ACSOpenStreamConfEvent from a Driver
in which one or more the version fields was not set.

TSERVER_ECB_MAX_EXCEEDED

The Tserver can not process a message from the driver because the
message is larger than the sum of the ECBs allocated for this driver.

TSERVER_NO_ECBS
Issue 1 — December 2001

TSAPI.PDF R10.1 V14-48

Control Services
The Tserver has no available ECBs to send events to the client.

TSERVER_NO_RESOURCE_TAG

The Tserver was unable to get a resource tag for the purpose of
allocating memory.

TSERVER_INVALID_MESSAGE

The Tserver received an invalid Tserver OAM message.

TSERVER_ECB_OVERDUE

The Telephony Server uses this error code in the log file. An
application will not receive it.

TSERVER_BAD_PW_ENCRYPTION

The Telephony Server uses this error code in the log file. An
application will not receive it.

TSERVER_BAD_TRANSPORT_TYPE

The Telephony Server uses this error code in the log file. An
application will not receive it.

TSERVER_BAD_TSERV_PROTOCOL

The application has requested a TSAPI protocol version that the
Telephony Server does not provide.

TSERVER_BAD_DRIVER PROTOCOL

The application has requested a TSAPI protocol version that the
Telephony Server provides but the PBX Driver does not provide.

TSERVER_PDU_VERSION_MISMATCH

The application has invoked a service that the stream version does
not support. This resulted in the client library sending the Telephony
Server a Protocol Data Unit (PDU) that is not supported in the
TSAPI version on that stream.

TSERVER_BAD_PROTOCOL_FORMAT

The apiVer parameter value is not in the proper syntax.

TSERVER_OLD_TSLIB

The application is using a TSLIB library of an earlier vintage than the
version it is requesting in an open stream call.

TSERVER_REQUIRED_MODULES_NOT_LOADED

TSERVER_TRANSPORT_IN_USE_BY_OAM

TSERVER_NO_NDS_OAM_PERMISSION

TSERVER_OPEN_SDB_LOG_FAILED

TSERVER_INVALID_LOG_SIZE,

TSERVER_WRITE_SDB_LOG_FAILED
Issue 1 — December 2001

4-49TSAPI.PDF R10.1 V1

Control Services
TSERVER_NT_FAILURE,

TSERVER_LOAD_LIB_FAILED

TSERVER_INVALID_DRIVER

TSERVER_REGISTRY_ERROR

TSERVER_DUPLICATE_ENTRY

TSERVER_DRIVER_LOADED

Tserver Security Data Base errors

Error values in this category indicate that there is an error in the process of
an event which requires a check against the Security Data Base. This type
includes one of the following specific error values:

TSERVER_NO_SDB

One or more the files that makeup the Security Data Base is not
present on the server or can not be opened.

TSERVER_NO_SDB_CHECK_NEEDED

The requested service event does not require a Security Data Base
check.

TSERVER_SDB_CHECK_NEEDED

The requested service event does require a Security Data Base
check.

TSERVER_BAD_SDB_LEVEL

The Tserver’s internal table of API calls indicating which level of
security to perform on the request is corrupted.

TSERVER_BAD_SERVERID

The Tserver rejected an ACSOpenStream request because the
Server ID in the message did not match a Driver supported by this
Tserver.

TSERVER_BAD_STREAM_TYPE

The stream type an ACSOpenStream request was invalid.

TSERVER_BAD_PASSWORD_OR_LOGIN

The Password or Login or both from an ACSOpenStream request
did not match an entry in the Bindery on the server the Tserver is
running on.

TSERVER_NO_USER_RECORD

No user record was found in the Security Data Base for the login
specified in the ACSOpenStream request.

TSERVER_NO_DEVICE_RECORD
Issue 1 — December 2001

TSAPI.PDF R10.1 V14-50

Control Services
No device record was found in the Security Data Base for the device
specified in the API call.
Issue 1 — December 2001

4-51TSAPI.PDF R10.1 V1

Control Services
TSERVER_DEVICE_NOT_ON_LIST

The specified device in an API call was not found on any device list
administered for this user.

TSERVER_USERS_RESTRICTED_HOME

The Tserver is administered to restrict users to home worktops so no
checking is done against away worktop devices.

TSERVER_NO_AWAYPERMISSION

The Tserver rejected a service request because the device did not
match a device associated with an away worktop.

TSERVER_NO_HOMEPERMISSION

The Tserver rejected a service request because the device did not
match a device associated with a home worktop.

TSERVER_NO_AWAY_WORKTOP

The away worktop the user is working from is not administered in
the Security Data Base.

TSERVER_BAD_DEVICE_RECORD

The Tserver read a device record from the Security Data Base that
contained corrupted information.

TSERVER_DEVICE_NOT_SUPPORTED

The device in the API call is administered to be supported by a
different Tserver.

TSERVER_INSUFFICIENT_PERMISSION

The device in the API call is at the users away worktop and the
device has a higher permission level than the user, preventing the
user from controlling the device.

TSERVER_EXCEPTION_LIST

The device in the API call is on an exception list which is
administered as part of the information for this user.

Driver Errors

Error values in this category indicate that the driver detected an error. This
type includes one of the following specific error values:

DRIVER_DUPLICATE_ACSHANDLE

The acsHandle given for an ACSOpenStream request is already in
use for a session. The already open session with the acsHandle is
remains open.

DRIVER_INVALID_ACS_REQUEST

The ACS message contains an invalid or unknown request. The
request is rejected.
Issue 1 — December 2001

TSAPI.PDF R10.1 V14-52

Control Services
DRIVER_ACS_HANDLE_REJECTION

A CSTA request was issued with no prior ACSOpenStream request.
The request is rejected.

DRIVER_INVALID_CLASS_REJECTION

The driver received a message containing an invalid or unknown
message class. The request is rejected.

DRIVER_GENERIC_REJECTION

The driver detected an invalid message for something other than
message type or message class. This is an internal error and
should be reported.

DRIVER_RESOURCE_LIMITATION

The driver did not have adequate resources (i.e. memory, etc.) to
complete the requested operation. This is an internal error and
should be reported.

DRIVER_ACSHANDLE_TERMINATION

Due to problems with the link to the switch the driver has found it
necessary to terminate the session with the given acsHandle. The
session will be closed, and all outstanding requests will terminate.

DRIVER_LINK_UNAVAILABLE

The driver was unable to open the new session because no link was
available to the PBX. The link may have been placed in the
BLOCKED state, or it may have been taken off-line.

DRIVER_OAM_IN_USE

There is already an open OAM-type stream to the PBX driver. A
driver can only have a single OAM stream open at any time.

ACS Data Types

This section defines all the data types which are used with the ACS functions and
messages and may repeat data types already shown in the ACS Control
Functions. Refer to the specific commands for any operational differences in
these data types. The ACS data types are type defined in the acs.h header file.

NOTE:
The definition for ACSHandle_t is client platform specific.
Issue 1 — December 2001

4-53TSAPI.PDF R10.1 V1

Control Services
ACS Common Data Types

This section specifies the common ACS data types.

typedef int RetCode_t;

#define ACSPOSITIVE_ACK 0 /* Successful function return */

/* Error Codes */

#define ACSERR_APIVERDENIED -1 /* The API Version

* requested is invalid

* and not supported by

*the API Client Library

*/

#define ACSERR_BADPARAMETER -2 /* One or more of the

.* parameters is invalid

*/

#define ACSERR_DUPSTREAM -3 /* This return indicates

* that an ACS Stream is

* already established

* with the requested

* Server.

*/

#define ACSERR_NODRIVER -4 /* This error return

* value indicates that

* no API Client Library * Driver was *

found or *installed on the system

*/

#define ACSERR_NOSERVER -5 /* the requested Server

* is not present in the network.

*/

#define ACSERR_NORESOURCE -6 /* there are insufficient

* resourcesto open a

* ACS Stream.

*/

#define ACSERR_UBUFSMALL -7 /* The user buffer size

* was smaller than the

* size of the next

* available event.

*/

#define ACSERR_NOMESSAGE -8 /* There were no messages

*available to return to

* the application.

*/
Issue 1 — December 2001

TSAPI.PDF R10.1 V14-54

Control Services
#define ACSERR_UNKNOWN-9 /* The ACS Stream has

* encounteredan

* unspecified error.

*/

#define ACSERR_BADHDL -10 /* The ACS Handle is

* invalid

*/

#define ACSERR_STREAM_FAILED-11/* The ACS Stream has

* failed due to

* network problems.

* No further

* operations are

* possible on this * stream.

*/

#define ACSERR_NOBUFFERS-12/* There were not

* enough buffers

* available to place

* an outgoing message

* on the send queue.

* No message has been * sent.

*/

#define ACSERR_QUEUE_FULL-13/* The send queue is

* full. No message

*has been sent.

*/

typedef unsigned longInvokeID_t;

typedef enum {

APP_GEN_ID,// application will provide invokeIDs;

// any 4-byte value is legal

LIB_GEN_ID // library will generate invokeIDs in

// the range 1-32767

} InvokeIDType_t;

typedef unsigned short EventClass_t;

// defines for ACS event classes

#defineACSREQUEST0

#defineACSUNSOLICITED1

#defineACSCONFIRMATION2

typedef unsigned short EventType_t; // event types are

// defined in acs.h

// and csta.h

typedef char Boolean;

typedef char Nulltype;
Issue 1 — December 2001

4-55TSAPI.PDF R10.1 V1

Control Services
#define ACS_OPEN_STREAM1

#define ACS_OPEN_STREAM_CONF2

#define ACS_CLOSE_STREAM3

#define ACS_CLOSE_STREAM_CONF4

#define ACS_ABORT_STREAM5

#define ACS_UNIVERSAL_FAILURE_CONF6

#define ACS_UNIVERSAL_FAILURE7

typedef enum StreamType_t {

ST_CSTA = 1,

ST_OAM = 2,

} StreamType_t;

typedef char ServerID_t[49];

typedef char LoginID_t[49];

typedef char Passwd_t[49];

typedef char AppName_t[21];

typedef enum Level_t {

ACS_LEVEL1 = 1,

ACS_LEVEL2 = 2,

ACS_LEVEL3 = 3,

ACS_LEVEL4 = 4

} Level_t;

typedef char Version_t[21];

ACS Event Data Types

This section specifies the ACS data types used in the construction of generic
ACSEvent_t structures (see section 4.6).
Issue 1 — December 2001

TSAPI.PDF R10.1 V14-56

Control Services
typedef struct

{

ACSHandle_t acsHandle;

EventClass_t eventClass;

EventType_t eventType;

} ACSEventHeader_t;

typedef struct

{

union

{

ACSUniversalFailureEvent_t failureEvent;

} u;

} ACSUnsolicitedEvent;

typedef struct

{

InvokeID_t invokeID;

union

{

ACSOpenStreamConfEvent_t acsopen;

ACSCloseStreamConfEvent_t acsclose;

ACSUniversalFailureConfEvent_t failureEvent;

} u;

} ACSConfirmationEvent;

CSTA Control Services and
Confirmation Events

This section defines the CSTA functions associated with the Telephony Server's
Services. These functions are used to determine types and capabilities of
Telephony Servers and Drivers connected to Telephony Servers and to determine
the set of devices an application can control, monitor and query.

cstaGetAPICaps()

cstaGetAPICaps() obtains the CSTA API function and event capabilities which
are supported on an open CSTA stream. The stream could be a local PBX driver
or a remote PBX Driver on a network. If a stream provides a CSTA service then it
also provides the corresponding CSTA confirmation event.

Syntax

#include <acs.h>

#include <csta.h>

RetCode_t cstaGetAPICaps(

ACSHandle_t acsHandle,

InvokeID_t invokeID);
Issue 1 — December 2001

4-57TSAPI.PDF R10.1 V1

Control Services
Parameters

acsHandle

This is the handle to an active ACS Stream. This service will return in its
confirmation information about the CSTA services available on this stream.

invokeID

A handle provided by the application to be used for matching a specific
instance of a function service request with its associated confirmation
event. This parameter is only used when the Invoke ID mechanism is set
for Application-generated IDs in the acsOpenStream(). The parameter is
ignored by the ACS Library when the Stream is set for Library-generated
invoke IDs.

Return Values

This function returns the following values depending on whether the
application is using library or application-generated invoke identifiers:

Library-generated Identifiers - if the function call completes
successfully it will return a positive value, i.e. the invoke identifier. If
the call fails a negative error (<0) condition will be returned. For
library-generated identifiers the return will never be zero (0).

Application-generated Identifiers - if the function call completes
successfully it will return a zero (0) value. If the call fails a negative
error (<0) condition will be returned. For application-generated
identifiers the return will never be positive (>0).

The application should always check the CSTAGetAPICapsConfEvent
message to ensure that the service request has been acknowledged and
processed by the Telephony Server and the switch.

The following are possible negative error conditions for this function:

ACSERR_BADHDL

This indicates that the acsHandle being used is not a valid handle
for an active ACS Stream. No changes occur in any existing streams
if a bad handle is passed with this function.

Comments

If this function returns with a POSITIVE_ACK, the request has been
forwarded to the Telephony Server, and the application will receive an
indication of the extent of CSTA service support in the
CSTAGetAPICapsConfEvent. An active ACS Stream is required to the
server before this function is called.

The application may use this command to determine which functions and
events are supported on an open CSTA stream. This will avoid
unnecessary negative acknowledgments from the Telephony Server when
a specific API function or event is not supported.
Issue 1 — December 2001

TSAPI.PDF R10.1 V14-58

Control Services
CSTAGetAPICapsConfEvent

This event is in response to the cstaGetAPICaps() function and it indicates which
CSTA services are available on the CSTA stream.

Syntax

The following structure shows only the relevant portions of the unions for
this message. See CSTA Data Types for a complete description of the
event structure.

typedef struct

{ ACSHandle_tacsHandle;

EventClass_teventClass;

EventType_teventType;

} ACSEventHeader_t;

typedef struct

{

ACSEventHeader_teventHeader;

union

{

struct

{

InvokeID_tinvokeID;

union

{

CSTAGetAPICapsConfEvent_t getAPIcaps;

} u;

} cstaConfirmation;

} event;

} CSTAEvent_t;

typedef struct CSTAGetAPICapsConfEvent_t {

short alternateCall;

short answerCall;

short callCompletion;

short clearCall;

short clearConnection;

short conferenceCall;

short consultationCall;

short deflectCall;

short pickupCall;

short groupPickupCall;

short holdCall;

short makeCall;

short makePredictiveCall;

short queryMwi;

short queryDnd;

short queryFwd;

short queryAgentState;

short queryLastNumber;

short queryDeviceInfo;
Issue 1 — December 2001

4-59TSAPI.PDF R10.1 V1

Control Services
short reconnectCall;

short retrieveCall;

short setMwi;

short setDnd;

short setFwd;

short setAgentState;

short transferCall;

short eventReport;

short callClearedEvent;

short conferencedEvent;

short connectionClearedEvent;

short deliveredEvent;

short divertedEvent;

short establishedEvent;

short failedEvent;

short heldEvent;

short networkReachedEvent;

short originatedEvent;

short queuedEvent;

short retrievedEvent;

short serviceInitiatedEvent;

short transferredEvent;

short callInformationEvent;

short doNotDisturbEvent;

short forwardingEvent;

short messageWaitingEvent;

short loggedOnEvent;

short loggedOffEvent;

short notReadyEvent;

short readyEvent;

short workNotReadyEvent;

short workReadyEvent;

short backInServiceEvent;

short outOfServiceEvent;

short privateEvent;

short routeRequestEvent;

short reRoute;

short routeSelect;

short routeUsedEvent;

short routeEndEvent;

short monitorDevice;

short monitorCall;

short monitorCallsViaDevice;

short changeMonitorFilter;

short monitorStop;

short monitorEnded;

short snapshotDeviceReq;

short snapshotCallReq;

short escapeService;

short privateStatusEvent;

short escapeServiceEvent;

short escapeServiceConf;

short sendPrivateEvent;

short sysStatReq;
Issue 1 — December 2001

TSAPI.PDF R10.1 V14-60

Control Services
short sysStatStart;

short sysStatStop;

short changeSysStatFilter;

short sysStatReqEvent;

short sysStatReqConf;

short sysStatEvent;

} CSTAGetAPICapsConfEvent_t;

Parameters

acsHandle

This is the handle for the ACS Stream.

eventClass

This is a tag with the value CSTACONFIRMATION, which identifies this
message as a CSTA confirmation event.

eventType

This is a tag with the value CSTA_GETAPI_CAPS_CONF , which identifies
this message as an CSTAGetAPICapsConfEvent.

getAPIcaps

This structure contains an integer for each possible CSTA capability which
indicates whether the capability is supported. A value of 0 indicates the
capability is not supported, a positive value indicates that it is supported.
Note that different capabilities are supported on different stream versions.
This parameter shows what capabilities are supported on the stream where
the confirmation has been received. Streams using other versions may
support a different capability set.

Comments

This event will provide the application with compatibility information for a
specific Telephony Server on a command/event basis. All the commands
and events supported by a Telephony Server must be supported as defined
in this document.

cstaGetDeviceList()

This is used to obtain the list of Devices that can be controlled, monitored, queried
or routed for the ACS Stream indicated by the acsHandle.

Syntax

#include <acs.h>

#include <csta.h>

RetCode_t cstaGetDeviceList(

ACSHandle_t acsHandle,

InvokeID_t invokeID,
Issue 1 — December 2001

4-61TSAPI.PDF R10.1 V1

Control Services
long index,

CSTALevel_t level)

Parameters

acsHandle

This is the handle to an active ACS Stream.

invokeID

A handle provided by the application to be used for matching a specific
instance of a function service request with its associated confirmation
event. This parameter is only used when the Invoke ID mechanism is set
for Application-generated IDs in the acsOpenStream(). The parameter is
ignored by the ACS Library when the Stream is set for Library-generated
invoke IDs.

index

The security data base could contain a large number of devices that a user
has privilege over, so this API call will return only CSTA_MAX_
GETDEVICE devices in any one CSTAGetDeviceListConfEvent, which
means several calls to cstaGetDeviceList() may be necessary to retrieve all
the devices. Index should be set of -1 the first time this API is called and
then set to the value of Index returned in the confirmation event. Index will
be set back to -1 in the CSTAGetDeviceListConfEvent which contains the
last batch of devices.

level

This parameter specifies the class of service for which the user wants to
know the set of devices that can be controlled via this ACS stream. level
must be set to one of the following:

typedef enum CSTALevel_t {

CSTA_HOME_WORK_TOP = 1,

CSTA_AWAY_WORK_TOP = 2,

CSTA_DEVICE_DEVICE_MONITOR = 3,

CSTA_CALL_DEVICE_MONITOR = 4,

CSTA_CALL_CONTROL = 5,

CSTA_ROUTING = 6,

CSTA_CALL_CALL_MONITOR = 7

} CSTALevel_t;

NOTE:
The level CSTA_CALL_CALL_MONITOR is not supported by the
CSTAGetDeviceList() call. To determine if an ACS stream has permission
to do call/call monitoring, use the API call CSTAQueryCallMonitor().

Return Values

This function returns the following values depending on whether the
application is using library or application-generated invoke identifiers:
Issue 1 — December 2001

TSAPI.PDF R10.1 V14-62

Control Services
Library-generated Identifiers - if the function call completes
successfully it will return a positive value, i.e. the invoke identifier. If
the call fails a negative error (<0) condition will be returned. For
library-generated identifiers the return will never be zero (0).

Application-generated Identifiers - if the function call completes
successfully it will return a zero (0) value. If the call fails a negative
error (<0) condition will be returned. For application-generated
identifiers the return will never be positive (>0).

The application should always check the CSTAGetDeviceListConfEvent
message to ensure that the service request has been acknowledged and
processed by the Telephony Server and the switch.

The following are possible negative error conditions for this function:

ACSERR_BADHDL

This indicates that the acsHandle being used is not a valid handle
for an active ACS Stream. No changes occur in any existing streams
if a bad handle is passed with this function.

CSTAGetDeviceListConfEvent

This event is in response to the cstaGetDeviceList() function and it provide a list
of the devices which can be controlled for the indicated ACS Level. It is also
possible to receive an ACSUniversalFailureConf event in response to a
cstaGetDeviceList() call.

Syntax

The following structure shows only the relevant portions of the unions for
this message. See ACS Data Types and CSTA Data Types for a
complete description of the event structure.

typedef struct

{

ACSHandle_tacsHandle;

EventClass_teventClass;

EventType_teventType;

} ACSEventHeader_t;

typedef struct

{

ACSEventHeader_teventHeader;

union

{

struct

{

InvokeID_tinvokeID;

union

{

CSTAGetDeviceListConfEvent_t getDeviceList;

} u;
Issue 1 — December 2001

4-63TSAPI.PDF R10.1 V1

Control Services
} cstaConfirmation;

} event;

} CSTAEvent_t;
Issue 1 — December 2001

TSAPI.PDF R10.1 V14-64

Control Services
typedef enum SDBLevel_t {

NO_SDB_CHECKING = -1,

ACS_ONLY = 1,

ACS_AND_CSTA_CHECKING = 0

} SDBLevel_t;

typedef struct CSTAGetDeviceList_t {

long index;

CSTALevel_t level;

} CSTAGetDeviceList_t;

typedef struct DeviceList {

short count;

DeviceID_t device[20];

} DeviceList;

typedef struct CSTAGetDeviceListConfEvent_t {

SDBLevel_t driverSdbLevel;

CSTALevel_t level;

long index;

DeviceList devList;

} CSTAGetDeviceListConfEvent_t;

Parameters

acsHandle

This is the handle for the ACS Stream.

eventClass

This is a tag with the value CSTACONFIRMATION, which identifies this
message as an ACS confirmation event.

eventType

This is a tag with the value CSTA_GET_DEVICE_LIST_CONF, which
identifies this message as an CSTAGetDeviceListConfEvent.

invokeID

This parameter specifies the requested instance of the function. It is used
to match a specific function request with its confirmation events.

driverSdbLevel

This parameter indicates the Security Level with which the Driver
registered. Possible values are:

NO_SDB_CHECKINGNot Used.
ACS_ONLYCheck ACSOpenStream requests only
ACS_AND_CSTA_CHECKINGCheck ACSOpenStream and all

applicable CSTA messages
Issue 1 — December 2001

4-65TSAPI.PDF R10.1 V1

Control Services
If the SDB database is disabled by administration, and the driver registered
with SDB level ACS_AND_CSTA_CHECKING, the Tserver will return the
adjusted (effective) SDB checking level of ACS_ONLY. No CSTA checking
can be done because there is no database of devices to use for checking
the CSTA messages.

index

This parameter indicates to the client application the current index
the Tserver is using for returning the list of devices. The client
application should return this value in the next call to
CSTAGetDeviceList to continue receiving devices. A value of (-1)
indicates there are no more devices in the list.

devlist

This parameter is a structure which contains an array of DeviceID_t
which contain the devices for this stream.

cstaQueryCallMonitor()

This is used to determine the if a given ACS stream has permission to do call/call
monitoring in the security database.

Syntax

#include <acs.h>

#include <csta.h>

RetCode_t cstaQueryCallMonitor(

ACSHandle_t acsHandle,

InvokeID_t invokeID)

Parameters

acsHandle

This is the handle to an active ACS Stream.

invokeID

A handle provided by the application to be used for matching a specific
instance of a function service request with its associated confirmation
event. This parameter is only used when the Invoke ID mechanism is set
for Application-generated IDs in the acsOpenStream(). The parameter is
ignored by the ACS Library when the Stream is set for Library-generated
invoke IDs.

Return Values

This function returns the following values depending on whether the
application is using library or application-generated invoke identifiers:
Issue 1 — December 2001

TSAPI.PDF R10.1 V14-66

Control Services
Library-generated Identifiers - if the function call completes
successfully it will return a positive value, i.e. the invoke identifier. If
the call fails a negative error (<0) condition will be returned. For
library-generated identifiers the return will never be zero (0).

Application-generated Identifiers - if the function call completes
successfully it will return a zero (0) value. If the call fails a negative
error (<0) condition will be returned. For application-generated
identifiers the return will never be positive (>0).

The application should always check the
CSTAQueryCallMonitorConfEvent message to ensure that the service
request has been acknowledged and processed by the Telephony Server
and the switch.

The following are possible negative error conditions for this function:

ACSERR_BADHDL

This indicates that the acsHandle being used is not a valid handle
for an active ACS Stream. No changes occur in any existing streams
if a bad handle is passed with this function.

CSTAQueryCallMonitorConfEvent

This event is in response to the cstaQueryCallMonitor() function and it provide a
list of the devices which can be controlled for the indicated ACS Level.

Syntax

The following structure shows only the relevant portions of the unions for
this message. See the ACS Data Types and CSTA Data Types sections
for a complete description of the event structure.

typedef struct

{

ACSHandle_t acsHandle;

EventClass_t eventClass;

EventType_t eventType;

} ACSEventHeader_t;

typedef struct

{

ACSEventHeader_teventHeader;

union

{

struct

{

InvokeID_tinvokeID;

union

{

CSTAQueryCallMonitorConfEvent_t queryCallMonitor;
} u;

} cstaConfirmation;
Issue 1 — December 2001

4-67TSAPI.PDF R10.1 V1

Control Services
} event;
} CSTAEvent_t;

typedef struct CSTAQueryCallMonitorConfEvent_t {
Boolean callMonitor;

} CSTAQueryCallMonitorConfEvent_t;

Parameters

acsHandle

This is the handle for the ACS Stream.

eventClass

This is a tag with the value CSTACONFIRMATION, which identifies this
message as an ACS confirmation event.

eventType

This is a tag with the value CSTA_QUERY_CALL_MONITOR_CONF,
which identifies this message as an CSTAQueryCallMonitorConfEvent.

invokeID

This parameter specifies the requested instance of the function. It is used
to match a specific function request with its confirmation events.

callMonitor

This parameter indicates whether or not (TRUE or FALSE) the ACS Stream
has call/call monitoring privilege.

CSTA Event Data Types

This section defines all the event data types which are used with the CSTA
functions and messages and may repeat data types already shown in the CSTA
Control Functions. Refer to the specific commands for any operational
differences in these data types. The complete set of CSTA data types is given in -
CSTA Data Types. The CSTA data types are type defined in the CSTA.H header
file.

An application always receives a generic CSTAEvent_t event structure. This
structure contains an ACSEventHeader_t structure which contains information
common to all events. This common information includes:

■ acsHandle: Specifies the ACS Stream the event arrived on.

■ eventClass: Identifies the event as an ACS confirmation, ACS unsolicited,
CSTA confirmation, or CSTA unsolicited event.

■ eventType: Identifies the specific type of message (MakeCall, confirmation
event, HoldCall event, etc.)

■ privateData: Private data defined by the specified driver vendor.
Issue 1 — December 2001

TSAPI.PDF R10.1 V14-68

Control Services
The CSTAEvent_t structure then consists of a union of the four possible
eventClass types; ACS confirmation, ACS unsolicited, CSTA confirmation or
CSTA unsolicited event. Each eventClass type itself consists of a union of all the
possible eventTypes for that class. Each eventClass may contain common
information such as invokeID and monitorCrossRefID.
Issue 1 — December 2001

4-69TSAPI.PDF R10.1 V1

Control Services
/* CSTA Control Services Header File <CSTA.H> */

#include <acs.h>

// defines for CSTA event classes

#define CSTAREQUEST3

#define CSTAUNSOLICITED4

#define CSTACONFIRMATION5

#define CSTAEVENTREPORT6

typedef struct {

InvokeID_t invokeID;

union

{

CSTARouteRequestEvent_t routeRequest;

CSTARouteRequestExtEvent_t routeRequestExt;

CSTAReRouteRequest_t reRouteRequest;

CSTAEscapeSvcReqEvent_t escapeSvcReqeust;

CSTASysStatReqEvent_t sysStatRequest;

} u;

} CSTARequestEvent;

typedef struct {

union

{

CSTARouteRegisterAbortEvent_t registerAbort;

CSTARouteUsedEvent_t routeUsed;

CSTARouteUsedExtEvent_t routeUsedExt;

CSTARouteEndEvent_t routeEnd;

CSTAPrivateEvent_t privateEvent;

CSTASysStatEvent_t sysStat;

CSTASysStatEndedEvent_t sysStatEnded;

}u;

} CSTAEventReport;

typedef struct {

CSTAMonitorCrossRefID_t monitorCrossRefId;

union

{

CSTACallClearedEvent_t callCleared;

CSTAConferencedEvent_t conferenced;

CSTAConnectionClearedEvent_t connectionCleared;

CSTADeliveredEvent_t delivered;

CSTADivertedEvent_t diverted;

CSTAEstablishedEvent_t established;

CSTAFailedEvent_t failed;

CSTAHeldEvent_t held;

CSTANetworkReachedEvent_t networkReached;

CSTAOriginatedEvent_t originated;

CSTAQueuedEvent_t queued;

CSTARetrievedEvent_t retrieved;

CSTAServiceInitiatedEvent_t serviceInitiated;

CSTATransferredEvent_t transferred;

CSTACallInformationEvent_t callInformation;
Issue 1 — December 2001

TSAPI.PDF R10.1 V14-70

Control Services
CSTADoNotDisturbEvent_t doNotDisturb;

CSTAForwardingEvent_t forwarding;

CSTAMessageWaitingEvent_t messageWaiting;

CSTALoggedOnEvent_t loggedOn;

CSTALoggedOffEvent_t loggedOff;

CSTANotReadyEvent_t notReady;

CSTAReadyEvent_t ready;

CSTAWorkNotReadyEvent_t workNotReady;

CSTAWorkReadyEvent_t workReady;

CSTABackInServiceEvent_t backInService;

CSTAOutOfServiceEvent_t outOfService;

CSTAPrivateStatusEvent_t privateStatus;

CSTAMonitorEndedEvent_t monitorEnded;

} u;

} CSTAUnsolicitedEvent;

typedef struct

{

InvokeID_t invokeID;

union

{

CSTAAlternateCallConfEvent_t alternateCall;

CSTAAnswerCallConfEvent_t answerCall;

CSTACallCompletionConfEvent_t callCompletion;

CSTAClearCallConfEvent_t clearCall;

CSTAClearConnectionConfEvent_t clearConnection;

CSTAConferenceCallConfEvent_t conferenceCall;

CSTAConsultationCallConfEvent_t consultationCall;

CSTADeflectCallConfEvent_t deflectCall;

CSTAPickupCallConfEvent_t pickupCall;

CSTAGroupPickupCallConfEvent_t groupPickupCall;

CSTAHoldCallConfEvent_t holdCall;

CSTAMakeCallConfEvent_t makeCall;

CSTAMakePredictiveCallConfEvent_tmakePredictiveCall;

CSTAQueryMwiConfEvent_t queryMwi;

CSTAQueryDndConfEvent_t queryDnd;

CSTAQueryFwdConfEvent_t queryFwd;

CSTAQueryAgentStateConfEvent_t queryAgentState;

CSTAQueryLastNumberConfEvent_t queryLastNumber;

CSTAQueryDeviceInfoConfEvent_t queryDeviceInfo;

CSTAReconnectCallConfEvent_t reconnectCall;

CSTARetrieveCallConfEvent_t retrieveCall;

CSTASetMwiConfEvent_t setMwi;

CSTASetDndConfEvent_t setDnd;

CSTASetFwdConfEvent_t setFwd;

CSTASetAgentStateConfEvent_t setAgentState;

CSTATransferCallConfEvent_t ransferCall;

CSTAUniversalFailureConfEvent_t universalFailure;

CSTAMonitorConfEvent_t monitorStart;

CSTAChangeMonitorFilterConfEvent_tchangeMonitorFilter;

CSTAMonitorStopConfEvent_t monitorStop;

CSTASnapshotDeviceConfEvent_t snapshotDevice;

CSTASnapshotCallConfEvent_t snapshotCall;

CSTARouteRegisterReqConfEvent_t routeRegister;
Issue 1 — December 2001

4-71TSAPI.PDF R10.1 V1

Control Services
CSTARouteRegisterCancelConfEvent_trouteCancel;

CSTAEscapeSvcConfEvent_t escapeService;

CSTASysStatReqConfEvent_t sysStatReq;

CSTASySStatStartConfEvent_t sysStatStart;

CSTASysStatStopConfEvent_t sysStatStop;

CSTAChangeSysStatFilterConfEvent_tchangeSysStatFilter;

CSTAGetAPICapsConfEvent_t getAPICaps;

CSTAGetDeviceListConfEvent_t getDeviceList;

CSTAQueryCallMonitorConfEvent_t queryCallMonitor;

} u;

} CSTAConfirmationEvent;

#define CSTA_MAX_HEAP 1024

typedef struct

{

ACSEventHeader_teventHeader;

union

{

ACSUnsolicitedEvent acsUnsolicited;

ACSConfirmationEvent acsConfirmation;

CSTARequestEvent cstaRequest;

CSTAUnsolicitedEvent cstaUnsolicited;

CSTAConfirmationEvent cstaConfirmation;

} event;

char heap[CSTA_MAX_HEAP];

} CSTAEvent_t
Issue 1 — December 2001

TSAPI.PDF R10.1 V14-72

Issue 1 — December 2001

TSAPI.PDF R10.1 V1
5

Switching Function Services
This section describes Telephony Services. Applications use Telephony Services
to control calls and activate switch features. Switching Functions Services are
divided into Basic Call Control Services and Telephony Supplementary
Services.

Basic Call Control Services

Basic Call Control Services allows applications to:

■ establish, control, and "tear-down" calls at a device or within the switch,

■ answer incoming calls at a device, and

■ activate/de-activate switch features.

Each Basic Call Control Service request has an associated confirmation event
message. The confirmation message returns the status and other service-specific
information to the application. TSAPI always returns confirmation event messages
for successful function calls. If TSAPI cannot successfully process a function call
then

■ TSAPI does not send the service request to the PBX Driver

■ TSAPI does not generate a confirmation event

As noted in Chapter 4, section Sending CSTA Requests and Responses, the
application sets the invokeID type (when it opens the stream) to either library
generated or application generated. As described in that section, applications
may use application generated invokeIDs to index into data structures in various
ways. The application may also use the invokeID to match results with specific
service requests.

When TSAPI successfully processes an application request, TSAPI sends the
application a confirmation event. This conformation means that TSAPI has
successfully processed the request, not that the PBX driver or PBX has
successfully processed the request. For example, TSAPI will send an application
a CSTAMakeCallConfEvent after TSAPI (not the PBX) successfully processes a
5-1

Switching Function Services
cstaMakeCall() request. Further information from the PBX Driver or PBX will
arrive in call events or unsolicited status events. An application interested in the
results of a request should check for a function confirmation event and any
applicable unsolicited status events (see Status Reporting Services).

To receive events, an application must have an active ACS Stream and an
implement an event handling mechanism. Further, the reception of unsolicited
events requires an active monitor. See the Control Services and Status
Reporting Services sections for more information on events.

NOTE:
Not every Driver implementation will support all Telephony functions. The
application should use the cstaGetAPICaps function to determine which
Telephony Services are supported.

CSTAUniversalFailureConfEvent

The CSTA universal failure confirmation event provides a generic negative
response from the server/switch for a previous requested service. The
CSTAUniversalFailureConfEvent will be sent in place of any confirmation event
described in this section when the requested function fails. The confirmation
events defined for each Switching Function in this section are only sent when that
function completes successfully.

Syntax

The following structure shows only the relevant portions of the unions for
this message. See ACS Data Types and CSTA Data Types in Chapter 4
for a complete description of the event structure.

typedef struct

{

ACSHandle_t acsHandle;

EventClass_t eventClass;

EventType_t eventType;

} ACSEventHeader_t;

typedef struct

{

ACSEventHeader_t eventHeader;

union

{

struct

{

InvokeID_t invokeID;

union

{

CSTAUniversalFailureConfEvent universalFailure;

} u;

} cstaConfirmation;

} event;
Issue 1 — December 2001

TSAPI.PDF R10.1 V15-2

Switching Function Services
} CSTAEvent_t;

typedef struct

{

UniversalFailure_t error;

} CSTAUniversalFailureConfEvent_t;

typedef enum CSTAUniversalFailure_t {

GENERIC_UNSPECIFIED = 0,

GENERIC_OPERATION = 1,

REQUEST_INCOMPATIBLE_WITH_OBJECT = 2,

VALUE_OUT_OF_RANGE = 3,

OBJECT_NOT_KNOWN = 4,

INVALID_CALLING_DEVICE = 5,

INVALID_CALLED_DEVICE = 6,

INVALID_FORWARDING_DESTINATION = 7,

PRIVILEGE_VIOLATION_ON_SPECIFIED_DEVICE = 8,

PRIVILEGE_VIOLATION_ON_CALLED_DEVICE = 9,

PRIVILEGE_VIOLATION_ON_CALLING_DEVICE = 10,

INVALID_CSTA_CALL_IDENTIFIER = 11,

INVALID_CSTA_DEVICE_IDENTIFIER = 12,

INVALID_CSTA_CONNECTION_IDENTIFIER = 13,

INVALID_DESTINATION = 14,

INVALID_FEATURE = 15,

INVALID_ALLOCATION_STATE = 16,

INVALID_CROSS_REF_ID = 17,

INVALID_OBJECT_TYPE = 18,

SECURITY_VIOLATION = 19,

GENERIC_STATE_INCOMPATIBILITY = 21,

INVALID_OBJECT_STATE = 22,

INVALID_CONNECTION_ID_FOR_ACTIVE_CALL = 23,

NO_ACTIVE_CALL = 24,

NO_HELD_CALL = 25,

NO_CALL_TO_CLEAR = 26,

NO_CONNECTION_TO_CLEAR = 27,

NO_CALL_TO_ANSWER = 28,

NO_CALL_TO_COMPLETE = 29,

GENERIC_SYSTEM_RESOURCE_AVAILABILITY = 31,

SERVICE_BUSY = 32,

RESOURCE_BUSY = 33,

RESOURCE_OUT_OF_SERVICE = 34,

NETWORK_BUSY = 35,

NETWORK_OUT_OF_SERVICE = 36,

OVERALL_MONITOR_LIMIT_EXCEEDED = 37,

CONFERENCE_MEMBER_LIMIT_EXCEEDED = 38,

GENERIC_SUBSCRIBED_RESOURCE_AVAILABILITY = 41,

OBJECT_MONITOR_LIMIT_EXCEEDED = 42,

EXTERNAL_TRUNK_LIMIT_EXCEEDED = 43,

OUTSTANDING_REQUEST_LIMIT_EXCEEDED = 44,

GENERIC_PERFORMANCE_MANAGEMENT = 51,

PERFORMANCE_LIMIT_EXCEEDED = 52,

UNSPECIFIED_SECURITY_ERROR = 60

SEQUENCE_NUMBER_VIOLATED = 61,

TIME_STAMP_VIOLATED = 62,
Issue 1 — December 2001

5-3TSAPI.PDF R10.1 V1

Switching Function Services
PAC_VIOLATED = 63,

SEAL_VIOLATED = 64

GENERIC_UNSPECIFIED_REJECTION = 70

GENERIC_OPERATION_REJECTION = 71

DUPLICATE_INVOCATION_REJECTION = 72

UNRECOGNIZED_OPERATION_REJECTION = 73

MISTYPED_ARGUMENT_REJECTION = 74

RESOURCE_LIMITATION_REJECTION = 75

ACS_HANDLE_TERMINATION_REJECTION = 76

SERVICE_TERMINATION_REJECTION = 77

REQUEST_TIMEOUT_REJECTION = 78

REQUESTS_ON_DEVICE_EXCEEDED_REJECTION = 79

UNRECOGNIZED_APDU_REJECTION = 80,

MISTYPED_APDU_REJECTION = 81,

BADLY_STRUCTURED_APDU_REJECTION = 82,

INITIATOR_RELEASING_REJECTION = 83,

UNRECOGNIZED_LINKEDID_REJECTION = 84,

LINKED_RESPONSE_UNEXPECTED_REJECTION = 85,

UNEXPECTED_CHILD_OPERATION_REJECTION = 86,

MISTYPED_RESULT_REJECTION = 87,

UNRECOGNIZED_ERROR_REJECTION = 88,

UNEXPECTED_ERROR_REJECTION = 89,

MISTYPED_PARAMETER_REJECTION = 90,

NON_STANDARD = 100

} CSTAUniversalFailure_t;

Parameters

acsHandle

This is the handle for the newly opened ACS Stream.

eventClass

This is a tag with the value CSTACONFIRMATION, which identifies this
message as an CSTA confirmation event.

eventType

This tag with a value, CSTA_UNIVERSAL_FAILURE_CONF, identifies this
message as an CSTAUniversalFailureConfEvent.

invokeID

This parameter specifies the function service request instance that has
failed at the server or at the switch. This identifier is provided to the
application when a service request is made.

error

This parameter contains an error value from one of the following classes:
Unspecified, Operation, State Incompatibility, System Resource,
Subscribed Resource, Performance Management, or Security. The
headings the follow contain the specific errors in these classes.

Unspecified Errors
Issue 1 — December 2001

TSAPI.PDF R10.1 V15-4

Switching Function Services
Error values in this category indicate that an error has occurred that is not
among the other error types. This type includes the following specific error
values:

GENERIC_UNSPECIFIED

GENERIC_UNSPECIFIED_REJECTION
Issue 1 — December 2001

5-5TSAPI.PDF R10.1 V1

Switching Function Services
Operation errors

Error values in this category indicate that there is an error in the Service
Request. This type includes one of the following specific error values:

GENERIC_OPERATION

GENERIC_OPERATION_REJECTION

This error indicate that the server has detected an error in the
operation class, but that it is not one of the defined errors, or the
server cannot be any more specific.

REQUEST_INCOMPATIBLE_WITH_OBJECT

The request is not compatible with the object.

DUPLICATE_INVOCATION

The invokeID violates X.208 or X.209 assignment rules.

UNRECOGNIZED_OPERATION_REJECTION

The operation is not defined in TSAPI.

VALUE_OUT_OF_RANGE

The parameter has a value that is not in the range defined for the
server.

OBJECT_NOT_KNOWN

The parameter has a value that is not known to the server.

INVALID_CALLING_DEVICE

The calling device is not valid.

INVALID_CALLED_DEVICE

The called device is not valid.

PRIVILEGE_VIOLATION_ON_SPECIFIED_DEVICE

The request cannot be provided because the specified device is not
authorized for the Service.

INVALID_FORWARDING_DESTINATION

The request cannot be provided because the forwarding destination
device is not valid.

PRIVILEGE_VIOLATION_ON_CALLED_DEVICE

The request cannot be provided because the called device is not
authorized for the Service.

PRIVILEGE_VIOLATION_ON_CALLING_DEVICE

The request cannot be provided because the calling device is not
authorized for the Service.

INVALID_CSTA_CALL_IDENTIFIER
Issue 1 — December 2001

TSAPI.PDF R10.1 V15-6

Switching Function Services
The call identifier is not valid.

INVALID_CSTA_DEVICE_IDENTIFIER

The Device Identifier is not valid.

INVALID_CSTA_CONNECTION_IDENTIFIER

The Connection identifier is not valid.

INVALID_DESTINATION

The Service Request specified a destination that is not valid.

INVALID_FEATURE

The Service Request specified a feature that is not valid.

INVALID_ALLOCATION_STATE

The Service Request indicated an allocation condition that is not
valid.

INVALID_CROSS_REF_ID

The Service Request specified a Cross-Reference Id that is not in
use at this time.

INVALID_OBJECT_TYPE

The Service Request specified an object type that is outside the
range of valid object types for the Service.

SECURITY_VIOLATION

The request violates a security requirement.

State incompatibility errors

Error values in this category indicate that the Service Request was not
compatible with the condition of a related CSTA object. This type includes
the following specific error values:

GENERIC_STATE_INCOMPATIBILITY

The server is unable to be any more specific.

INVALID_OBJECT_STATE

The object is in the incorrect state for the Service. This general
error value may be used when the server isn't able to be any more
specific.

INVALID_CONNECTION_ID_FOR_ACTIVE_CALL

The Connection identifier specified in the Active Call parameter of
the request is not in the correct state.

NO_ACTIVE_CALL

The requested Service operates on an active call, but there is no
active call.
Issue 1 — December 2001

5-7TSAPI.PDF R10.1 V1

Switching Function Services
NO_HELD_CALL

The requested Service operates on a held call, but the specified call
is not in the Held state.

NO_CALL_TO_CLEAR

There is no call associated with the CSTA Connection identifier of
the Clear Call request.

NO_CONNECTION_TO_CLEAR

There is no Connection for the CSTA Connection identifier specified
as Connection To Be Cleared.

NO_CALL_TO_ANSWER

There is no call active for the CSTA Connection identifier specified
as Call To Be Answered.

NO_CALL_TO_COMPLETE

There is no call active for the CSTA Connection identifier specified
as Call To Be Completed.

System resource availability errors

Error values in this category indicate that the Service Request cannot be
completed because of a lack of system resources within the serving
sub-domain. This type includes one of the following specific error values:

GENERIC_SYSTEM_RESOURCE_AVAILABILITY

The server is unable to be any more specific.

SERVICE_BUSY

The Service is supported by the server, but is temporarily
unavailable.

RESOURCE_BUSY

An internal resource is busy. There is high probability that the
Service will succeed if retried.

RESOURCE_OUT_OF_SERVICE

The Service requires a resource that is Out Of Service. A Service
Request that encounters this condition could initiate system problem
determination actions (e.g. notification of the network administrator).

NETWORK_BUSY

The server sub-domain is busy.

NETWORK_OUT_OF_SERVICE

The server sub-domain is Out Of Service.

OVERALL_MONITOR_LIMIT_EXCEEDED

This request would exceed the server's overall limit of monitors.
Issue 1 — December 2001

TSAPI.PDF R10.1 V15-8

Switching Function Services
CONFERENCE_MEMBER_LIMIT_EXCEEDED.

This request would exceed the server's limit on the number of
members of a conference.

Subscribed resource availability errors

Error values in this category indicate that the Service Request cannot be
completed because a required resource must be purchased or contracted
by the client system. This type includes the following specific error values:

GENERIC_SUBSCRIBED_RESOURCE_AVAILABILITY

The server is unable to be any more specific.

OBJECT_MONITOR_LIMIT_EXCEEDED

This request would exceed the server's limit of monitors for the
specified object.

EXTERNAL_TRUNK_LIMIT_EXCEEDED

The limit of external trunks would be exceeded by this request.

OUTSTANDING_REQUEST_LIMIT_EXCEEDED

The limit of outstanding requests would be exceeded by this
request.

Performance management errors

Error values in this category indicate that an error has been returned as a
performance management mechanism. This type includes the following
specific error values:

GENERIC_PERFORMANCE_MANAGEMENT

The server is unable to be any more specific.

PERFORMANCE_LIMIT_EXCEEDED

A performance limit is exceeded.

Security errors

Error values in this category indicate that there is a security error. This type
includes the following specific error values:

UNSPECIFIED_SECURITY_ERROR

The server is unable to be any more specific.

SEQUENCE_NUMBER_VIOLATED

This error indicates that the server has detected an error in the
Sequence Number of the operation.

TIME_STAMP_VIOLATED

This error indicates that the server has detected an error in the Time
Stamp of the operation.
Issue 1 — December 2001

5-9TSAPI.PDF R10.1 V1

Switching Function Services
PAC_VIOLATED

This error indicates that the server has detected an error in the PAC
of the operation.
Issue 1 — December 2001

TSAPI.PDF R10.1 V15-10

Switching Function Services
SEAL_VIOLATED

This error indicates that the server has detected an error in the Seal
of the operation.

CSTA Driver Interface Errors

These errors derive from the Remote Operations CCITT Specification
X.219 and may occur when a PBX Driver uses the CSTA interface to the
Telephony Services.

UNRECOGNIZED_APDU_REJECTION

The given type of the APDU is not defined in the protocol.

MISTYPED_APDU_REJECTION

The structure of the APDU does not conform to the protocol.

BADLY STRUCTURED_APDU_REJECTION

APDU does not conform to X.208 or X.209 standard encoding.

INITIATOR RELEASING_REJECTION

The requester is not willing to do the invoked operation because it is
about to release the stream.

UNRECOGNIZED_LINKEDID_REJECTION

There is no operation in progress with an invoke ID equal to the
specified link ID.

LINKED_RESPONSE_UNEXPECTED_REJECTION

The invoked operation that the linked ID refers to is not a parent
operation.

UNEXPECTED_CHILD_OPERATION_REJECTION

The linked ID refers to a parent operation that does not allow the
invoked operation.

MISTYPED_RESULT_REJECTION

The type of the Result parameter does not conform to the protocol.

UNRECOGNIZED_ERROR_REJECTION

The reported error is not in the protocol definition.

UNEXPECTED_ERROR_REJECTION

The reported error is not one that the operation may report.

MISTYPED_ARGUMENT_REJECTION

MISTYPED_PARAMETER_REJECTION

The type of a supplied error parameter is not consistent with the
protocol specification
Issue 1 — December 2001

5-11TSAPI.PDF R10.1 V1

Switching Function Services
TSAPI

The error codes below can occur within the TSAPI implementation of the
ECMA CSTA standards. The ECMA standards do not define these errors.

RESOURCE_LIMITATION_REJECTION

A Telephony Server or PBX Driver resource limitation prevents the
system from processing the application request

ACS_HANDLE_TERMINATION_REJECTION

SERVICE_TERMINATION_REJECTION

REQUEST_TIMEOUT_REJECTION

REQUESTS_ON_DEVICE_EXCEEDED_REJECTION

Private Data

If private data accompanied this event, then the private data would be
copied to the location pointed to by the privateData pointer in the
acsGetEventBlock() or acsGetEventPoll() function. If the privateData
pointer is set to NULL in these functions, then no private data will be
delivered to the application.

cstaAlternateCall()

The Alternate Call Service provides a higher-level, compound action of the Hold
Call Service followed by Retrieve Call Service. This function will place an existing
active call on hold and then either retrieves a previously held call or connects an
alerting call at the same device.

Syntax

#include <acs.h>

#include <csta.h>

RetCode_t cstaAlternateCall(

ACSHandle_t acsHandle,

InvokeID_t invokeID,

ConnectionID_t *activeCall,

ConnectionID_t *otherCall,

PrivateData_t *privateData);

Parameters

acsHandle

This is the value of the unique handle to the opened ACS Stream.
Issue 1 — December 2001

TSAPI.PDF R10.1 V15-12

Switching Function Services
invokeID

A handle provided by the application to be used for matching a specific
instance of a function service request with its associated confirmation
event. This parameter is only used when the Invoke ID mechanism is set
for Application-generated IDs in the acsOpenStream(). The parameter is
ignored by the ACS Library when the Stream is set for Library-generated
invoke IDs.

activeCall

This parameter points to the connection identifier for the "Connected" or
active call which is to be alternated.

otherCall

This parameter points to the connection identifier for the "Alerting" or "Held"
call which is to be alternated.

privateData

This is a pointer to the private data extension mechanism. Setting this
parameter is optional. If the parameter is not used, the pointer should be
set to NULL.

Return Values

This function returns the following values depending on whether the
application is using library or application-generated invoke identifiers:

Library-generated Identifiers - if the function call completes
successfully it will return a positive value, i.e. the invoke identifier. If
the call fails a negative error (<0) condition will be returned. For
library-generated identifiers the return will never be zero (0).

Application-generated Identifiers - if the function call completes
successfully it will return a zero (0) value. If the call fails a negative
error (<0) condition will be returned. For application-generated
identifiers the return will never be positive (>0).

The application should always check the CSTAAlternateCallConfEvent
message to ensure that the service request has been acknowledged and
processed by the Telephony Server and the switch.

The following are possible negative error conditions for this function:

ACSERR_BADHDL

This return value indicates that a bad or unknown acsHandle was
provided by the application.

ACSERR_STREAM_FAILED

This return value indicates that a previously active ACS Stream has
been abnormally aborted.
Issue 1 — December 2001

5-13TSAPI.PDF R10.1 V1

Switching Function Services
Comments

A successful call to this function will causes the held-or-delivered call to be
swapped with the active call

As shown in the figure below, the Alternate Call Service places the user's
active call to device D2 on hold and, in a combined action, establishes or
retrieves the call between device D1 and device D3 as the active call.
Device D2 can be considered as being automatically placed on hold
immediately prior to the retrieval/establishment of the held/active call to
device D3.

Figure 5-1 shows the operation of the Alternate Call Service.

Figure 5-1. Alternate Call Service

CSTAAlternateCallConfEvent

The Alternate Call confirmation event provides the positive response from the
server for a previous alternate call request.

Syntax

The following structure shows only the relevant portions of the unions for
this message. See ACS Data Types and CSTA Data Types in section 4
for a complete description of the event structure.

D1 C1 D2

D3C2

D1 C1 D2

D3C2

c

c

h

h/a

*

* *

*

Before After
Issue 1 — December 2001

TSAPI.PDF R10.1 V15-14

Switching Function Services
typedef struct

{

ACSHandle_tacsHandle;

EventClass_teventClass;

EventType_teventType;

} ACSEventHeader_t;

typedef struct

{

ACSEventHeader_teventHeader;

union

{

struct

{

InvokeID_tinvokeID;

union

{

CSTAAlternateCallConfEvent_t alternateCall;

} u;
} cstaConfirmation;

} event;

} CSTAEvent_t;

typedef struct CSTAAlternateCallConfEvent_t {

Nulltype null;

} CSTAAlternateCallConfEvent_t;

Parameters

acsHandle

This is the handle for the newly opened ACS Stream.

eventClass

This is a tag with the value CSTACONFIRMATION, which identifies this
message as an CSTA confirmation event.

eventType

This is a tag with the value CSTA_ALTERNATE_CALL_CONF, which
identifies this message as an CSTAAlternateCallConfEvent.

invokeID

This parameter specifies the function service request instance for the
service which was processed at the Telephony Server or at the switch. This
identifier is provided to the application when a service request is made.

privateData

If private data accompanied this event, then the private data would be
copied to the location pointed to by the privateData pointer in the
acsGetEventBlock() or acsGetEventPoll() function. If the privateData
pointer is set to NULL in these functions, then no private data will be
delivered to the application.
Issue 1 — December 2001

5-15TSAPI.PDF R10.1 V1

Switching Function Services
cstaAnswerCall()

The Answer Call function will connect an alerting call at the device which is
alerting. The call must be associated with a device that can answer a call without
requiring physical user manipulation.

Syntax

#include <acs.h>

#include <csta.h>

RetCode_t cstaAnswerCall (

ACSHandle_t acsHandle,

InvokeID_t invokeID,

ConnectionID_t *alertingCall,

PrivateData_t *privateData);

Parameters

acsHandle

This is the value of the unique handle to the opened ACS Stream.

invokeID

A handle provided by the application to be used for matching a specific
instance of a function service request with its associated confirmation
event. This parameter is only used when the Invoke ID mechanism is set
for Application-generated IDs in the acsOpenStream(). The parameter is
ignored by the ACS Library when the Stream is set for Library-generated
invoke IDs.

alertingCall

This parameter points to the connection identifier of the call to be
answered.

privateData

This is a pointer to the private data extension mechanism. Setting this
parameter is optional. If the parameter is not used, the pointer should be
set to NULL.

Return Values

This function returns the following values depending on whether the
application is using library or application-generated invoke identifiers:

Library-generated Identifiers - if the function call completes
successfully it will return a positive value, i.e. the invoke identifier. If
the call fails a negative error (<0) condition will be returned. For
library-generated identifiers the return will never be zero (0).
Issue 1 — December 2001

TSAPI.PDF R10.1 V15-16

Switching Function Services
Application-generated Identifiers - if the function call completes
successfully it will return a zero (0) value. If the call fails a negative
error (<0) condition will be returned. For application-generated
identifiers the return will never be positive (>0).

The application should always check the CSTAAnswerCallConfEvent
message to ensure that the service request has been acknowledged and
processed by the Telephony Server and the switch.

The following are possible negative error conditions for this function:

ACSERR_BADHDL

This return value indicates that a bad or unknown acsHandle was
provided by the application.

ACSERR_STREAM_FAILED

This return value indicates that a previously active ACS Stream has
been abnormally aborted.

Comments

The Answer Call Service works for an incoming call that is alerting a
device. In the following figure the call C1 is delivered to device D1. The
cstaAnswerCall() is typically used with telephones that have attached
speakerphone units to establish the call in a hands-free operation.

Figure 5-2. Answer Call Service

CSTAAnswerCallConfEvent

The Answer Call confirmation event provides the positive response from the
server for a previous answer call request.

Syntax

The following structure shows only the relevant portions of the unions for
this message. See ACS Data Types and CSTA Data Types in section 4
for a complete description of the event structure.

D1 C1 D1 C1 D2D2 ca * *

Before After
Issue 1 — December 2001

5-17TSAPI.PDF R10.1 V1

Switching Function Services
typedef struct

{

ACSHandle_t acsHandle;

EventClass_t eventClass;

EventType_t eventType;

} ACSEventHeader_t;

typedef struct

{

ACSEventHeader_teventHeader;

union

{

struct

{

InvokeID_tinvokeID;

union

{

CSTAAnswerCallConfEvent_t answerCall;

} u;

} cstaConfirmation;

} event;

} CSTAEvent_t;

typedef struct CSTAAnswerCallConfEvent_t {

Nulltype null;

} CSTAAnswerCallConfEvent_t;

Parameters

acsHandle

This is the handle for the newly opened ACS Stream.

eventClass

This is a tag with the value CSTACONFIRMATION, which identifies this
message as an CSTA confirmation event.

eventType

This is a tag with the value CSTA_ANSWER_CALL_CONF, which
identifies this message as an CSTAAnswerCallConfEvent.

invokeID

This parameter specifies the function service request instance for the
service which was processed at the Telephony Server or at the switch. This
identifier is provided to the application when a service request is made.

privateData

If private data accompanied this event, then the private data would be
copied to the location pointed to by the privateData pointer in the
acsGetEventBlock() or acsGetEventPoll() function. If the privateData
pointer is set to NULL in these functions, then no private data will be
delivered to the application.
Issue 1 — December 2001

TSAPI.PDF R10.1 V15-18

Switching Function Services
cstaCallCompletion()

The Call Completion Service invokes specific switch features that may complete a
call that would otherwise fail. The feature to be activated is passed as a parameter
to the function.

Syntax

#include <acs.h>

#include <csta.h>

RetCode_t cstaCallCompletion (

ACSHandle_t acsHandle,

InvokeID_t invokeID,

Feature_t feature,

ConnectionID_t *call,

PrivateData_t *privateData);

Parameters

acsHandle

This is the value of the unique handle to the opened ACS Stream.

invokeID

A handle provided by the application to be used for matching a specific
instance of a function service request with its associated confirmation
event. This parameter is only used when the Invoke ID mechanism is set
for Application-generated IDs in the acsOpenStream(). The parameter is
ignored by the ACS Library when the Stream is set for Library-generated
invoke IDs.

feature

Specifies the call completion feature that is desired. These include:

CAMP_ON - queues the call until the device is available.

CALL_BACK - requests the called device to return the call when it returns to idle.

INTRUDE - adds the caller to an existing active call at the called device. This feature requires the

appropriate user security level at the server.

typedef enum Feature_t {

FT_CAMP_ON = 0,

FT_CALL_BACK = 1,

FT_INTRUDE = 2

} Feature_t;

call

This is a pointer to a connection identifier for the call to be completed.

privateData
Issue 1 — December 2001

5-19TSAPI.PDF R10.1 V1

Switching Function Services
This is a pointer to the private data extension mechanism. Setting this
parameter is optional. If the parameter is not used, the pointer should be
set to NULL.

Return Values

This function returns the following values depending on whether the
application is using library or application-generated invoke identifiers:

Library-generated Identifiers - if the function call completes
successfully it will return a positive value, i.e. the invoke identifier. If
the call fails a negative error (<0) condition will be returned. For
library-generated identifiers the return will never be zero (0).

Application-generated Identifiers - if the function call completes
successfully it will return a zero (0) value. If the call fails a negative
error (<0) condition will be returned. For application-generated
identifiers the return will never be positive (>0).

The application should always check the CSTACallCompletionConfEvent
message to ensure that

the service request has been acknowledged and processed by the
Telephony Server and the switch.

The following are possible negative error conditions for this function:

ACSERR_BADHDL

This return value indicates that a bad or unknown acsHandle was
provided by the application.

ACSERR_STREAM_FAILED

This return value indicates that a previously active ACS Stream has
been abnormally aborted.

Comments

Generally this Service is invoked when a call is established and it
encounters a busy or no answer at the far device.

The Camp On feature allows queuing for availability of the far end device.
Generally, Camp On makes the caller wait until the called party finishes the
current call and any previously camped on calls. Call Back allows
requesting the called device to return the call when it returns to idle. Call
Back works much like Camp On, but the caller is allowed to hang up after
invoking the service, and the CSTA Switching Function calls both parties
when the called party becomes free. Intrude allows the caller to be added
into an existing call at the called device.

CSTACallCompletionConfEvent

The Call Completion confirmation event provides the positive response from the
server for a previous call completion request.
Issue 1 — December 2001

TSAPI.PDF R10.1 V15-20

Switching Function Services
Syntax

The following structure shows only the relevant portions of the unions for
this message. See ACS Data Types and CSTA Data Types in section 4
for a complete description of the event structure.

typedef struct

{

ACSHandle_tacsHandle;

EventClass_teventClass;

EventType_teventType;

} ACSEventHeader_t;

typedef struct

{

ACSEventHeader_t eventHeader;

union

{

struct

{

InvokeID_tinvokeID;

union

{

CSTACallCompletionConfEvent_t callCompletion;

}u;

} cstaConfirmation;

} event;

} CSTAEvent_t;

typedef struct CSTACallCompletionConfEvent_t {

Nulltype null;

} CSTACallCompletionConfEvent_t;

Parameters

acsHandle

This is the handle for the newly opened ACS Stream.

eventClass

This is a tag with the value CSTACONFIRMATION, which identifies this
message as an CSTA confirmation event.

eventType

This is a tag with the value CSTA_CALL_COMPLETION_CONF, which
identifies this message as an CSTACallCompletionConfEvent.

invokeID

This parameter specifies the function service request instance for the
service which was processed at the Telephony Server or at the switch. This
identifier is provided to the application when a service request is made.

privateData
Issue 1 — December 2001

5-21TSAPI.PDF R10.1 V1

Switching Function Services
If private data accompanied this event, then the private data would be
copied to the location pointed to by the privateData pointer in the
acsGetEventBlock() or acsGetEventPoll() function. If the privateData
pointer is set to NULL in these functions, then no private data will be
delivered to the application.

cstaClearCall()

The Clear Call Service releases all of the devices from the specified call, and
eliminates the call itself. The call ceases to exist and the connection identifiers
used for observation and manipulation are released.

Syntax

#include <acs.h>

#include <csta.h>

RetCode_t cstaClearCall (

ACSHandle_t acsHandle,

InvokeID_t invokeID,

ConnectionID_t *call,

PrivateData_t *privateData);

Parameters

acsHandle

This is the value of the unique handle to the opened ACS Stream.

invokeID

A handle provided by the application to be used for matching a specific
instance of a function service request with its associated confirmation
event. This parameter is only used when the Invoke ID mechanism is set
for Application-generated IDs in the acsOpenStream(). The parameter is
ignored by the ACS Library when the Stream is set for Library-generated
invoke IDs.

call

This is a pointer to the connection identifier for the call to be cleared.

privateData

This is a pointer to the private data extension mechanism. Setting this
parameter is optional. If the parameter is not used, the pointer should be
set to NULL.

Return Values

This function returns the following values depending on whether the
application is using library or application-generated invoke identifiers:
Issue 1 — December 2001

TSAPI.PDF R10.1 V15-22

Switching Function Services
Library-generated Identifiers - if the function call completes
successfully it will return a positive value, i.e. the invoke identifier. If
the call fails a negative error (<0) condition will be returned. For
library-generated identifiers the return will never be zero (0).

Application-generated Identifiers - if the function call completes
successfully it will return a zero (0) value. If the call fails a negative
error (<0) condition will be returned. For application-generated
identifiers the return will never be positive (>0).

The application should always check the CSTAClearCallConfEvent
message to ensure that the service request has been acknowledged and
processed by the Telephony Server and the switch.

The following are possible negative error conditions for this function:

ACSERR_BADHDL

This return value indicates that a bad or unknown acsHandle was
provided by the application.

ACSERR_STREAM_FAILED

This return value indicates that a previously active ACS Stream has
been abnormally aborted.

Comments

This function will cause each device associated with a call to be released
and the CSTA Connection Identifiers (and their components) are freed.

Figure 5-3 illustrates the results of a Clear Call (CSTA Connection

ID = C1,D1), where call C1 connects devices D1, D2 and D3.

Figure 5-3. Clear Call Service

CSTAClearCallConfEvent

The Clear Call confirmation event provides the positive response from the server
for a previous clear call request.

D2

D3

D1D2

D3

D1 C1* *

*

Before After
Issue 1 — December 2001

5-23TSAPI.PDF R10.1 V1

Switching Function Services
Syntax

The following structure shows only the relevant portions of the unions for
this message. See ACS Data Types and CSTA Data Types in section 4
for a complete description of the event structure.
Issue 1 — December 2001

TSAPI.PDF R10.1 V15-24

Switching Function Services
typedef struct

{

ACSHandle_t acsHandle;

EventClass_t eventClass;

EventType_t eventType;

} ACSEventHeader_t;

typedef struct

{

ACSEventHeader_teventHeader;

union

{

struct

{

InvokeID_tinvokeID;

union

{

CSTAClearCallConfEvent_t clearCall;

}u;

} cstaConfirmation;

} event;

} CSTAEvent_t;

typedef struct CSTAClearCallConfEvent_t {

Nulltype null;

} CSTAClearCallConfEvent_t;

Parameters

acsHandle

This is the handle for the newly opened ACS Stream.

eventClass

This is a tag with the value CSTACONFIRMATION, which identifies this
message as an CSTA confirmation event.

eventType

This is a tag with the value CSTA_CLEAR_CALL_CONF, which identifies
this message as an CSTAClearCallConfEvent.

invokeID

This parameter specifies the function service request instance for the
service which was processed at the Telephony Server or at the switch. This
identifier is provided to the application when a service request is made.

privateData

If private data accompanied this event, then the private data would be
copied to the location pointed to by the privateData pointer in the
acsGetEventBlock() or acsGetEventPoll() function. If the privateData
pointer is set to NULL in these functions, then no private data will be
delivered to the application.
Issue 1 — December 2001

5-25TSAPI.PDF R10.1 V1

Switching Function Services
Comments

This confirmation indicates that all instances of the ACS Connection
Identifiers for all the endpoints in the call and in the current association
have become invalid. The instances of identifiers should not be used to
request additional services of the Telephony Server.

cstaClearConnection()

The Clear Connection Service releases the specified device from the designated
call. The Connection is left in the Null state. Additionally, the CSTA Connection
Identifier provided in the Service Request is released.

Syntax

#include <acs.h>

#include <csta.h>

RetCode_t cstaClearConnection (

ACSHandle_t acsHandle,

InvokeID_t invokeID,

ConnectionID_t *call,

PrivateData_t *privateData);

Parameters

acsHandle

This is the value of the unique handle to the opened ACS Stream.

invokeID

A handle provided by the application to be used for matching a specific
instance of a function service request with its associated confirmation
event. This parameter is only used when the Invoke ID mechanism is set
for Application-generated IDs in the acsOpenStream(). The parameter is
ignored by the ACS Library when the Stream is set for Library-generated
invoke IDs.

call

This is a pointer to the connection identifier for the connection to be
cleared.

privateData

This is a pointer to the private data extension mechanism. Setting this
parameter is optional. If the parameter is not used, the pointer should be
set to NULL.

acsHandle

This is the value of the unique handle to the opened ACS Stream.
Issue 1 — December 2001

TSAPI.PDF R10.1 V15-26

Switching Function Services
Return Values

This function returns the following values depending on whether the
application is using library or application-generated invoke identifiers:

Library-generated Identifiers - if the function call completes
successfully it will return a positive value, i.e. the invoke identifier. If
the call fails a negative error (<0) condition will be returned. For
library-generated identifiers the return will never be zero (0).

Application-generated Identifiers - if the function call completes
successfully it will return a zero (0) value. If the call fails a negative
error (<0) condition will be returned. For application-generated
identifiers the return will never be positive (>0).

The application should always check the
CSTAClearConnectionConfEvent message to ensure that the service
request has been acknowledged and processed by the Telephony Server
and the switch.

The following are possible negative error conditions for this function:

ACSERR_BADHDL

This return value indicates that a bad or unknown acsHandle was
provided by the application.

ACSERR_STREAM_FAILED

This return value indicates that a previously active ACS Stream has
been abnormally aborted.

Comments

This Service releases the specified Connection and CSTA Connection
Identifier instance from the designated call. The result is as if the device
had hung up on the call. It is interesting to note that the phone may not be
physically returned to the switch hook, which may result in silence, dial
tone, or some other condition. Generally, if only two Connections are in the
call, the effect of cstaClearConnection() function is the same as
cstaClearCall().

Figure 5-4 is an example of the results of a Clear Connection (CSTA
Connection Id = C1,D3), where call C1 connects devices D1, D2 and D3.
Note that it is likely that the call is not cleared by this Service if it is some
type of conference.
Issue 1 — December 2001

5-27TSAPI.PDF R10.1 V1

Switching Function Services
Figure 5-4. Clear Connection Service

CSTAClearConnectionConfEvent

The Clear Connection confirmation event provides the positive response from the
server for a previous clear connection request.

Syntax

The following structure shows only the relevant portions of the unions for
this message. See ACS Data Types and CSTA Data Types in section 4
for a complete description of the event structure.

typedef struct

{

ACSHandle_t acsHandle;

EventClass_t eventClass;

EventType_t eventType;

} ACSEventHeader_t;

typedef struct

{

ACSEventHeader_t eventHeader;

union

{

struct

{

InvokeID_tinvokeID;

union

{

CSTAClearConnectionConfEvent_t clearConnection;

} u;

} cstaConfirmation;

} event;

} CSTAEvent_t;

typedef struct CSTAClearConnectionConfEvent_t {

Nulltype null;

} CSTAClearConnectionConfEvent_t;

D2

D3

D1D2

D3

D1 C1 C1* *

*

* *

Before After
Issue 1 — December 2001

TSAPI.PDF R10.1 V15-28

Switching Function Services
Parameters

acsHandle

This is the handle for the newly opened ACS Stream.

eventClass

This is a tag with the value CSTACONFIRMATION, which identifies this
message as an CSTA confirmation event.

eventType

This tag with the value CSTA_CLEAR_CONNECTION_CONF identifies
this message as an CSTAClearConnectionConfEvent.

invokeID

This parameter specifies the function service request instance for the
service which was processed at the Telephony Server or at the switch. This
identifier is provided to the application when a service request is made.

privateData

If private data accompanied this event, then the private data would be
copied to the location pointed to by the privateData pointer in the
acsGetEventBlock() or acsGetEventPoll() function. If the privateData
pointer is set to NULL in these functions, then no private data will be
delivered to the application.

Comments

This confirmation event indicates that the instance of the ACS Connection
Identifier for the cleared Connection is released. The identifier should not
be used to request additional services of the Telephony Server.

cstaConferenceCall()

This function provides the conference of an existing held call and another active
call at a device. The two calls are merged into a single call and the two
Connections at the conferencing device resolve into a single Connection in the
Connected state. The pre-existing CSTA Connection Identifiers associated with
the device creating the conference are released, and a new CSTA Connection
Identifier for the resulting conferenced Connection is provided.

Syntax

#include <acs.h>

#include <csta.h>

RetCode_t cstaConferenceCall (

ACSHandle_t acsHandle,

InvokeID_t invokeID,

ConnectionID_t *heldCall,

ConnectionID_t *activeCall,
Issue 1 — December 2001

5-29TSAPI.PDF R10.1 V1

Switching Function Services
PrivateData_t *privateData);

Parameters

acsHandle

This is the value of the unique handle to the opened ACS Stream.

invokeID

A handle provided by the application to be used for matching a specific
instance of a function service request with its associated confirmation
event. This parameter is only used when the Invoke ID mechanism is set
for Application-generated IDs in the acsOpenStream(). The parameter is
ignored by the ACS Library when the Stream is set for Library-generated
invoke IDs.

heldCall

This is a pointer to the connection identifier for the call which is on hold and
is to be conferenced with an active call.

activeCall

This is a pointer to the connection identifier for the call which is active or
proceeding and is to be conferenced with the held call.

privateData

This is a pointer to the private data extension mechanism. Setting this
parameter is optional. If the parameter is not used, the pointer should be
set to NULL.

Return Values

This function returns the following values depending on whether the
application is using library or application-generated invoke identifiers:

Library-generated Identifiers - if the function call completes
successfully it will return a positive value, i.e. the invoke identifier. If
the call fails a negative error (<0) condition will be returned. For
library-generated identifiers the return will never be zero (0).

Application-generated Identifiers - if the function call completes
successfully it will return a zero (0) value. If the call fails a negative
error (<0) condition will be returned. For application-generated
identifiers the return will never be positive (>0).

The application should always check the CSTAConferenceCallConfEvent
message to ensure that the service request has been acknowledged and
processed by the Telephony Server and the switch.The following are
possible negative error conditions for this function:

ACSERR_BADHDL

This return value indicates that a bad or unknown acsHandle was
provided by the application.
Issue 1 — December 2001

TSAPI.PDF R10.1 V15-30

Switching Function Services
ACSERR_STREAM_FAILED

This return value indicates that a previously active ACS Stream has
been abnormally aborted.

Comments

Figure 5-5 is an example of the starting conditions for the
cstaConferenceCall() function, which are: the call C1 from D1 to D2 is in
the held state. A call C2 from D1 to D3 is in progress or active.

Figure 5-5. Conference Call Service

D1, D2 and D3 are conferenced or joined together into a single call, C3.
The value of the Connection identifier (D1,C3) may be that of one of the
CSTA Connection Identifiers provided in the request (D1,C1 or D1,C2).

CSTAConferenceCallConfEvent

The Conference Call confirmation event provides the positive response from the
server for a previous conference call request.

Syntax

The following structure shows only the relevant portions of the unions for
this message. See ACS Data Types and CSTA Data Types in section 4
for a complete description of the event structure.

typedef struct

{

ACSHandle_t acsHandle;

EventClass_t eventClass;

EventType_t eventType;

} ACSEventHeader_t;

D1 C1 D2

D3C2

D1 D2

D3c c

h

C3

* *

**

Before After
Issue 1 — December 2001

5-31TSAPI.PDF R10.1 V1

Switching Function Services
typedef struct

{

ACSEventHeader_teventHeader;

union

{

struct

{

InvokeID_tinvokeID;

union

{

CSTAConferenceCallConfEvent_t conferenceCall;

} u;

} cstaConfirmation;

} event;

} CSTAEvent_t;

typedef struct Connection_t {

ConnectionID_t party;

SubjectDeviceID_t staticDevice;

} Connection_t;

typedef struct ConnectionList {

int count;

Connection_t *connection;

} ConnectionList_t;

typedef struct CSTAConferenceCallConfEvent_t {

ConnectionID_t newCall;

ConnectionList_t connList;

} CSTAConferenceCallConfEvent_t;

Parameters

acsHandle

This is the handle for the newly opened ACS Stream.

eventClass

This is a tag with the value CSTACONFIRMATION, which identifies this
message as an CSTA confirmation event.

eventType

This is a tag with the value CSTA_CONFERENCE_CALL_CONF, which
identifies this message as an CSTAConferenceCallConfEvent.

invokeID

This parameter specifies the function service request instance for the
service which was processed at the Telephony Server or at the switch.
This identifier is provided to the application when a service request is
made.
Issue 1 — December 2001

TSAPI.PDF R10.1 V15-32

Switching Function Services
newCall

This parameter specifies the resulting connection identifier for the calls
which were conferenced at the Conferencing device. This connection
identifier replaces the two previous connection identifier at that device.

connList

Specifies the resulting number of known devices in the conference. This
field contains a count (count) of the number of devices in the conference
and a pointer (*connection) to an array of Connection_t structures which
define each connection in the call.

Each Connection_t record contains the following:

Party - indicates the Connection ID of the party in the conference.

Device - provides the static reference for the party in the conference.
This parameter may have a value that indicates the static identifier is
not known.

privateData

If private data accompanied this event, then the private data would be
copied to the location pointed to by the privateData pointer in the
acsGetEventBlock() or acsGetEventPoll() function. If the privateData
pointer is set to NULL in these functions, then no private data will be
delivered to the application.

cstaConsultationCall()

The cstaConsultationCall() function will provide the compound or combined
action of the Hold Call service followed by Make Call service. This service places
an existing active call at a device on hold and initiates a new call from the same
device using a single function call.

Syntax

#include <acs.h>

#include <csta.h>

RetCode_t cstaConsultationCall (

ACSHandle_t acsHandle,

InvokeID_t invokeID,

ConnectionID_t *activeCall,

DeviceID_t *calledDevice,

PrivateData_t *privateData);
Issue 1 — December 2001

5-33TSAPI.PDF R10.1 V1

Switching Function Services
Parameters

acsHandle

This is the value of the unique handle to the opened ACS Stream.

invokeID

A handle provided by the application to be used for matching a specific
instance of a function service request with its associated confirmation
event. This parameter is only used when the Invoke ID mechanism is set
for Application-generated IDs in the acsOpenStream(). The parameter is
ignored by the ACS Library when the Stream is set for Library-generated
invoke IDs.

activeCall

This is a pointer to the connection identifier for the active call which is to be
placed on hold before the new call is established.

calledDevice

This is a pointer to the destination device address for the new call to be
established.

privateData

This is a pointer to the private data extension mechanism. Setting this
parameter is optional. If the parameter is not used, the pointer should be
set to NULL.

Return Values

This function returns the following values depending on whether the
application is using library or application-generated invoke identifiers:

Library-generated Identifiers - if the function call completes
successfully it will return a positive value, i.e., the invoke identifier. If
the call fails a negative error (<0) condition will be returned. For
library-generated identifiers the return will never be zero (0).

Application-generated Identifiers - if the function call completes
successfully it will return a zero (0) value. If the call fails a negative
error (<0) condition will be returned. For application-generated
identifiers the return will never be positive (>0).

The application should always check the
CSTAConsultationCallConfEvent message to ensure that the service
request has been acknowledged and processed by the Telephony Server
and the switch.

The following are possible negative error conditions for this function:

ACSERR_BADHDL

This return value indicates that a bad or unknown acsHandle was
provided by the application.

ACSERR_STREAM_FAILED
Issue 1 — December 2001

TSAPI.PDF R10.1 V15-34

Switching Function Services
This return value indicates that a previously active ACS Stream has
been abnormally aborted.

Comments

This compound service allows the application to place an existing call on
hold and at the same time establish a new call to another device. In this
case an active call C1 exists at D1 (see Figure 5.7) and a consultative call
is desired to D3. After this function is called, the original active call (C1) is
placed on hold and a new call, C2, is placed to device D3.

Figure 5-6. Consultation Call Service

CSTAConsultationCallConfEvent

The Consultation Call confirmation event provides the positive response from the
server for a previous consultation call request.

Syntax

The following structure shows only the relevant portions of the unions for
this message. See ACS Data Types and CSTA Data Types in section 4
for a complete description of the event structure.

typedef struct

{

ACSHandle_t acsHandle;

EventClass_t eventClass;

EventType_t eventType;

} ACSEventHeader_t;

D1 C1 D1 C1D2 D2

D3C2

c h

c

* *

Before After
Issue 1 — December 2001

5-35TSAPI.PDF R10.1 V1

Switching Function Services
typedef struct

{

ACSEventHeader_teventHeader;

union

{

struct

{

InvokeID_tinvokeID;

union

{

CSTAConsultationCallConfEvent_t consultationCall;

} u;

} cstaConfirmation;

} event;

} CSTAEvent_t;

typedef struct CSTAConsultationCallConfEvent_t {

ConnectionID_t newCall;

} CSTAConsultationCallConfEvent_t;

Parameters

acsHandle

This is the handle for the newly opened ACS Stream.

eventClass

This is a tag with the value CSTACONFIRMATION, which identifies this
message as an CSTA confirmation event.

eventType

This tag with the value CSTA_CONSULTATION_CALL_CONF, identifies
this message as an CSTAConsultationCallConfEvent.

invokeID

This parameter specifies the function service request instance for the
service which was processed at the Telephony Server or at the switch. This
identifier is provided to the application when a service request is made.

newCall

Specifies the Connection ID for the originating connection of the new call
originated by the Consultation Call request.

privateData

If private data accompanied this event, then the private data would be
copied to the location pointed to by the privateData pointer in the
acsGetEventBlock() or acsGetEventPoll() function. If the privateData
pointer is set to NULL in these functions, then no private data will be
delivered to the application.
Issue 1 — December 2001

TSAPI.PDF R10.1 V15-36

Switching Function Services
cstaDeflectCall()

The cstaDeflectCall() service takes an alerting call at a device and redirects the
call to a given number.

Syntax

#include <acs.h>

#include <csta.h>

RetCode_t cstaDeflectCall (

ACSHandle_t acsHandle,

InvokeID_t invokeID,

ConnectionID_t *deflectCall,

DeviceID_t *calledDevice,

PrivateData_t *privateData);

Parameters

acsHandle

This is the value of the unique handle to the opened ACS Stream.

invokeID

A handle provided by the application to be used for matching a specific
instance of a function service request with its associated confirmation
event. This parameter is only used when the Invoke ID mechanism is set
for Application-generated IDs in the acsOpenStream(). The parameter is
ignored by the ACS Library when the Stream is set for Library-generated
invoke IDs.

deflectCall

This is a pointer to the connection identifier of the call which is to be
deflected to another device within the switch.

calledDevice

A pointer to the device identifier where the original call is to be deflected.

privateData

This is a pointer to the private data extension mechanism. Setting this
parameter is optional. If the parameter is not used, the pointer should be
set to NULL.

Return Values

This function returns the following values depending on whether the
application is using library or application-generated invoke identifiers:

Library-generated Identifiers - if the function call completes
successfully it will return a positive value, i.e. the invoke identifier. If
the call fails a negative error (<0) condition will be returned. For
library-generated identifiers the return will never be zero (0).
Issue 1 — December 2001

5-37TSAPI.PDF R10.1 V1

Switching Function Services
Application-generated Identifiers - if the function call completes
successfully it will return a zero (0) value. If the call fails a negative
error (<0) condition will be returned. For application-generated
identifiers the return will never be positive (>0).

The application should always check the CSTADeflectCallConfEvent
message to ensure that the service request has been acknowledged and
processed by the Telephony Server and the switch.

The following are possible negative error conditions for this function:

ACSERR_BADHDL

This return value indicates that a bad or unknown acsHandle was
provided by the application.

ACSERR_STREAM_FAILED

This return value indicates that a previously active ACS Stream has
been abnormally aborted.

Comments

The Deflect Call Service takes a ringing (alerting) call at a device (D1) and
sends it to a new destination (D3). This function replaces the original called
device, as specified in the deflectCall parameter, with a different device
within the switch, as specified in the calledDevice parameter.

Figure 5-7. Deflect Call Service

CSTADeflectCallConfEvent

The Deflect Call confirmation event provides the positive response from the
server for a previous deflect call request.

Syntax

The following structure shows only the relevant portions of the unions for
this message. See ACS Data Types and CSTA Data Types in section 4
for a complete description of the event structure.

D1 C1 D2 D1 C1 D2

D3 D3

* *

*

?

Before After
Issue 1 — December 2001

TSAPI.PDF R10.1 V15-38

Switching Function Services
typedef struct

{

ACSHandle_t acsHandle;

EventClass_t eventClass;

EventType_t eventType;

} ACSEventHeader_t;

typedef struct

{

ACSEventHeader_teventHeader;

union

{

struct

{

InvokeID_tinvokeID;

union

{

CSTADeflectCallConfEvent_t deflectCall;

} u;

} cstaConfirmation;

} event;

} CSTAEvent_t;

typedef struct CSTADeflectCallConfEvent_t {

Nulltype null;

} CSTADeflectCallConfEvent_t;

Parameters

acsHandle

This is the handle for the newly opened ACS Stream.

eventClass

This is a tag with the value CSTACONFIRMATION, which identifies this
message as an CSTA confirmation event.

eventType

This is a tag with the value CSTA_DEFLECT_CALL_CONF, which
identifies this message as an CSTADeflectCallConfEvent.

invokeID

This parameter specifies the function service request instance for the
service which was processed at the Telephony Server or at the switch. This
identifier is provided to the application when a service request is made.

privateData

If private data accompanied this event, then the private data would be
copied to the location pointed to by the privateData pointer in the
acsGetEventBlock() or acsGetEventPoll() function. If the privateData
pointer is set to NULL in these functions, then no private data will be
delivered to the application.
Issue 1 — December 2001

5-39TSAPI.PDF R10.1 V1

Switching Function Services
cstaGroupPickupCall()

The cstaGroupPickupCall() service moves an alerting call (at one or more
devices in a device pickup group) to a specified device.

Group Pickup is a PBX feature where a “Pickup Group” is defined on the PBX
(independent of Telephony Service Device Groups). When a call rings at a station
in the pickup group, a pickup group member may invoke the PBX’s “Group
Pickup” feature and thereby redirect the ringing call to their phone. The
application does not specify the call that is to be redirected.

Syntax

#include <acs.h>

#include <csta.h>

RetCode_t cstaGroupPickupCall (

ACSHandle_t acsHandle,

InvokeID_t invokeID,

ConnectionID_t *deflectCall,/* Version 1 Stream Only*/

DeviceID_t *pickupDevice,

PrivateData_t *privateData);

Parameters

acsHandle

This is the value of the unique handle to the opened ACS Stream.

invokeID

A handle provided by the application to be used for matching a specific
instance of a function service request with its associated confirmation
event. This parameter is only used when the Invoke ID mechanism is set
for Application-generated IDs in the acsOpenStream(). The parameter is
ignored by the ACS Library when the Stream is set for Library-generated
invoke IDs.

deflectCall

TSAPI Version 1 Stream: Pointer to the call being picked up.

TSAPI Version 2 Stream: This parameter is ignored.

pickupDevice

This is a pointer to the device which is picking up calls from the group.

privateData

This is a pointer to the private data extension mechanism. Setting this
parameter is optional. If the parameter is not used, the pointer should be
set to NULL.
Issue 1 — December 2001

TSAPI.PDF R10.1 V15-40

Switching Function Services
Return Values

This function returns the following values depending on whether the
application is using library or application-generated invoke identifiers:

Library-generated Identifiers - if the function call completes
successfully it will return a positive value, i.e., the invoke identifier. If
the call fails a negative error (<0) condition will be returned. For
library-generated identifiers the return will never be zero (0).

Application-generated Identifiers - if the function call completes
successfully it will return a zero (0) value. If the call fails a negative
error (<0) condition will be returned. For application-generated
identifiers the return will never be positive (>0).

The application should always check the CSTAGroupPickupConfEvent
message to ensure that the service request has been acknowledged and
processed by the Telephony Server and the switch. The following are
possible negative error conditions for this function:

ACSERR_BADHDL

This return value indicates that a bad or unknown acsHandle was
provided by the application.

ACSERR_STREAM_FAILED

This return value indicates that a previously active ACS Stream has
been abnormally aborted.

Comments

The cstaGroupPickupCall() service redirects an alerting call (at one of
more devices in a device pickup) to a specified device, the pickupDevice.

Figure 5-8. Group Pickup Call Service

D1 C1 D2 D1 C1 D2

D3 D3

* *

*

?

Before After
Issue 1 — December 2001

5-41TSAPI.PDF R10.1 V1

Switching Function Services
CSTAGroupPickupCallConfEvent

The Group Pickup Call confirmation event provides the positive response from the
server for a previous Group Pickup call request.

Syntax

The following structure shows only the relevant portions of the unions for
this message. See ACS Data Types and CSTA Data Types in section 4
for a complete description of the event structure.

typedef struct

{

ACSHandle_t acsHandle;

EventClass_t eventClass;

EventType_t eventType;

} ACSEventHeader_t;

typedef struct

{

ACSEventHeader_teventHeader;

union

{

struct

{

InvokeID_tinvokeID;

union

{

CSTAGroupPickupCallConfEvent_t groupPickupCall;

}u;

} cstaConfirmation;

} event;

} CSTAEvent_t;

typedef struct CSTAGroupPickupCallConfEvent_t {

Nulltype null;

} CSTAGroupPickupCallConfEvent_t;

Parameters

acsHandle

This is the handle for the newly opened ACS Stream.

eventClass

This is a tag with the value CSTACONFIRMATION, which identifies this
message as an CSTA confirmation event.

eventType

This is a tag with the value CSTA_GROUP_PICKUP_CALL_CONF, which
identifies this message as an CSTAGroupPickupCallConfEvent.
Issue 1 — December 2001

TSAPI.PDF R10.1 V15-42

Switching Function Services
invokeID

This parameter specifies the function service request instance for the
service which was processed at the Telephony Server or at the switch. This
identifier is provided to the application when a service request is made.

privateData

If private data accompanied this event, then the private data would be
copied to the location pointed to by the privateData pointer in the
acsGetEventBlock() or acsGetEventPoll() function. If the privateData
pointer is set to NULL in these functions, then no private data will be
delivered to the application.

cstaHoldCall()

The cstaHoldCall() service places an existing Connection in the held state.

Syntax

#include <acs.h>

#include <csta.h>

RetCode_tcstaHoldCall (

ACSHandle_t acsHandle,

InvokeID_t invokeID,

ConnectionID_t *activeCall,

Boolean reservation,

PrivateData_t *privateData);

Parameters

acsHandle

This is the value of the unique handle to the opened ACS Stream.

invokeID

A handle provided by the application to be used for matching a specific
instance of a function service request with its associated confirmation
event. This parameter is only used when the Invoke ID mechanism is set
for Application-generated IDs in the acsOpenStream(). The parameter is
ignored by the ACS Library when the Stream is set for Library-generated
invoke IDs.

activeCall

A pointer to the connection identifier for the active call to be placed on hold.

reservation

Reserves the facility for reuse by the held call. This option is not
appropriate for most non-ISDN telephones. The default is no connection
reservation.

privateData
Issue 1 — December 2001

5-43TSAPI.PDF R10.1 V1

Switching Function Services
This is a pointer to the private data extension mechanism. Setting this
parameter is optional. If the parameter is not used, the pointer should be
set to NULL.

Return Values

This function returns the following values depending on whether the
application is using library or application-generated invoke identifiers:

Library-generated Identifiers - if the function call completes
successfully it will return a positive value, i.e. the invoke identifier. If
the call fails a negative error (<0) condition will be returned. For
library-generated identifiers the return will never be zero (0).

Application-generated Identifiers - if the function call completes
successfully it will return a zero (0) value. If the call fails a negative
error (<0) condition will be returned. For application-generated
identifiers the return will never be positive (>0).

The application should always check the CSTAHoldCallConfEvent
message to ensure that the service request has been acknowledged and
processed by the Telephony Server and the switch.

The following are possible negative error conditions for this function:

ACSERR_BADHDL

This return value indicates that a bad or unknown acsHandle was
provided by the application.

ACSERR_STREAM_FAILED

This return value indicates that a previously active ACS Stream has
been abnormally aborted.

Comments

A call to this function will interrupt communications for an existing call at a
device. The call is usually, but not always, in the active state. A call may
be placed on hold by the user some time after completion of dialing. The
associated connection for the held call is made available for other uses,
depending on the reservation option (ISDN-case). As shown in Figure 5-9,
if the Hold Call service is invoked for device D1 on call C1, then call C1 is
placed on hold at device D1. The hold relationship is affected at the holding
device.

Figure 5-9. Hold Call Service

D1 C1 D1 C1 D2D2 hc * *

Before After
Issue 1 — December 2001

TSAPI.PDF R10.1 V15-44

Switching Function Services
The cstaHoldCall() service maintains a relationship between the holding
device and the held call that lasts until the call is retrieved from the hold
status, or until the call is cleared.

CSTAHoldCallConfEvent

The Hold Call confirmation event provides the positive response from the server
for a previous Hold call request

Syntax

The following structure shows only the relevant portions of the unions for
this message. See ACS Data Types and CSTA Data Types in Section 4
for a complete description of the event structure.

typedef struct

{

ACSHandle_t acsHandle;

EventClass_t eventClass;

EventType_t eventType;

} ACSEventHeader_t;

typedef struct

{

ACSEventHeader_teventHeader;

union

{

struct

{

InvokeID_tinvokeID;

union

{

CSTAHoldCallConfEvent_t holdCall;

}u;

} cstaConfirmation;

} event;

} CSTAEvent_t;

typedef struct CSTAHoldCallConfEvent_t {

Nulltype null;

} CSTAHoldCallConfEvent_t;

Parameters

acsHandle

This is the handle for the ACS Stream

eventClass

This is a tag with the value CSTACONFIRMATION, which identifies this
message as an CSTA confirmation event.

eventType
Issue 1 — December 2001

5-45TSAPI.PDF R10.1 V1

Switching Function Services
This is a tag with the value CSTA_HOLD_CALL_CONF, which identifies
this message as an CSTAHoldCallConfEvent.
Issue 1 — December 2001

TSAPI.PDF R10.1 V15-46

Switching Function Services
invokeID

This parameter specifies the function service request instance for the
service which was processed at the Telephony Server or at the switch.
This identifier is provided to the application when a service request is
made.

privateData

If private data accompanied this event, then the private data would be
copied to the location pointed to by the privateData pointer in the
acsGetEventBlock() or acsGetEventPoll() function. If the privateData
pointer is set to NULL in these functions, then no private data will be
delivered to the application.

cstaMakeCall()

The cstaMakeCall() service originates a call between two devices. The originator
must be on the switch. The service attempts to create a new call and establish a
connection between the calling device (originator) and the called device
(destination). The Make Call service also provides a CSTA Connection Identifier
that indicates the Connection of the originating device.

Syntax

#include <acs.h>

#include <csta.h>

RetCode_t cstaMakeCall (

ACSHandle_t acsHandle,

InvokeID_t invokeID,

DeviceID_t *callingDevice,

DeviceID_t *calledDevice,

PrivateData_t *privateData);

Parameters

acsHandle

This is the value of the unique handle to the opened ACS Stream.

invokeID

A handle provided by the application to be used for matching a specific
instance of a function service request with its associated confirmation
event. This parameter is only used when the Invoke ID mechanism is set
for Application-generated IDs in the acsOpenStream(). The parameter is
ignored by the ACS Library when the Stream is set for Library-generated
invoke IDs.

callingDevice

A pointer to the device identifier of the device which is to originate the new
call.
Issue 1 — December 2001

5-47TSAPI.PDF R10.1 V1

Switching Function Services
calledDevice

A pointer to the device identifier for the destination device for the new call.
Issue 1 — December 2001

TSAPI.PDF R10.1 V15-48

Switching Function Services
privateData

This is a pointer to the private data extension mechanism. Setting this
parameter is optional. If the parameter is not used, the pointer should be
set to NULL.

Return Values

This function returns the following values depending on whether the
application is using library or application-generated invoke identifiers:

Library-generated Identifiers - if the function call completes
successfully it will return a positive value, i.e., the invoke identifier. If
the call fails a negative error (<0) condition will be returned. For
library-generated identifiers the return will never be zero (0).

Application-generated Identifiers - if the function call completes
successfully it will return a zero (0) value. If the call fails a negative
error (<0) condition will be returned. For application-generated
identifiers the return will never be positive (>0).

The application should always check the CSTAMakeCallConfEvent
message to ensure that the service request has been acknowledged and
processed by the Telephony Server and the switch.

The following are possible negative error conditions for this function:

ACSERR_BADHDL

This return value indicates that a bad or unknown acsHandle was
provided by the application.

ACSERR_STREAM_FAILED

This return value indicates that a previously active ACS Stream has
been abnormally aborted.

Comments

The cstaMakeCall() service originates a call between two application
designated devices. When the service is initiated, the calling device is
prompted (if necessary), and, when that device acknowledges, a call to the
called device is originated. Figure 5-11 illustrates the results of a Make
Call service request (Calling device = D1, Called device = D2). A call is
established as if D1 had called D2, and the client is returned the
Connection id: (C1,D1).

Figure 5-10. Make Call Service

D1 D2C1D1 D2 c

Before After
Issue 1 — December 2001

5-49TSAPI.PDF R10.1 V1

Switching Function Services
The establishment of a complete call connection can be a multi-stepped
process depending on the destination of the call. Call status event reports
(see Status Reporting Service) may be sent by the Telephony Server to the
service requesting client application as the connection establishment
progresses. These events are in addition to the standard confirmation
events (e.g. CSTAMakeCallConfEvent) which only indicates that the
switch is attempting to establish a connection between the two devices.
The application should be aware that the requested call is not guaranteed
to succeed even after a successful Make Call service confirmation event
has been received. The application must monitor status events to be
informed of the call status as it progresses. Status event reports can be
established by using the cstaMonitorStart() service (see Status Reporting
Services).

CSTAMakeCallConfEvent

The Make Call confirmation event provides the positive response from the server
for a previous Make Call service request.

Syntax

The following structure shows only the relevant portions of the unions for
this message. See ACS Data Types and CSTA Data Types in Section 4
for a complete description of the event structure.

typedef struct

{

ACSHandle_t acsHandle;

EventClass_t eventClass;

EventType_t eventType;

} ACSEventHeader_t;

typedef struct

{

ACSEventHeader_teventHeader;

union

{

struct

{

InvokeID_tinvokeID;

union

{

CSTAMakeCallConfEvent_tmakeCall;

} u;

} cstaConfirmation;

} event;

} CSTAEvent_t;

typedef struct

{

ConnectionID_tnewCall;

} CSTAMakeCallConfEvent_t;
Issue 1 — December 2001

TSAPI.PDF R10.1 V15-50

Switching Function Services
Parameters

acsHandle

This is the handle for the ACS Stream.

eventClass

This is a tag with the value CSTACONFIRMATION, which identifies this
message as an CSTA confirmation event.

eventType

This is a tag with the value CSTA_MAKE_CALL_CONF, which identifies
this message as an CSTAMakeCallConfEvent.

invokeID

This parameter specifies the function service request instance for the
service which was processed at the Telephony Server or at the switch. This
identifier is provided to the application when a service request is made.

newCall

Specifies the Connection ID for the originating connection of the new call
originated by the Make Call request.

privateData

If private data accompanied this event, then the private data would be
copied to the location pointed to by the privateData pointer in the
acsGetEventBlock() or acsGetEventPoll() function. If the privateData
pointer is set to NULL in these functions, then no private data will be
delivered to the application.

cstaMakePredictiveCall()

The cstaMakePredictiveCall() service originates a call between a group of
devices or a logical device on behalf of an originating (calling) device. The service
creates a new call and establishes a Connection with the terminating (called)
device. The Make Predictive Call service also provides a CSTA Connection
Identifier that indicates the Connection of the terminating (called) device.

Syntax

#include <acs.h>

#include <csta.h>

RetCode_t cstaMakePredictiveCall (

ACSHandle_t acsHandle,

InvokeID_t invokeID,

DeviceID_t *callingDevice,

DeviceID_t *calledDevice,

AllocationState_t allocationState;

PrivateData_t *privateData);
Issue 1 — December 2001

5-51TSAPI.PDF R10.1 V1

Switching Function Services
Parameters

acsHandle

This is the value of the unique handle to the opened ACS Stream.

invokeID

A handle provided by the application to be used for matching a specific
instance of a function service request with its associated confirmation
event. This parameter is only used when the Invoke ID mechanism is set
for Application-generated IDs in the acsOpenStream(). The parameter is
ignored by the ACS Library when the Stream is set for Library-generated
invoke IDs.

callingDevice

A pointer to the device identifier of the device which is to originate the new
call.

calledDevice

A pointer to the device identifier of the device being call, i.e. the destination
device.

allocationState

This parameter specifies under which condition the connection with the
destination is to be connected to the calling or originating device. If this
parameter is not specified by the application, the Call Delivered state will
be the default. This parameter may be one of the following values:

Call Delivered: this value specifies that the switch should attempt to
connect the call to the caller (originating device), if the Alerting or
Connected state is determined at the called party (destination
device).

Call Established: this value specifies that the switch should attempt
to connect the call to the caller (originating device), if the Connected
state is determined at the called party (destination device).

privateData

This is a pointer to the private data extension mechanism. Setting this
parameter is optional. If the parameter is not used, the pointer should be
set to NULL.

Return Values

This function returns the following values depending on whether the
application is using library or application-generated invoke identifiers:

Library-generated Identifiers - if the function call completes
successfully it will return a positive value, i.e. the invoke identifier. If
the call fails a negative error (<0) condition will be returned. For
library-generated identifiers the return will never be zero (0).
Issue 1 — December 2001

TSAPI.PDF R10.1 V15-52

Switching Function Services
Application-generated Identifiers - if the function call completes
successfully it will return a zero (0) value. If the call fails a negative
error (<0) condition will be returned. For application-generated
identifiers the return will never be positive (>0).

The application should always check the
CSTAMakePredictiveCallConfEvent message to ensure that the service
request has been acknowledged and processed by the Telephony Server
and the switch.

The following are possible negative error conditions for this function:

ACSERR_BADHDL

This return value indicates that a bad or unknown acsHandle was
provided by the application.

ACSERR_STREAM_FAILED

This return value indicates that a previously active ACS Stream has
been abnormally aborted.

Comments

This service is often used to initiate a call to a called device (destination)
from a group of devices or a logical device without first establishing a
connection with a calling device (originator). This service allocates the call
to a particular device within that group at some time during the progress of
the call.

The cstaMakePredictiveCall() service first initiates a call to the called
device (destination). Depending on the call's progress, the call may be
connected with the calling device (originator) during the progress of the
call. The point at which the switch will attempt to connect the call to the
originating device is determined by the allocation State parameter. If the
allocation parameter is set to Call Delivered, then the call is allocated upon
detection of an Alerting (or Connected) Connection state at the destination.
If the allocation parameter is set to Call Established, then the call is
allocated upon detection of a Connected Connection state at the recipient.
In other words, the call is connected to the originating device if the call
state is either alerting or connected at the far end or connected,
respectively.

Figure 5-12 illustrates the results of a Make Predictive Call (Calling device
= group device D1, Called device = D2.

Figure 5-11. Make Predicitive Call Service

D1 D2C1D1 D2 a/c

Before After
Issue 1 — December 2001

5-53TSAPI.PDF R10.1 V1

Switching Function Services
CSTAMakePredictiveCallConfEvent

The Make Predictive Call confirmation event provides the positive response from
the server for a previous cstaMakePredictiveCall() request.

Syntax

The following structure shows only the relevant portions of the unions for
this message. See ACS Data Types and CSTA Data Types in Section 4
for a complete description of the event structure.

typedef struct

{

ACSHandle_t acsHandle;

EventClass_t eventClass;

EventType_t eventType;

} ACSEventHeader_t;

typedef struct

{

ACSEventHeader_teventHeader;

union

{

struct

{

InvokeID_tinvokeID;

union

{

CSTAMakePredictiveConfEvent_t makePredictiveCall;

} u;

} cstaConfirmation;

} event;

} CSTAEvent_t;

typedef struct

{

ConnectionID_tnewCall;

} CSTAMakePredictiveConfEvent_t;

Parameters

acsHandle

This is the handle for the ACS Stream.

eventClass

This is a tag with the value CSTACONFIRMATION, which identifies this
message as an CSTA confirmation event.

eventType

This is a tag with the value MAKE_PREDICTIVE_CALL_CONF, which
identifies this message as an CSTAMakePredictiveConfEvent.
Issue 1 — December 2001

TSAPI.PDF R10.1 V15-54

Switching Function Services
invokeID

This parameter specifies the function service request instance for the
service which was processed at the Telephony Server or at the switch. This
identifier is provided to the application when a service request is made.

newCall

Specifies the Connection ID for the far-end connection of the new call
originated by the Make Predictive Call request.

privateData

If private data accompanied this event, then the private data would be
copied to the location pointed to by the privateData pointer in the
acsGetEventBlock() or acsGetEventPoll() function. If the privateData
pointer is set to NULL in these functions, then no private data will be
delivered to the application.

cstaPickupCall()

The cstaPickupCall() service takes a ringing (alerting) call at a device and
redirects the call to a specified device.

Syntax

#include <acs.h>

#include <csta.h>

RetCode_t cstaPickupCall (

ACSHandle_t acsHandle,

InvokeID_t invokeID,

ConnectionID_t *deflectCall,

DeviceID_t *calledDevice,

PrivateData_t *privateData);

Parameters

acsHandle

This is the value of the unique handle to the opened ACS Stream.

invokeID

A handle provided by the application to be used for matching a specific
instance of a function service request with its associated confirmation
event. This parameter is only used when the Invoke ID mechanism is set
for Application-generated IDs in the acsOpenStream(). The parameter is
ignored by the ACS Library when the Stream is set for Library-generated
invoke IDs.

deflectCall

This is a pointer to the connection identifier of the call which is to be picked
up from another device within the switch.
Issue 1 — December 2001

5-55TSAPI.PDF R10.1 V1

Switching Function Services
calledDevice

A pointer to the device identifier of the device which is picking up the
original call.

privateData

This is a pointer to the private data extension mechanism. Setting this
parameter is optional. If the parameter is not used, the pointer should be
set to NULL.

Return Values

This function returns the following values depending on whether the
application is using library or application-generated invoke identifiers:

Library-generated Identifiers - if the function call completes
successfully it will return a positive value, i.e. the invoke identifier. If
the call fails a negative error (<0) condition will be returned. For
library-generated identifiers the return will never be zero (0).

Application-generated Identifiers - if the function call completes
successfully it will return a zero (0) value. If the call fails a negative
error (<0) condition will be returned. For application-generated
identifiers the return will never be positive (>0).

The application should always check the CSTAPickupCallConfEvent
message to ensure that the service request has been acknowledged and
processed by the Telephony Server and the switch.

The following are possible negative error conditions for this function:

ACSERR_BADHDL

This return value indicates that a bad or unknown acsHandle was
provided by the application.

ACSERR_STREAM_FAILED

This return value indicates that a previously active ACS Stream has
been abnormally aborted.

Comments

The cstaPickupCall() service takes an alerting call at a device within the
switch and brings it to a local device destination. This function picks up a
call, deflectCall, at the device specified in the calledDevice parameter.
Issue 1 — December 2001

TSAPI.PDF R10.1 V15-56

Switching Function Services
Figure 5-12. Pickup Call Service

CSTAPickupCallConfEvent

The Pickup Call confirmation event provides the positive response from the server
for a previous pickup call request.

Syntax

The following structure shows only the relevant portions of the unions for
this message. See ACS Data Types and CSTA Data Types in Section 4
for a complete description of the event structure.

typedef struct

{

ACSHandle_t acsHandle;

EventClass_t eventClass;

EventType_t eventType;

} ACSEventHeader_t;

typedef struct

{

ACSEventHeader_t eventHeader;

union

{

struct

{

InvokeID_tinvokeID;

union

{

CSTAPickupCallConfEvent_t pickupCall;

}u;

} cstaConfirmation;

} event;

} CSTAEvent_t;

typedef struct CSTAPickupCallConfEvent_t {

Nulltype null;

} CSTAPickupCallConfEvent_t;

D1 C1 D2 D1 C1 D2

D3 D3

* *

*

?

Before After
Issue 1 — December 2001

5-57TSAPI.PDF R10.1 V1

Switching Function Services
Parameters

acsHandle

This is the handle to an active ACS Stream.

eventClass

This is a tag with the value CSTACONFIRMATION, which identifies this
message as an CSTA confirmation event.

eventType

This is a tag with the value CSTA_PICKUP_CALL_CONF, which identifies
this message as an CSTAPickupCallConfEvent.

invokeID

This parameter specifies the function service request instance for the
service which was processed at the Telephony Server or at the switch. This
identifier is provided to the application when a service request is made.

privateData

If private data accompanied this event, then the private data would be
copied to the location pointed to by the privateData pointer in the
acsGetEventBlock() or acsGetEventPoll() function. If the privateData
pointer is set to NULL in these functions, then no private data will be
delivered to the application.

cstaReconnectCall()

The cstaReconnectCall() service provides the compound action (combination)
of the cstaClearConnection() service followed by the cstaRetrieveCall()
service. The service clears an existing Connection and then retrieves a previously
Held Connection at the same device.

Syntax

#include <acs.h>

#include <csta.h>

RetCode_t cstaReconnectCall (

ACSHandle_t acsHandle,

InvokeID_t invokeID,

ConnectionID_t *activeCall,

ConnectionID_t *heldCall,

PrivateData_t *privateData);
Issue 1 — December 2001

TSAPI.PDF R10.1 V15-58

Switching Function Services
Parameters

acsHandle

This is the value of the unique handle to the opened ACS Stream.

invokeID

A handle provided by the application to be used for matching a specific
instance of a function service request with its associated confirmation
event. This parameter is only used when the Invoke ID mechanism is set
for Application-generated IDs in the acsOpenStream(). The parameter is
ignored by the ACS Library when the Stream is set for Library-generated
invoke IDs.

activeCall

A pointer to the connection identifier of the active call which is to be
cleared.

heldCall

A pointer to the connection identifier of the held call which is to be
retrieved.

privateData

This is a pointer to the private data extension mechanism. Setting this
parameter is optional. If the parameter is not used, the pointer should be
set to NULL.

Return Values

This function returns the following values depending on whether the
application is using library or application-generated invoke identifiers:

Library-generated Identifiers - if the function call completes
successfully it will return a positive value, i.e. the invoke identifier. If
the call fails a negative error (<0) condition will be returned. For
library-generated identifiers the return will never be zero (0).

Application-generated Identifiers - if the function call completes
successfully it will return a zero (0) value. If the call fails a negative
error (<0) condition will be returned. For application-generated
identifiers the return will never be positive (>0).

The application should always check the CSTAReconnectCallConfEvent
message to ensure that the service request has been acknowledged and
processed by the Telephony Server and the switch.

The following are possible negative error conditions for this function:

ACSERR_BADHDL

This return value indicates that a bad or unknown acsHandle was
provided by the application.

ACSERR_STREAM_FAILED
Issue 1 — December 2001

5-59TSAPI.PDF R10.1 V1

Switching Function Services
This return value indicates that a previously active ACS Stream has
been abnormally aborted.
Issue 1 — December 2001

TSAPI.PDF R10.1 V15-60

Switching Function Services
Comments

A successful request of this service will cause an existing active call to be
dropped. Once the active call has been dropped, the specified held call at
the device is retrieved and becomes active. This service is typically used to
drop an active call and return to a held call; however, it can also be used to
cancel of a consultation call (because of no answer, called device busy,
etc.) followed by returning to a held call.

Figure 5-13. Reconnect Call Service

CSTAReconnectCallConfEvent

The Reconnect Call confirmation event provides the positive response from the
server for a previous Reconnect call request.

Syntax

The following structure shows only the relevant portions of the unions for
this message. See ACS Data Types and CSTA Data Types in Section 4
for a complete description of the event structure.

typedef struct

{

ACSHandle_t acsHandle;

EventClass_t eventClass;

EventType_t eventType;

} ACSEventHeader_t;

D1 C1D1 C1 D2D2

D3C2

ch

c D3C2

*

*

*

*

Before After
Issue 1 — December 2001

5-61TSAPI.PDF R10.1 V1

Switching Function Services
typedef struct

{

ACSEventHeader_t eventHeader;

union

{

struct

{

InvokeID_tinvokeID;

union

{

CSTAReconnectCallConfEvent_t reconnectCall;

}u;

} cstaConfirmation;

} event;

} CSTAEvent_t;

typedef struct CSTAReconnectCallConfEvent_t {

Nulltype null;

} CSTAReconnectCallConfEvent_t;

Parameters

acsHandle

This is the handle to an active ACS Stream.

eventClass

This is a tag with the value CSTACONFIRMATION, which identifies this
message as an CSTA confirmation event.

eventType

This is a tag with the value CSTA_RECONNECT_CALL_CONF, which
identifies this message as an CSTAReconnectCallConfEvent.

invokeID

This parameter specifies the function service request instance for the
service which was processed at the Telephony Server or at the switch. This
identifier is provided to the application when a service request is made.

privateData

If private data accompanied this event, then the private data would be
copied to the location pointed to by the privateData pointer in the
acsGetEventBlock() or acsGetEventPoll() function. If the privateData
pointer is set to NULL in these functions, then no private data will be
delivered to the application.
Issue 1 — December 2001

TSAPI.PDF R10.1 V15-62

Switching Function Services
cstaRetrieveCall()

The cstaRetrieveCall() service connects an existing Held Connection. The state
of the specified call changes from held to active.

Syntax

#include <acs.h>

#include <csta.h>

RetCode_t cstaRetrieveCall (

ACSHandle_t acsHandle,

InvokeID_t invokeID,

ConnectionID_t *heldCall,

PrivateData_t *privateData);

Parameters

acsHandle

This is the value of the unique handle to the opened ACS Stream.

invokeID

A handle provided by the application to be used for matching a specific
instance of a function service request with its associated confirmation
event. This parameter is only used when the Invoke ID mechanism is set
for Application-generated IDs in the acsOpenStream(). The parameter is
ignored by the ACS Library when the Stream is set for Library-generated
invoke IDs.

heldCall

A pointer to the connection identifier of the held call which is to be
retrieved.

privateData

This is a pointer to the private data extension mechanism. Setting this
parameter is optional. If the parameter is not used, the pointer should be
set to NULL.

Return Values

This function returns the following values depending on whether the
application is using library or application-generated invoke identifiers:

Library-generated Identifiers - if the function call completes
successfully it will return a positive value, i.e., the invoke identifier. If
the call fails a negative error (<0) condition will be returned. For
library-generated identifiers the return will never be zero (0).

Application-generated Identifiers - if the function call completes
successfully it will return a zero (0) value. If the call fails a negative
error (<0) condition will be returned. For application-generated
identifiers the return will never be positive (>0).
Issue 1 — December 2001

5-63TSAPI.PDF R10.1 V1

Switching Function Services
The application should always check the CSTARetrieveCallConfEvent
message to ensure that the service request has been acknowledged and
processed by the Telephony Server and the switch.

The following are possible negative error conditions for this function:

ACSERR_BADHDL

This return value indicates that a bad or unknown acsHandle was
provided by the application.

ACSERR_STREAM_FAILED

This return value indicates that a previously active ACS Stream has
been abnormally aborted.

Comments

The indicated held Connection is restored to the Connected state (active).
The call state can change depending on the actions of far end endpoints. If
the cstaHoldCall() service reserved the Held Connection and the
cstaRetrieveCall() service is requested for the same call, then the
Retrieve Call service uses the reserved Connection.

Figure 5-14. Retrieve Call Service

CSTARetrieveCallConfEvent

The Retrieve Call confirmation event provides the positive response from the
server for a previous Retrieve call request.

Syntax

The following structure shows only the relevant portions of the unions for
this message. See ACS Data Types and CSTA Data Types in Section 4
for a complete description of the event structure.

D1 C1 D1 C1 D2D2 ch * *

Before After
Issue 1 — December 2001

TSAPI.PDF R10.1 V15-64

Switching Function Services
typedef struct

{

ACSHandle_t acsHandle;

EventClass_t eventClass;

EventType_t eventType;

} ACSEventHeader_t;

typedef struct

{

ACSEventHeader_teventHeader;

union

{

struct

{

InvokeID_tinvokeID;

union

{

CSTARetrieveCallConfEvent_t retrieveCall;

}u;

} cstaConfirmation;

} event;

} CSTAEvent_t;

typedef struct CSTARetrieveCallConfEvent_t {

Nulltype null;

} CSTARetrieveCallConfEvent_t;

Parameters

acsHandle

This is the handle to an active ACS Stream.

eventClass

This is a tag with the value CSTACONFIRMATION, which identifies this
message as an CSTA confirmation event.

eventType

This is a tag with the value CSTA_RETRIEVE_CALL_CONF, which
identifies this message as an CSTARetrieveCallConfEvent.

invokeID

This parameter specifies the function service request instance for the
service which was processed at the Telephony Server or at the switch. This
identifier is provided to the application when a service request is made.

privateData

If private data accompanied this event, then the private data would be
copied to the location pointed to by the privateData pointer in the
acsGetEventBlock() or acsGetEventPoll() function. If the privateData
pointer is set to NULL in these functions, then no private data will be
delivered to the application.
Issue 1 — December 2001

5-65TSAPI.PDF R10.1 V1

Switching Function Services
cstaTransferCall()

The cstaTransferCall() service provides the transfer of a held call with an active
call at the same device. The transfer service merges two calls with Connections
to a single common device. Also, both of the Connections to the common device
become Null and their Connections Identifiers are released.

Syntax

#include <acs.h>

#include <csta.h>

RetCode_t cstaTransferCall (

ACSHandle_t acsHandle,

InvokeID_t invokeID,

ConnectionID_t *heldCall,

ConnectionID_t *activeCall,

PrivateData_t *privateData);

Parameters

acsHandle

This is the value of the unique handle to the opened ACS Stream.

invokeID

A handle provided by the application to be used for matching a specific
instance of a function service request with its associated confirmation
event. This parameter is only used when the Invoke ID mechanism is set
for Application-generated IDs in the acsOpenStream(). The parameter is
ignored by the ACS Library when the Stream is set for Library-generated
invoke IDs.

heldCall

A pointer to the connection identifier of the held call which is to be
transferred.

activeCall

A pointer to the connection identifier of the active call to which the held call
is to be transferred.

privateData

This is a pointer to the private data extension mechanism. Setting this
parameter is optional. If the parameter is not used, the pointer should be
set to NULL.

Return Values

This function returns the following values depending on whether the
application is using library or application-generated invoke identifiers:
Issue 1 — December 2001

TSAPI.PDF R10.1 V15-66

Switching Function Services
Library-generated Identifiers - if the function call completes
successfully it will return a positive value, i.e. the invoke identifier. If
the call fails a negative error (<0) condition will be returned. For
library-generated identifiers the return will never be zero (0).

Application-generated Identifiers - if the function call completes
successfully it will return a zero (0) value. If the call fails a negative
error (<0) condition will be returned. For application-generated
identifiers the return will never be positive (>0).

The application should always check the CSTATransferCallConfEvent
message to ensure that the service request has been acknowledged and
processed by the Telephony Server and the switch.

The following are possible negative error conditions for this function:

ACSERR_BADHDL

This return value indicates that a bad or unknown acsHandle was
provided by the application.

ACSERR_STREAM_FAILED

This return value indicates that a previously active ACS Stream has
been abnormally aborted.

Comments

Referring to Figure 5-16, the starting conditions for the cstaTransferCall()
service are: the call C1 from D1 to D2 is in held state (heldCall). A call C2
from D1 to D3 is in progress or active (activeCall). This service transfers
the existing (held) call between devices D1 and D2 into a new call with a
new call identifier from device D2 to a device D3.

Figure 5-15. Transfer Call Service

The request is used in the situation where the call from D1 to D3 is
established (active) or if the call is in any state other than Failed or Null
state. The Transfer Call service successfully completes, and D1 is
released from the call.

D1 C1 D2

D3C2

D1 D2

D3c

h

C3

*

**

*

Before After
Issue 1 — December 2001

5-67TSAPI.PDF R10.1 V1

Switching Function Services
CSTATransferCallConfEvent

The Transfer Call confirmation event provides the positive response from the
server for a previous transfer call request.

Syntax

The following structure shows only the relevant portions of the unions for
this message. See ACS Data Types and CSTA Data Types in Section 4
for a complete description of the event structure.

typedef struct

{

ACSHandle_t acsHandle;

EventClass_t eventClass;

EventType_t eventType;

} ACSEventHeader_t;

typedef struct

{

ACSEventHeader_teventHeader;

union

{

struct

{

InvokeID_tinvokeID;

union

{

CSTATransferCallConfEvent_t transferCall;

} u;

} cstaConfirmation;

} event;

} CSTAEvent_t;

typedef struct Connection_t {

ConnectionID_t party;

SubjectDeviceID_t staticDevice; /* NULL for not present */

} Connection_t;

typedef struct ConnectionList {

int count;

Connection_t *connection;

} ConnectionList_t;

typedef struct {

ConnectionID_t newCall;

ConnectionList_t connList;

} CSTATransferCallConfEvent_t;
Issue 1 — December 2001

TSAPI.PDF R10.1 V15-68

Switching Function Services
Parameters

acsHandle

This is the handle for the ACS Stream.

eventClass

This is a tag with the value CSTACONFIRMATION, which identifies this
message as an CSTA confirmation event.

eventType

This is a tag with the value CSTA_TRANSFER_CALL_CONF, which
identifies this message as an CSTATransferCallConfEvent.

invokeID

This parameter specifies the function service request instance for the
service which was processed at the Telephony Server or at the switch.
This identifier is provided to the application when a service request is
made.

newCall

Specifies the resulting Connection Identifier for the transferred call.

connList

Specifies the resulting number of known devices in the transferred call.
This field contains a count (count) of the number of devices in the
transferred call and a pointer (*connection) to an array of pointers that
point to ConnectionID_t structures which define each connection in the call.

Each ConnectionID_t record contains the following:

Party - indicates the Connection ID of the party in the transferred
call.

Device - provides the static reference for the party in the transferred
call. This parameter may have a value that indicates the static
identifier is not known.

privateData

If private data accompanied this event, then the private data would be
copied to the location pointed to by the privateData pointer in the
acsGetEventBlock() or acsGetEventPoll() function. If the privateData
pointer is set to NULL in these functions, then no private data will be
delivered to the application.
Issue 1 — December 2001

5-69TSAPI.PDF R10.1 V1

Switching Function Services
Telephony Supplementary Services

This section describes those CSTA telephony services that switches typically
provide as "features".

NOTE:
Not all switches support all these functions and events.

Applications can use the Telephony Supplementary Services (defined in this
section) to manipulate telephony objects.. As with other TSAPI services already
described, these function will generate associated confirmation events from the
Telephony Server. Similarly (as described in Chapter 4, Sending CSTA
Requests and Responses) applications can use the invokeID to match a specific
confirmation event with the specific function call, or they may use
application-generated invokeIDs to index into a data structure.

To receive events, an application must have an active ACS Stream and an
implement an event handling mechanism. Further, the reception of unsolicited
events requires an active monitor. See the Control Services and Status
Reporting Services sections for more information on events.

cstaSetMsgWaitingInd()

The cstaSetMsgWaitingInd() service provides the application with the ability to
turns on and off a message waiting indicator on a telephony device.

Syntax

#include <acs.h>

#include <csta.h>

RetCode_t cstaSetMsgWaitingInd (

ACSHandle_t acsHandle,

InvokeID_t invokeID,

DeviceID_t *device,

Boolean messages,

PrivateData_t *privateData);

Parameters

acsHandle

This is the value of the unique handle to the opened ACS Stream.

invokeID

A handle provided by the application to be used for matching a specific
instance of a function service request with its associated confirmation
event. This parameter is only used when the Invoke ID mechanism is set
Issue 1 — December 2001

TSAPI.PDF R10.1 V15-70

Switching Function Services
for Application-generated IDs in the acsOpenStream(). The parameter is
ignored by the ACS Library when the Stream is set for Library-generated
invoke IDs.

device

This parameter is a pointer to the device identifier of the device on which to
set the message waiting indicator. .

messages

This parameter identifies whether to turn on or off the message waiting
indicator at the device specified by device parameter. A value of TRUE
indicates that the message waiting indicator should be tuned on, FALSE
indicates that the indicator should be turn off.

privateData

This is a pointer to the private data extension mechanism. Setting this
parameter is optional. If the parameter is not used, the pointer should be
set to NULL.

Return Values

This function returns the following values depending on whether the
application is using library or application-generated invoke identifiers:

Library-generated Identifiers - if the function call completes
successfully it will return a positive value, i.e. the invoke identifier. If
the call fails a negative error (<0) condition will be returned. For
library-generated identifiers the return will never be zero (0).

Application-generated Identifiers - if the function call completes
successfully it will return a zero (0) value. If the call fails a negative
error (<0) condition will be returned. For application-generated
identifiers the return will never be positive (>0).

The application should always check the CSTASetMwiConfEvent
message to ensure that the service request has been acknowledged and
processed by the Telephony Server and the switch.

The following are possible negative error conditions for this function:

ACSERR_BADHDL

This return value indicates that a bad or unknown acsHandle was
provided by the application.

ACSERR_STREAM_FAILED

This return value indicates that a previously active ACS Stream has
been abnormally aborted.
Issue 1 — December 2001

5-71TSAPI.PDF R10.1 V1

Switching Function Services
CSTASetMwiConfEvent

The Set Message Waiting Indicator confirmation event provides the positive
response from the Telephony Server for a previous Set Message Waiting Indicator
service request. When the application receives this event the message waiting
indicator has been set as requested by the application.

Syntax

The following structure shows only the relevant portions of the unions for
this message. See ACS Data Types and CSTA Data Types in Section 4
for a complete description of the event structure.

typedef struct

{

ACSHandle_t acsHandle;

EventClass_t eventClass;

EventType_t eventType;

} ACSEventHeader_t;

typedef struct

{

ACSEventHeader_teventHeader;

union

{

struct

{

InvokeID_tinvokeID;

union

{

CSTASetMwiConfEvent_t setMwi;

}u;

} cstaConfirmation;

} event;

} CSTAEvent_t;

typedef struct CSTASetMwiConfEvent_t {

Nulltype null;

} CSTASetMwiConfEvent_t;

Parameters

acsHandle

This is the handle for the ACS Stream.

eventClass

This is a tag with the value CSTACONFIRMATION, which identifies this
message as an CSTA confirmation event.

eventType

This is a tag with the value CSTA_SET_MWI_CONF, which identifies this
message as an CSTASetMessageWaitingIndConfEvent.
Issue 1 — December 2001

TSAPI.PDF R10.1 V15-72

Switching Function Services
invokeID

This parameter specifies the function service request instance for the
service which was processed at the Telephony Server or at the switch. This
identifier is provided to the application when a service request is made.

privateData

If private data accompanied this event, then the private data would be
copied to the location pointed to by the privateData pointer in the
acsGetEventBlock() or acsGetEventPoll() function. If the privateData
pointer is set to NULL in these functions, then no private data will be
delivered to the application.

cstaSetDoNotDisturb()

The cstaSetDoNotDisturb() service activates the switch feature that prevents
calls from alerting at a specified device by deflecting the calls from the original
destination to other devices.

Syntax

#include <acs.h>

#include <csta.h>

RetCode_t cstaSetDoNotDisturb (

ACSHandle_t acsHandle,

InvokeID_t invokeID,

DeviceID_t *device,

Boolean doNotDisturb,

PrivateData_t *privateData);

Parameters

acsHandle

This is the value of the unique handle to the opened ACS Stream.

invokeID

A handle provided by the application to be used for matching a specific
instance of a function service request with its associated confirmation
event. This parameter is only used when the Invoke ID mechanism is set
for Application-generated IDs in the acsOpenStream(). The parameter is
ignored by the ACS Library when the Stream is set for Library-generated
invoke IDs.

device

This parameter is a pointer to the device identifier of the device on which
the Do Not Disturb feature is to be activated. This parameter may be
different than the originating device depending on the security level defined
for the originating device in the Telephony Server.
Issue 1 — December 2001

5-73TSAPI.PDF R10.1 V1

Switching Function Services
doNotDisturb

This parameter identifies whether to turn on or off the Do Not Disturb
feature at the device specified by device parameter. A value of TRUE
indicates that the Do Not Disturb feature should be tuned on, FALSE
indicates that the feature should be turn off.

privateData

This is a pointer to the private data extension mechanism. Setting this
parameter is optional. If the parameter is not used, the pointer should be
set to NULL.

Return Values

This function returns the following values depending on whether the
application is using library or application-generated invoke identifiers:

Library-generated Identifiers - if the function call completes
successfully it will return a positive value, i.e. the invoke identifier. If
the call fails a negative error (<0) condition will be returned. For
library-generated identifiers the return will never be zero (0).

Application-generated Identifiers - if the function call completes
successfully it will return a zero (0) value. If the call fails a negative
error (<0) condition will be returned. For application-generated
identifiers the return will never be positive (>0).

The application should always check the CSTASetDndConfEvent
message to ensure that the service request has been acknowledged and
processed by the Telephony Server and the switch.

The following are possible negative error conditions for this function:

ACSERR_BADHDL

This return value indicates that a bad or unknown acsHandle was
provided by the application.

ACSERR_STREAM_FAILED

This return value indicates that a previously active ACS Stream has
been abnormally aborted.
Issue 1 — December 2001

TSAPI.PDF R10.1 V15-74

Switching Function Services
CSTASetDndConfEvent

The Set Do Not Disturb confirmation event provides the positive response from
the Telephony Server for a previous Set Do Not Disturb request. When the
application receives this event the Do Not Disturb feature has been set as
requested by the application.

Syntax

The following structure shows only the relevant portions of the unions for
this message. See ACS Data Types and CSTA Data Types in Section 4
for a complete description of the event structure.

typedef struct

{

ACSHandle_t acsHandle;

EventClass_t eventClass;

EventType_t eventType;

} ACSEventHeader_t;

typedef struct

{

ACSEventHeader_teventHeader;

union

{

struct

{

InvokeID_tinvokeID;

union

{

CSTASetDndConfEvent_t setDnd;

}u;

} cstaConfirmation;

} event;

} CSTAEvent_t;

typedef struct CSTASetDndConfEvent_t {

Nulltype null;

} CSTASetDndConfEvent_t;

Parameters

acsHandle

This is the handle for the ACS Stream.

eventClass

This is a tag with the value CSTACONFIRMATION, which identifies this
message as an CSTA confirmation event.

eventType

This is a tag with the value CSTA_SET_DND_CONF, which identifies this
message as an CSTASetDndConfEvent.

agentMode

This parameter specifies the work mode state which the agent will be
moved to. This could be one of the following:

LOG_IN

LOG_OUT

NOT_READY

READY

WORK_NOT_READY

WORK_READY

agentID

A pointer to the agent identifier of the ACD Agent whose work mode is to
be changed.

agentGroup

A pointer to the agent group identifier for the ACD group or split in which
the agent will be logged into or out of. This parameter is only required
when the agentMode parameter is set for the LOG_IN and LOG_OUT
work modes.

agentPassword

A pointer to a password that allows the agent to log into an ACD split or
group. This parameter is only required when the agentMode parameter is
set for the LOG_IN and LOG_OUT work modes.

privateData

This is a pointer to the private data extension mechanism. Setting this
parameter is optional. If the parameter is not used, the pointer should be
set to NULL.

Return Values

This function returns the following values depending on whether the
application is using library or application-generated invoke identifiers:

Library-generated Identifiers - if the function call completes
successfully it will return a positive value, i.e. the invoke identifier. If
the call fails a negative error (<0) condition will be returned. For
library-generated identifiers the return will never be zero (0).

Application-generated Identifiers - if the function call completes
successfully it will return a zero (0) value. If the call fails a negative
error (<0) condition will be returned. For application-generated
identifiers the return will never be positive (>0).

The application should always check the CSTASetAgentStateConfEvent
message to ensure that the service request has been acknowledged and
Issue 1 — December 2001

5-75TSAPI.PDF R10.1 V1

Switching Function Services
invokeID

This parameter specifies the function service request instance for the
service which was processed at the Telephony Server or at the switch. This
identifier is provided to the application when a service request is made.

privateData

If private data accompanied this event, then the private data would be
copied to the location pointed to by the privateData pointer in the
acsGetEventBlock() or acsGetEventPoll() function. If the privateData
pointer is set to NULL in these functions, then no private data will be
delivered to the application.

cstaSetForwarding()

The cstaSetForwarding() service activates and deactivates several types of
forwarding features on a specified device.

Syntax

#include <acs.h>

#include <csta.h>

RetCode_t cstaSetForwarding (

ACSHandle_t acsHandle,

InvokeID_t invokeID,

DeviceID_t *device,

ForwardingType_t forwardingType,

Boolean forwardingOn,

DeviceID_t *forwardingDestination,

PrivateData_t *privateData);

typedef enum ForwardingType_t {

FWD_IMMEDIATE = 0,

FWD_BUSY = 1,

FWD_NO_ANS = 2,

FWD_BUSY_INT = 3,

FWD_BUSY_EXT = 4,

FWD_NO_ANS_INT = 5,

FWD_NO_ANS_EXT = 6

} ForwardingType_t;
Issue 1 — December 2001

TSAPI.PDF R10.1 V15-76

Switching Function Services
Parameters

acsHandle

This is the value of the unique handle to the opened ACS Stream.

invokeID

A handle provided by the application to be used for matching a specific
instance of a function service request with its associated confirmation
event. This parameter is only used when the Invoke ID mechanism is set
for Application-generated IDs in the acsOpenStream(). The parameter is
ignored by the ACS Library when the Stream is set for Library-generated
invoke IDs.

device

This parameter is a pointer to the device identifier of the device on which
forwarding is to be set. This parameter may be different than the originating
device depending on the security level defined for the originating device in
the Telephony Server.

forwardingType

This parameter specifies the type of forwarding to set or clear at the
requested device. The possible types include:

forwardingOn

This parameter identifies whether to turn on or off the forwarding feature at
the device specified by device parameter. A value of TRUE indicates that
the forwarding feature should be tuned on, FALSE indicates that the
feature should be turn off.

Immediate Forwarding all calls

Busy Forwarding when busy

No Answer Forwarding after no answer

Busy Internal Forwarding when busy for an
internal call

Busy External Forwarding when busy for an
external call

No Answer Internal Forwarding after no answer
for an internal call

No Answer External Forwarding after no answer
for an external call.
Issue 1 — December 2001

5-77TSAPI.PDF R10.1 V1

Switching Function Services
forwardingDestination

This is a pointer to the device identifier for the device to which the calls are
to be forwarded.

privateData

This is a pointer to the private data extension mechanism. Setting this
parameter is optional. If the parameter is not used, the pointer should be
set to NULL.

Return Values

This function returns the following values depending on whether the
application is using library or application-generated invoke identifiers:

Library-generated Identifiers - if the function call completes
successfully it will return a positive value, i.e. the invoke identifier. If
the call fails a negative error (<0) condition will be returned. For
library-generated identifiers the return will never be zero (0).

Application-generated Identifiers - if the function call completes
successfully it will return a zero (0) value. If the call fails a negative
error (<0) condition will be returned. For application-generated
identifiers the return will never be positive (>0).

The application should always check the CSTASetFwdConfEvent
message to ensure that the service request has been acknowledged and
processed by the Telephony Server and the switch.

The following are possible negative error conditions for this function:

ACSERR_BADHDL

This return value indicates that a bad or unknown acsHandle was
provided by the application.

ACSERR_STREAM_FAILED

This return value indicates that a previously active ACS Stream has
been abnormally aborted.

CSTASetFwdConfEvent

The Set Forwarding confirmation event provides the positive response from the
server for a previous Set Forwarding service request. When this event is received
by the application the forwarding feature has been set as requested.

Syntax

The following structure shows only the relevant portions of the unions for
this message. See ACS Data Types and CSTA Data Types in Section 4
for a complete description of the event structure.
Issue 1 — December 2001

TSAPI.PDF R10.1 V15-78

Switching Function Services
typedef struct

{

ACSHandle_tacsHandle;

EventClass_teventClass;

EventType_teventType;

} ACSEventHeader_t;

typedef struct

{

ACSEventHeader_t eventHeader;

union

{

struct

{

InvokeID_tinvokeID;

union

{

CSTASetFwdConfEvent_t setFwd;

}u;

} cstaConfirmation;

} event;

} CSTAEvent_t;

typedef struct CSTASetFwdConfEvent_t {

Nulltype null;

} CSTASetFwdConfEvent_t;

Parameters

acsHandle

This is the handle for the ACS Stream.

eventClass

This is a tag with the value CSTACONFIRMATION, which identifies this
message as an CSTA confirmation event.

eventType

This is a tag with the value CSTA_SET_FWD_CONF, which identifies this
message as an CSTASetFwdConfEvent.

invokeID

This parameter specifies the function service request instance for the
service which was processed at the Telephony Server or at the switch. This
identifier is provided to the application when a service request is made.

privateData

If private data accompanied this event, then the private data would be
copied to the location pointed to by the privateData pointer in the
acsGetEventBlock() or acsGetEventPoll() function. If the privateData
pointer is set to NULL in these functions, then no private data will be
delivered to the application.
Issue 1 — December 2001

5-79TSAPI.PDF R10.1 V1

Switching Function Services
cstaSetAgentState()

The cstaSetAgentState() service changes an ACD agents work mode to one
specified by this service.

Syntax

#include <acs.h>

#include <csta.h>

RetCode_t cstaSetAgentState (

ACSHandle_t acsHandle,

InvokeID_t invokeID,

DeviceID_t *device,

AgentMode_t agentMode,

AgentID_t *agentID,

AgentGroup_t *agentGroup,

AgentPassword_t *agentPassword,

PrivateData_t *privateData);

typedef enum AgentMode_t {

AM_LOG_IN = 0,

AM_LOG_OUT = 1,

AM_NOT_READY = 2,

AM_READY = 3,

AM_WORK_NOT_READY = 4,

AM_WORK_READY = 5

} AgentMode_t;

typedef char AgentID_t[32];

typedef DeviceID_t AgentGroup_t;

typedef char AgentPassword_t[32];

Parameters

acsHandle

This is the value of the unique handle to the opened ACS Stream.

invokeID

A handle provided by the application to be used for matching a specific
instance of a function service request with its associated confirmation
event. This parameter is only used when the Invoke ID mechanism is set
for Application-generated IDs in the acsOpenStream(). The parameter is
ignored by the ACS Library when the Stream is set for Library-generated
invoke IDs.

device

This parameter points to the device identifier for the ACD agent for which
the work mode is to be changed. This parameter may be different than the
originating device depending on the security level defined for the
originating device in the Telephony Server.
Issue 1 — December 2001

TSAPI.PDF R10.1 V15-80

Switching Function Services
agentMode

This parameter specifies the work mode state which the agent will be
moved to. This could be one of the following:

LOG_IN

LOG_OUT

NOT_READY

READY

WORK_NOT_READY

WORK_READY

agentID

A pointer to the agent identifier of the ACD Agent whose work mode is to
be changed.

agentGroup

A pointer to the agent group identifier for the ACD group or split in which
the agent will be logged into or out of. This parameter is only required
when the agentMode parameter is set for the LOG_IN and LOG_OUT
work modes.

agentPassword

A pointer to a password that allows the agent to log into an ACD split or
group. This parameter is only required when the agentMode parameter is
set for the LOG_IN and LOG_OUT work modes.

privateData

This is a pointer to the private data extension mechanism. Setting this
parameter is optional. If the parameter is not used, the pointer should be
set to NULL.

Return Values

This function returns the following values depending on whether the application is
using library or application-generated invoke identifiers:

Library-generated Identifiers - if the function call completes successfully it
will return a positive value, i.e. the invoke identifier. If the call fails a negative
error (<0) condition will be returned. For library-generated identifiers the
return will never be zero (0).

Application-generated Identifiers - if the function call completes successfully
it will return a zero (0) value. If the call fails a negative error (<0) condition
will be returned. For application-generated identifiers the return will never be
positive (>0).

The application should always check the CSTASetAgentStateConfEvent message
Issue 1 — December 2001

5-81TSAPI.PDF R10.1 V1

Switching Function Services
to ensure that the service request has been acknowledged and processed by the
Telephony Server and the switch.

The following are possible negative error conditions for this function:

ACSERR_BADHDL

This return value indicates that a bad or unknown acsHandle was
provided by the application.

ACSERR_STREAM_FAILED

This return value indicates that a previously active ACS Stream has
been abnormally aborted.

CSTASetAgentStateConfEvent

The Set Agent State confirmation event provides the positive response from the
server for a previous Set Agent State service request. When this event is received
by the application the agent state has been set as requested.

Syntax

The following structure shows only the relevant portions of the unions for
this message. See ACS Data Types and CSTA Data Types in Section 4
for a complete description of the event structure.

typedef struct

{

ACSHandle_t acsHandle;

EventClass_t eventClass;

EventType_t eventType;

} ACSEventHeader_t;

typedef struct

{

ACSEventHeader_teventHeader;

union

{

struct

{

InvokeID_tinvokeID;

union

{

CSTASetAgentStateConfEvent_t setAgentState;

}u;

} cstaConfirmation;

} event;

} CSTAEvent_t;

typedef struct CSTASetAgentStateConfEvent_t {

Nulltype null;

} CSTASetAgentStateConfEvent_t;
Issue 1 — December 2001

TSAPI.PDF R10.1 V15-82

Switching Function Services
Parameters

acsHandle

This is the handle for the ACS Stream.

eventClass

This is a tag with the value CSTACONFIRMATION, which identifies this
message as an CSTA confirmation event.

eventType

This is a tag with the value CSTA_SET_AGENT_STATE_CONF, which
identifies this message as an CSTASetAgentStateConfEvent.

invokeID

This parameter specifies the function service request instance for the
service which was processed at the Telephony Server or at the switch. This
identifier is provided to the application when a service request is made.

privateData

If private data accompanied this event, then the private data would be
copied to the location pointed to by the privateData pointer in the
acsGetEventBlock() or acsGetEventPoll() function. If the privateData
pointer is set to NULL in these functions, then no private data will be
delivered to the application.

cstaQueryMsgWaitingInd()

The cstaQueryMessageWaitingInd() service provides the current state of the
message waiting indicator of a specified device.

Syntax

#include <acs.h>

#include <csta.h>

RetCode_t cstaQueryMsgWaitingInd (

ACSHandle_t acsHandle,

InvokeID_t invokeID,

DeviceID_t *device,

PrivateData_t*privateData);

Parameters

acsHandle

This is the value of the unique handle to the opened ACS Stream.
Issue 1 — December 2001

5-83TSAPI.PDF R10.1 V1

Switching Function Services
invokeID

A handle provided by the application to be used for matching a specific
instance of a function service request with its associated confirmation
event. This parameter is only used when the Invoke ID mechanism is set
for Application-generated IDs in the acsOpenStream(). The parameter is
ignored by the ACS Library when the Stream is set for Library-generated
invoke IDs.

device

This parameter is a pointer to the device identifier of the device on which
the message waiting indicator is being queried. This parameter may be
different than the originating device depending on the security level defined
for the originating device in the Telephony Server.

privateData

This is a pointer to the private data extension mechanism. Setting this
parameter is optional. If the parameter is not used, the pointer should be
set to NULL.

Return Values

This function returns the following values depending on whether the
application is using library or application-generated invoke identifiers:

Library-generated Identifiers - if the function call completes
successfully it will return a positive value, i.e. the invoke identifier. If
the call fails a negative error (<0) condition will be returned. For
library-generated identifiers the return will never be zero (0).

Application-generated Identifiers - if the function call completes
successfully it will return a zero (0) value. If the call fails a negative
error (<0) condition will be returned. For application-generated
identifiers the return will never be positive (>0).

The application should always check the CSTAQueryMwiConfEvent
message to ensure that the service request has been acknowledged and
processed by the Telephony Server and the switch.

The following are possible negative error conditions for this function:

ACSERR_BADHDL

This return value indicates that a bad or unknown acsHandle was
provided by the application.

ACSERR_STREAM_FAILED

This return value indicates that a previously active ACS Stream has
been abnormally aborted.
Issue 1 — December 2001

TSAPI.PDF R10.1 V15-84

Switching Function Services
CSTAQueryMwiConfEvent

The Query Message Waiting Indicator confirmation event provides the positive
response from the server for a previous Query Message Waiting Indicator service
request. This event informs the application whether there are any messages
waiting, i.e. whether the message waiting indicator is turned on or off.

Syntax

The following structure shows only the relevant portions of the unions for
this message. See ACS Data Types and CSTA Data Types in Section 4
for a complete description of the event structure.

typedef struct

{

ACSHandle_t acsHandle;

EventClass_t eventClass;

EventType_t eventType;

} ACSEventHeader_t;

typedef struct

{

ACSEventHeader_t eventHeader;

union

{

struct

{

InvokeID_tinvokeID;

union

{

CSTAQueryMwiConfEvent_t queryMwi;

} u;

} cstaConfirmation;

} event;

} CSTAEvent_t;

typedef struct CSTAQueryMwiConfEvent_t {

Boolean messages;

} CSTAQueryMwiConfEvent_t;

Parameters

acsHandle

This is the handle for the ACS Stream.

eventClass

This is a tag with the value CSTACONFIRMATION, which identifies this
message as an CSTA confirmation event.

eventType

This is a tag with the value CSTA_QUERY_MWI_CONF, which identifies
this message as an CSTAQueryMwiConfEvent.
Issue 1 — December 2001

5-85TSAPI.PDF R10.1 V1

Switching Function Services
invokeID

This parameter specifies the function service request instance for the
service which was processed at the Telephony Server or at the switch. This
identifier is provided to the application when a service request is made.

messages

This parameter specifies whether there are any messages waiting at the
requested device. TRUE indicates that there are messages waiting, FALSE
indicates that there are none.

privateData

If private data accompanied this event, then the private data would be
copied to the location pointed to by the privateData pointer in the
acsGetEventBlock() or acsGetEventPoll() function. If the privateData
pointer is set to NULL in these functions, then no private data will be
delivered to the application.

cstaQueryDoNotDisturb()

The cstaQueryDoNotDisturb() service provides the current state of the do not
disturb feature on a specific device.

Syntax

#include <acs.h>

#include <csta.h>

RetCode_t cstaQueryDoNotDisturb (

ACSHandle_t acsHandle,

InvokeID_t invokeID,

DeviceID_t *device,

PrivateData_t *privateData);

Parameters

acsHandle

This is the value of the unique handle to the opened ACS Stream.

invokeID

A handle provided by the application to be used for matching a specific
instance of a function service request with its associated confirmation
event. This parameter is only used when the Invoke ID mechanism is set
for Application-generated IDs in the acsOpenStream(). The parameter is
ignored by the ACS Library when the Stream is set for Library-generated
invoke IDs.

device
Issue 1 — December 2001

TSAPI.PDF R10.1 V15-86

Switching Function Services
This parameter is a pointer to the device identifier of the device on which
the Do Not Disturb feature is being queried. This parameter may be
different than the originating device depending on the security level defined
for the originating device in the Telephony Server.

privateData

This is a pointer to the private data extension mechanism. Setting this
parameter is optional. If the parameter is not used, the pointer should be
set to NULL.

Return Values

This function returns the following values depending on whether the
application is using library or application-generated invoke identifiers:

Library-generated Identifiers - if the function call completes
successfully it will return a positive value, i.e. the invoke identifier. If
the call fails a negative error (<0) condition will be returned. For
library-generated identifiers the return will never be zero (0).

Application-generated Identifiers - if the function call completes
successfully it will return a zero (0) value. If the call fails a negative
error (<0) condition will be returned. For application-generated
identifiers the return will never be positive (>0).

The application should always check the CSTAQueryDndConfEvent
message to ensure that the service request has been acknowledged and
processed by the Telephony Server and the switch.

The following are possible negative error conditions for this function:

ACSERR_BADHDL

This return value indicates that a bad or unknown acsHandle was
provided by the application.

ACSERR_STREAM_FAILED

This return value indicates that a previously active ACS Stream has
been abnormally aborted.

CSTAQueryDndConfEvent

The Query Do Not Disturb confirmation event provides the positive response from
the server for a previous Query Do Not Disturb service request. This event
informs the application whether the feature is turned on or off.

Syntax

The following structure shows only the relevant portions of the unions for
this message. See ACS Data Types and CSTA Data Types in Section 4
for a complete description of the event structure.
Issue 1 — December 2001

5-87TSAPI.PDF R10.1 V1

Switching Function Services
typedef struct

{

ACSHandle_t acsHandle;

EventClass_t eventClass;

EventType_t eventType;

} ACSEventHeader_t;

typedef struct

{

ACSEventHeader_teventHeader;

union

{

struct

{

InvokeID_t invokeID;

union

{

CSTAQueryDndConfEvent_t queryDnd;

} u;

} cstaConfirmation;

} event;

} CSTAEvent_t;

typedef struct

{

Boolean_t doNotDisturb;

} CSTAQueryDndConfEvent_t;

Parameters

acsHandle

This is the handle for the ACS Stream.

eventClass

This is a tag with the value CSTACONFIRMATION, which identifies this
message as an CSTA confirmation event.

eventType

This is a tag with the value CSTA_QUERY_DND_CONF, which identifies
this message as an CSTAQueryDndConfEvent.

invokeID

This parameter specifies the function service request instance for the
service which was processed at the Telephony Server or at the switch. This
identifier is provided to the application when a service request is made.

doNotDisturb

This parameter specifies whether the Do Not Disturb feature is active at the
requested device. TRUE indicates that the feature is turned on. FALSE
indicates that the feature is turned off.
Issue 1 — December 2001

TSAPI.PDF R10.1 V15-88

Switching Function Services
privateData

If private data accompanied this event, then the private data would be
copied to the location pointed to by the privateData pointer in the
acsGetEventBlock() or acsGetEventPoll() function. If the privateData
pointer is set to NULL in these functions, then no private data will be
delivered to the application.

cstaQueryFwd ()

The cstaQueryFwd() service provides the current state of the forwarding
feature(s) on a specific device.

Syntax

#include <acs.h>

#include <csta.h>

RetCode_t cstaQueryFwd (

ACSHandle_t acsHandle,

InvokeID_t invokeID,

DeviceID_t *device,

PrivateData_t *privateData);

Parameters

acsHandle

This is the value of the unique handle to the opened ACS Stream.

invokeID

A handle provided by the application to be used for matching a specific
instance of a function service request with its associated confirmation
event. This parameter is only used when the Invoke ID mechanism is set
for Application-generated IDs in the acsOpenStream(). The parameter is
ignored by the ACS Library when the Stream is set for Library-generated
invoke IDs.

device

This parameter is a pointer to the device identifier of the device on which
the forwarding feature is being queried. This parameter may be different
than the originating device depending on the security level defined for the
originating device in the Telephony Server.

privateData

This is a pointer to the private data extension mechanism. Setting this
parameter is optional. If the parameter is not used, the pointer should be
set to NULL.
Issue 1 — December 2001

5-89TSAPI.PDF R10.1 V1

Switching Function Services
Return Values

This function returns the following values depending on whether the
application is using library or application-generated invoke identifiers:

Library-generated Identifiers - if the function call completes
successfully it will return a positive value, i.e. the invoke identifier. If
the call fails a negative error (<0) condition will be returned. For
library-generated identifiers the return will never be zero (0).

Application-generated Identifiers - if the function call completes
successfully it will return a zero (0) value. If the call fails a negative
error (<0) condition will be returned. For application-generated
identifiers the return will never be positive (>0).The application
should always check the CSTAQueryFwdConfEvent message to
ensure that the service request has been acknowledged and
processed by the Telephony Server and the switch.

The following are possible negative error conditions for this function:

ACSERR_BADHDL

This return value indicates that a bad or unknown acsHandle was
provided by the application.

ACSERR_STREAM_FAILED

This return value indicates that a previously active ACS Stream has
been abnormally aborted.

CSTAQueryFwdConfEvent

The Query Forwarding confirmation event provides the positive response from the
server for a previous Query Forwarding service request. The event also informs
the application of the forwarding type, whether forwarding is on or off, and the
forwarding destination for each device requested.

Syntax

The following structure shows only the relevant portions of the unions for
this message. See ACS Data Types and CSTA Data Types in Section 4
for a complete description of the event structure.
Issue 1 — December 2001

TSAPI.PDF R10.1 V15-90

Switching Function Services
typedef struct

{

ACSHandle_t acsHandle;

EventClass_t eventClass;

EventType_t eventType;

} ACSEventHeader_t;

typedef struct

{

ACSEventHeader_teventHeader;

union

{

struct

{

InvokeID_tinvokeID;

union

{

CSTAQueryFwdConfEvent_t queryFwd;

} u;

} cstaConfirmation;

} event;

} CSTAEvent_t;

typedef enum ForwardingType_t {

FWD_IMMEDIATE = 0,

FWD_BUSY = 1,

FWD_NO_ANS = 2,

FWD_BUSY_INT = 3,

FWD_BUSY_EXT = 4,

FWD_NO_ANS_INT = 5,

FWD_NO_ANS_EXT = 6

} ForwardingType_t;

typedef struct ForwardingInfo_t {

ForwardingType_t forwardingType;

Boolean forwardingOn;

DeviceID_t forwardDN;

} ForwardingInfo_t;

typedef struct ListForwardParameters_t {

short count;

ForwardingInfo_t param[7];

} ListForwardParameters_t;

typedef struct CSTAQueryFwdConfEvent_t {

ListForwardParameters_tforward;

} CSTAQueryFwdConfEvent_t;
Issue 1 — December 2001

5-91TSAPI.PDF R10.1 V1

Switching Function Services
Parameters

acsHandle

This is the handle for the ACS Stream.

eventClass

This is a tag with the value CSTACONFIRMATION, which identifies this
message as an CSTA confirmation event.

eventType

This is a tag with the value CSTA_QUERY_FWD_CONF, which identifies
this message as an CSTAQueryFwdConfEvent.

invokeID

This parameter specifies the function service request instance for the
service which was processed at the Telephony Server or at the switch. This
identifier is provided to the application when a service request is made.

queryFwd

This parameter is a ListForwardParameters_t structure which contains
the following:

count

This parameter indicates how many forwarding list entries are provided.
Each entry corresponds to a different device.

param

An array of ForwardingInfo_t structures, each of which is composed of the
following elements.

forwardingType

Specifies the type of forwarding set. The types include:
Issue 1 — December 2001

TSAPI.PDF R10.1 V15-92

Switching Function Services
forwardingOn

Indicates whether forwarding is active or inactive. TRUE indicates
forwarding is active. FALSE indicates forwarding is inactive.

forwardingDN

Specifies the forward-to destination device for the type of forwarding listed.

privateData

If private data accompanied this event, then the private data would be
copied to the location pointed to by the privateData pointer in the
acsGetEventBlock() or acsGetEventPoll() function. If the privateData
pointer is set to NULL in these functions, then no private data will be
delivered to the application.

cstaQueryAgentState()

The cstaQueryAgentState() service will provide the application with the current
agent state at a device.

Syntax

#include <acs.h>

#include <csta.h>

RetCode_t cstaQueryAgentState (

ACSHandle_t acsHandle,

InvokeID_t invokeID,

DeviceID_t *device,

Immediate Forwarding all calls

Busy Forwarding when busy

No Answer Forwarding after no
answer

Busy Internal Forwarding when busy
for an internal call

Busy External Forwarding when busy
for an external call

No Answer Internal Forwarding after no
answer for an internal call

No Answer External Forwarding after no
answer for an external
call.
Issue 1 — December 2001

5-93TSAPI.PDF R10.1 V1

Switching Function Services
PrivateData_t *privateData);

Parameters

acsHandle

This is the value of the unique handle to the opened ACS Stream.

invokeID

A handle provided by the application to be used for matching a specific
instance of a function service request with its associated confirmation
event. This parameter is only used when the Invoke ID mechanism is set
for Application-generated IDs in the acsOpenStream(). The parameter is
ignored by the ACS Library when the Stream is set for Library-generated
invoke IDs.

device

This parameter is a pointer to the device identifier of the device on which
the agent state is being queried. This parameter may be different than the
originating device depending on the security level defined for the
originating device in the Telephony Server.

privateData

This is a pointer to the private data extension mechanism. Setting this
parameter is optional. If the parameter is not used, the pointer should be
set to NULL.

Return Values

This function returns the following values depending on whether the
application is using library or application-generated invoke identifiers:

Library-generated Identifiers - if the function call completes
successfully it will return a positive value, i.e. the invoke identifier. If
the call fails a negative error (<0) condition will be returned. For
library-generated identifiers the return will never be zero (0).

Application-generated Identifiers - if the function call completes
successfully it will return a zero (0) value. If the call fails a negative
error (<0) condition will be returned. For application-generated
identifiers the return will never be positive (>0).

The application should always check the
CSTAQueryAgentStateConfEvent message to ensure that the service
request has been acknowledged and processed by the Telephony Server
and the switch.

The following are possible negative error conditions for this function:

ACSERR_BADHDL

This return value indicates that a bad or unknown acsHandle was
provided by the application.

ACSERR_STREAM_FAILED
Issue 1 — December 2001

TSAPI.PDF R10.1 V15-94

Switching Function Services
This return value indicates that a previously active ACS Stream has
been abnormally aborted.

CSTAQueryAgentStateConfEvent

The Query Agent State confirmation event provides the positive response from
the server for a previous Query Agent State service request. This event will
provide the application with the current agent state.

Syntax

The following structure shows only the relevant portions of the unions for
this message. See ACS Data Types and CSTA Data Types in Section 4
for a complete description of the event structure.

typedef struct

{

ACSHandle_t acsHandle;

EventClass_t eventClass;

EventType_t eventType;

} ACSEventHeader_t;

typedef struct

{

ACSEventHeader_teventHeader;

union

{

struct

{

InvokeID_t invokeID;

union

{

CSTAQueryAgentStateConfEvent_t queryAgentState;

} u;

} cstaConfirmation;

} event;

} CSTAEvent_t;

typedef enum AgentState_t {

AG_NOT_READY = 0,

AG_NULL = 1,

AG_READY = 2,

AG_WORK_NOT_READY = 3,

AG_WORK_READY = 4

} AgentState_t;

typedef struct CSTAQueryAgentStateConfEvent_t {

AgentState_t agentState;

} CSTAQueryAgentStateConfEvent_t;
Issue 1 — December 2001

5-95TSAPI.PDF R10.1 V1

Switching Function Services
Parameters

acsHandle

This is the handle for the ACS Stream.

eventClass

This is a tag with the value CSTACONFIRMATION, which identifies this
message as an CSTA confirmation event.

eventType

This is a tag with the value CSTA_QUERY_AGENT_STATE_CONF, which
identifies this message as an CSTAQueryAgentStateConfEvent.

invokeID

This parameter specifies the function service request instance for the
service which was processed at the Telephony Server or at the switch. This
identifier is provided to the application when a service request is made.

agentState

This parameter specifies the current work mode state of the agent. The
possible agent states are:

privateData

If private data accompanied this event, then the private data would be
copied to the location pointed to by the privateData pointer in the
acsGetEventBlock() or acsGetEventPoll() function. If the privateData
pointer is set to NULL in these functions, then no private data will be
delivered to the application.

Null This indicates that an agent is logged out of
the group or device that they serve.

Not Ready This state indicates that an agent is occu-
pied with some task other than that of serv-
ing a call.

Ready This state indicates that an agent is ready to
accept calls.

Work/Not Ready This state indicates that an agent is occu-
pied with after call work. It also implies that
the agent should not receive additional ACD
calls.

Work/Ready This state indicates that an agent is occu-
pied with after call work. It also implies that
the agent may receive additional ACD calls.
Issue 1 — December 2001

TSAPI.PDF R10.1 V15-96

Switching Function Services
cstaQueryLastNumber()

The cstaQueryLastNumber() service provides the last number dialed by a
specified device.

Syntax

#include <acs.h>

#include <csta.h>

RetCode_t cstaQueryLastNumber (

ACSHandle_t acsHandle,

InvokeID_t invokeID,

DeviceID_t *device,

PrivateData_t *privateData);

Parameters

acsHandle

This is the value of the unique handle to the opened ACS Stream.

invokeID

A handle provided by the application to be used for matching a specific
instance of a function service request with its associated confirmation
event. This parameter is only used when the Invoke ID mechanism is set
for Application-generated IDs in the acsOpenStream(). The parameter is
ignored by the ACS Library when the Stream is set for Library-generated
invoke IDs.

device

This parameter is a pointer to the device identifier of the device on which
the last number is being queried. This parameter may be different than the
originating device depending on the security level defined for the
originating device in the Telephony Server.

privateData

This is a pointer to the private data extension mechanism. Setting this
parameter is optional. If the parameter is not used, the pointer should be
set to NULL.

Return Values

This function returns the following values depending on whether the
application is using library or application-generated invoke identifiers:

Library-generated Identifiers - if the function call completes
successfully it will return a positive value, i.e. the invoke identifier. If
the call fails a negative error (<0) condition will be returned. For
library-generated identifiers the return will never be zero (0).
Issue 1 — December 2001

5-97TSAPI.PDF R10.1 V1

Switching Function Services
Application-generated Identifiers - if the function call completes
successfully it will return a zero (0) value. If the call fails a negative
error (<0) condition will be returned. For application-generated
identifiers the return will never be positive (>0).

The application should always check the
CSTAQueryLastNumberConfEvent message to ensure that the service
request has been acknowledged and processed by the Telephony Server
and the switch.

The following are possible negative error conditions for this function:

ACSERR_BADHDL

This return value indicates that a bad or unknown acsHandle was
provided by the application.

ACSERR_STREAM_FAILED

This return value indicates that a previously active ACS Stream has
been abnormally aborted.

CSTAQueryLastNumberConfEvent

The Query Last Number confirmation event provides the positive response from
the server for a previous Query Last Number request. This event provides the last
number that was dialed from the requested device.

Syntax

The following structure shows only the relevant portions of the unions for
this message. See ACS Data Types and CSTA Data Types in Section 4
for a complete description of the event structure.

typedef struct

{

ACSHandle_t acsHandle;

EventClass_t eventClass;

EventType_t eventType;

} ACSEventHeader_t;

typedef struct

{

ACSEventHeader_t eventHeader;

union

{

struct

{

InvokeID_t invokeID;

union

{

CSTAQueryLastNumberConfEvent_t queryLastNumber;

} u;

} cstaConfirmation;
Issue 1 — December 2001

TSAPI.PDF R10.1 V15-98

Switching Function Services
} event;

} CSTAEvent_t;
Issue 1 — December 2001

5-99TSAPI.PDF R10.1 V1

Switching Function Services
typedef struct

{

DeviceID_tlastNumber,

} CSTAQueryLastNumberConfEvent_t;

Parameters

acsHandle

This is the handle for the ACS Stream.

eventClass

This is a tag with the value CSTACONFIRMATION, which identifies this
message as an CSTA confirmation event.

eventType

This is a tag with the value CSTA_QUERY_LAST_NUMBER_CONF,
which identifies this message as an CSTAQueryLastNumberConfEvent.

invokeID

This parameter specifies the function service request instance for the
service which was processed at the Telephony Server or at the switch. This
identifier is provided to the application when a service request is made.

lastNumber

This parameter indicates the last number dialed at the requested device.

privateData

If private data accompanied this event, then the private data would be
copied to the location pointed to by the privateData pointer in the
acsGetEventBlock() or acsGetEventPoll() function. If the privateData
pointer is set to NULL in these functions, then no private data will be
delivered to the application.

cstaQueryDeviceInfo()

The cstaQueryDeviceInfo() service provides general information about a
device. The confirmation event for this service will include information on the class
and type of device being queried.

Syntax

#include <acs.h>

#include <csta.h>

RetCode_t cstaQueryDeviceInfo (

ACSHandle_t acsHandle,

InvokeID_t invokeID,

DeviceID_t *device,

PrivateData_t*privateData);
Issue 1 — December 2001

TSAPI.PDF R10.1 V15-100

Switching Function Services
Parameters

acsHandle

This is the value of the unique handle to the opened ACS Stream.

invokeID

A handle provided by the application to be used for matching a specific
instance of a function service request with its associated confirmation
event. This parameter is only used when the Invoke ID mechanism is set
for Application-generated IDs in the acsOpenStream(). The parameter is
ignored by the ACS Library when the Stream is set for Library-generated
invoke IDs.

device

This parameter is a pointer to the device identifier of the device for which
information is being requested. This parameter may be different than the
originating device depending on the security level defined for the
originating device in the Telephony Server.

privateData

This is a pointer to the private data extension mechanism. Setting this
parameter is optional. If the parameter is not used, the pointer should be
set to NULL.

Return Values

This function returns the following values depending on whether the
application is using library or application-generated invoke identifiers:

Library-generated Identifiers - if the function call completes
successfully it will return a positive value, i.e. the invoke identifier. If
the call fails a negative error (<0) condition will be returned. For
library-generated identifiers the return will never be zero (0).

Application-generated Identifiers - if the function call completes
successfully it will return a zero (0) value. If the call fails a negative
error (<0) condition will be returned. For application-generated
identifiers the return will never be positive (>0).

The application should always check the
CSTAQueryDeviceInfoConfEvent message to ensure that the service
request has been acknowledged and processed by the Telephony Server
and the switch.

The following are possible negative error conditions for this function:

ACSERR_BADHDL

This return value indicates that a bad or unknown acsHandle was
provided by the application.

ACSERR_STREAM_FAILED
Issue 1 — December 2001

5-101TSAPI.PDF R10.1 V1

Switching Function Services
This return value indicates that a previously active ACS Stream has
been abnormally aborted.

CSTAQueryDeviceInfoConfEvent

The Query Device Info confirmation event provides the positive response from the
server for a previous Query Device Info request. This event provides the
application with type and class of the requested device.

Syntax

The following structure shows only the relevant portions of the unions for
this message. See ACS Data Types and CSTA Data Types in Section 4
for a complete description of the event structure.

typedef struct

{

ACSHandle_t acsHandle;

EventClass_t eventClass;

EventType_t eventType;

} ACSEventHeader_t;

typedef struct

{

ACSEventHeader_teventHeader;

union

{

struct

{

InvokeID_t invokeID;

union

{

CSTAQueryDeviceInfoConfEvent_t queryDeviceInfo;

} u;

} cstaConfirmation;

} event;

} CSTAEvent_t;

typedef enum DeviceType_t {

DT_STATION = 0,

DT_LINE = 1,

DT_BUTTON = 2,

DT_ACD = 3,

DT_TRUNK = 4,

DT_OPERATOR = 5,

DT_STATION_GROUP = 16,

DT_LINE_GROUP = 17,

DT_BUTTON_GROUP = 18,

DT_ACD_GROUP = 19,

DT_TRUNK_GROUP = 20,

DT_OPERATOR_GROUP = 21,

DT_OTHER = 255
Issue 1 — December 2001

TSAPI.PDF R10.1 V15-102

Switching Function Services
} DeviceType_t;
Issue 1 — December 2001

5-103TSAPI.PDF R10.1 V1

Switching Function Services
typedef unsigned char DeviceClass_t;

#define DC_VOICE 0x80

#define DC_DATA 0x40

#define DC_IMAGE 0x20

#define DC_OTHER 0x10

typedef struct CSTAQueryDeviceInfoConfEvent_t {

DeviceID_t device;

DeviceType_t deviceType;

DeviceClass_t deviceClass;

} CSTAQueryDeviceInfoConfEvent_t;

Parameters

acsHandle

This is the handle for the ACS Stream.

eventClass

This is a tag with the value CSTACONFIRMATION, which identifies this
message as an CSTA confirmation event.

eventType

This is a tag with the value CSTA_QUERY_DEVICE_INFO_CONF, which
identifies this message as an CSTAQueryDeviceInfoConfEvent.

invokeID

This parameter specifies the function service request instance for the
service which was processed at the Telephony Server or at the switch. This
identifier is provided to the application when a service request is made.

deviceIdentifier

May provide an alternate short-form static device identifier for the device
requested.
Issue 1 — December 2001

TSAPI.PDF R10.1 V15-104

Switching Function Services
deviceType

This parameter indicates the type of device being queried. The possible
device types are:

See the Functional Call Model section of this document for more
information on device types. Not all switch implementations will support all
the device types listed.

ACD Automatic Call Distributor (ACD)

ACD group Automatic Call Distributor (ACD) group

Button is one instance of a call manipulation point at
an individual station.

Button group is two or more instances of a call manipulation
point at an individual station.

Line is a communications interface to one or more
stations.

Line group is a set of communications interfaces to one or
more stations.

Operator also known as Attendant

Operator group two or more operator devices used inter-
changeably or addressed identically.

Other is any other type for which there is no enumera-
tion defined.

Station is the traditional telephone device, either simple
or featured.

Station group is two or more stations used interchangeably or
addressed identically.

Trunk a device used to access other switching
sub-domains.

Trunk group typically, two or more trunks providing connec-
tions to the same place.
Issue 1 — December 2001

5-105TSAPI.PDF R10.1 V1

Switching Function Services
deviceClass

This parameter indicates the class of device being queried. The possible
device classes are:

See the Functional Call Model section of this document for more
information on device classes. Not all switch implementations will support
all the device classes listed.

privateData

If private data accompanied this event, then the private data would be
copied to the location pointed to by the privateData pointer in the
acsGetEventBlock() or acsGetEventPoll() function. If the privateData
pointer is set to NULL in these functions, then no private data will be
delivered to the application.

Voice a device that is used to make audio calls. This class
includes all normal telephones, as well as computer
modems and G3 facsimile machines.

Data a device that is used to make digital data calls (either
circuit switched or packet switched). This class
includes computer interfaces and G4 facsimile
machines.

Image a device that is used to make digital data calls involving
imaging, or high speed circuit switched data in general.
This class includes video telephones and CODECs.

Other a type of device not covered by data, image, or voice.
Issue 1 — December 2001

TSAPI.PDF R10.1 V15-106

Issue 1 — December 2001

TSAPI.PDF R10.1 V1
6

Status Reporting Services
TSAPI Status Services are those function calls and events that are related to
unsolicited TSAPI event messages. External telephony activity on the switch,
External telephony activity at a device, or human user activity can all cause
unsolicited TSAPI events. Such events messages are asynchronous in nature.
An application typically cannot anticipate their arrival. For example, an event
informing the application of an incoming call to a device (e.g. a telephone station)
is an unsolicited, asynchronous TSAPI event (since the application did not initiate
the call and such a call can arrive at any time).

Applications use the status reporting request function to turn-on or turn-off status
event reporting for a CSTA device (e.g. a desktop telephone). An application can
use this function to turn-on/turn-off status reporting for any stations on the switch
where monitoring is required (assuming proper access permissions are
administered at the Telephony Server).

Status Reporting Functions and
Confirmation Events

Applications may use Event reporting to determine the changes in the state of a
call or a connection associated with a device which is of interest to the application.
This section describes the functions that an application uses to request
unsolicited event reports for a telephony device or for calls. In the case of calls,
the application must first control the calls.

Events provide the application with information about the state of calls or
connection. The application may keep track of device or call states. If the
application needs to maintain call state information for a specific device or call
within the switch, it must establish a device or call "monitor" to keep track of the
real-time state information for the call or device.

NOTE:
Applications should always be "event driven" and use events received from
the Telephony Server to react to changes in call or connection state rather
than using a specific switch implementation’s call state mode. Following this
6-1

Status Reporting Services
guideline will simplify the support of applications across various switch
implementations of TSAPI.

An application calls the cstaMonitorDevice(), cstaMonitorCall(), or
cstaMonitorCallsViaDevice() function to initiate event reporting for a specific
device or call. Event reporting can be provided for a device, a call, or for calls at a
monitored device. An application can request two different types of event monitors
using these functions. The monitor types are:

■ Call-type monitor - call-type monitors provide monitoring (event reporting)
for unsolicited events about a specific call from "cradle-to-grave". In other
words, a call-type monitor provides events for a specific call regardless of
the devices at which the call may appear for the duration of the call.

Using call-type monitoring, an application can determine the current state
of the call using the TSAPI events. For example, if a call monitor exists for
a specific call and that call transfers or forwards to other devices, the
sending device ceases to participate in the call, but event reporting
continues (telling the application about the new devices participating in the
call). Thus, a call-type monitor will provide call state information as the
switch, other applications, and human users interact to route a call.

NOTE:
A switch may assign a new call identifier to a call as it is transferred or
conferenced. The new call identifier will be provided in the event report
associated with the conference or transfer function being requested by the
controller of the call.

■ Device-type monitor - device-type monitors provide the application with
call or connection state information about calls at a specific device (the
monitored device). TSAPI reports any events about the calls at the
monitored device on a device-type monitor. If a call is transfers drops, or
forwards from the monitored device, TSAPI stops reporting events for that
call.

If an application begins monitoring a device when call(s) are already in
progress at the monitored device, TSAPI may not provide events for those
calls (this is switch specific). TSAPI will provide events for calls that arrive
at the device after it sends the confirmation event for the device monitor
request.

Each monitor must be either a call monitor, a device monitor, or monitor calls via
device. An application may request multiple monitors, with various monitors being
of various types. An application must setup multiple monitors if it wants to monitor
multiple devices or calls at the same time. The switch may impose limitations on
the maximum number of simultaneous monitors which can exist for any given
switch, call, or device. TSAPI does not place any such restrictions on the
application.
Issue 1 — December 2001

TSAPI.PDF R10.1 V16-2

Status Reporting Services
When an application requests a device or call monitor, it can also specify an event
filter. An event filter causes TSAPI to discard those events which the application is
not interested in. An application may specify a filter when it establishes the
monitor for a device or call. An application may also use the
cstaChangeMonitorFilter() to change the filter after the monitor is active.

To receive events, an application must have an active ACS Stream and an
implement an event handling mechanism. Further, the reception of unsolicited
events requires an active monitor. See the Control Services and Status
Reporting Services sections for more information on events.

cstaMonitorDevice()

The Monitor Start service is used to initiate unsolicited event reporting for a
device type monitoring on a device object. The unsolicited event reports will be
provided for all endpoints within a CSTA switching sub-domain and optionally for
endpoints outside of the CSTA switching sub-domain (implementation specific)
which are involved with a monitored device.

Syntax

#include <acs.h>

#include <csta.h>

RetCode_t cstaMonitorDevice (

ACSHandle_t acsHandle,

InvokeID_t invokeID,

DeviceID_t *deviceID;

CSTAMonitorFilter_t *monitorFilter,

PrivateData_t *privateData),

Parameters

acsHandle

This is the value of the unique handle to the opened ACS Stream.

invokeID

A handle provided by the application to be used for matching a specific
instance of a function service request with its associated confirmation
event. This parameter is only used when the Invoke ID mechanism is set
for Application-generated IDs in the acsOpenStream(). The parameter is
ignored by the ACS Library when the Stream is set for Library-generated
invoke IDs.

deviceID

Device ID of the device to be monitored.

monitorFilter
Issue 1 — December 2001

6-3TSAPI.PDF R10.1 V1

Status Reporting Services
This parameter is used to specify a filter type to be used with the object
being monitored. Setting a bit to true in the monitorFilter structure causes
the specific event to be filtered out, so the application will never see this
event. Initialize the structure to all 0's to receive all types of monitor events.
See cstaMonitorDeviceConfEvent for a definition of a monitorFilter
structure.

privateData

Private data extension mechanism. Setting this parameter is optional. If
the parameter is not used, the pointer should be set to NULL.
Issue 1 — December 2001

TSAPI.PDF R10.1 V16-4

Status Reporting Services
Return Values

This function returns the following values depending on whether the
application is using library or application-generated invoke identifiers:

Library-generated Identifiers - if the function call completes
successfully it will return a positive value, i.e. the invoke identifier. If
the call fails a negative error (<0) condition will be returned. For
library-generated identifiers the return will never be zero (0).

Application-generated Identifiers - if the function call completes
successfully it will return a zero (0) value. If the call fails a negative
error (<0) condition will be returned. For application-generated
identifiers the return will never be positive (>0).

The application should always check the CSTAMonitorConfEvent
message to insure that the service request has been acknowledged and
processed by the Telephony Server and the switch.

The following are possible negative error conditions for this function:

ACSERR_BADHDL

This return value indicates that a bad or unknown acsHandle was
provided by the application.

ACSERR_STREAM_FAILED

This return value indicates that a previously active ACS Stream has
been abnormally aborted.

Comments

This function is used to start a device monitor on a CSTA device . The
confirmation event for this function, i.e. CSTAMonitorConfEvent will
provide the application with the CSTA association handle to the monitored
device or call, i.e., the Monitor Cross-Reference Identifier
(monitorCrossRefID) which defines the CSTA association on which the
monitor will exist.
Issue 1 — December 2001

6-5TSAPI.PDF R10.1 V1

Status Reporting Services
cstaMonitorCall()

The Monitor Start service is used to initiate unsolicited event reporting for a call
type monitoring on a call object. The unsolicited event reports will be provided for
all endpoints within a CSTA switching sub-domain and optionally for endpoints
outside of the CSTA switching sub-domain (implementation specific) which are
involved with a monitored device.

Syntax

#include <acs.h>

#include <csta.h>

RetCode_tcstaMonitorCall (

ACSHandle_t acsHandle,

InvokeID_t invokeID,

ConnectionID_t *call,

CSTAMonitorFilter_t *monitorFilter,

PrivateData_t *privateData),

Parameters

acsHandle

This is the value of the unique handle to the opened ACS Stream.

invokeID

A handle provided by the application to be used for matching a specific
instance of a function service request with its associated confirmation
event. This parameter is only used when the Invoke ID mechanism is set
for Application-generated IDs in the acsOpenStream(). The parameter is
ignored by the ACS Library when the Stream is set for Library-generated
invoke IDs.

call

Connection ID of the call to be monitored.

monitorFilter

This parameter is used to specify a filter type to be used with the object
being monitored. Setting a bit to true in the monitorFilter structure causes
the specific event to be filtered out, so the application will never see this
event. Initialize the structure to all 0's to receive all types of monitor events.
See CSTAMonitorConfEvent for a definition of a monitorFilter structure.

privateData

Private data extension mechanism. Setting this parameter is optional. If
the parameter is not used, the pointer should be set to NULL.
Issue 1 — December 2001

TSAPI.PDF R10.1 V16-6

Status Reporting Services
Return Values

This function returns the following values depending on whether the
application is using library or application-generated invoke identifiers:

Library-generated Identifiers - if the function call completes
successfully it will return a positive value, i.e. the invoke identifier. If
the call fails a negative error (<0) condition will be returned. For
library-generated identifiers the return will never be zero (0).

Application-generated Identifiers - if the function call completes
successfully it will return a zero (0) value. If the call fails a negative
error (<0) condition will be returned. For application-generated
identifiers the return will never be positive (>0).

The application should always check the CSTAMonitorConfEvent
message to insure that the service request has been acknowledged and
processed by the Telephony Server and the switch.

The following are possible negative error conditions for this function:

ACSERR_BADHDL

This return value indicates that a bad or unknown acsHandle was
provided by the application.

ACSERR_STREAM_FAILED

This return value indicates that a previously active ACS Stream has
been abnormally aborted.

Comments

This function is used to start a call monitor on a CSTA device . The
confirmation event for this function, i.e. CSTAMonitorConfEvent will
provide the application with the CSTA association handle to the monitored
device or call, i.e., the Monitor Cross-Reference Identifier
(monitorCrossRefID) which defines the CSTA association on which the
monitor will exist.
Issue 1 — December 2001

6-7TSAPI.PDF R10.1 V1

Status Reporting Services
cstaMonitorCallsViaDevice()

The Monitor Start service is used to initiate unsolicited event reporting for a call
type monitoring on a device object. The unsolicited event reports will be provided
for all endpoints within a CSTA switching sub-domain and optionally for endpoints
outside of the CSTA switching sub-domain (implementation specific) which are
involved with a monitored device.

Syntax

#include <acs.h>

#include <csta.h>

RetCode_tcstaMonitorCallsViaDevice (

ACSHandle_t acsHandle,

InvokeID_t invokeID,

DeviceID_t *deviceID,

CSTAMonitorFilter_t *monitorFilter,

PrivateData_t *privateData),

Parameters

acsHandle

This is the value of the unique handle to the opened ACS Stream.

invokeID

A handle provided by the application to be used for matching a specific
instance of a function service request with its associated confirmation
event. This parameter is only used when the Invoke ID mechanism is set
for Application-generated IDs in the acsOpenStream(). The parameter is
ignored by the ACS Library when the Stream is set for Library-generated
invoke IDs.

device

The deviceID of the device for which call monitoring should be started.

monitorFilter

This parameter is used to specify a filter type to be used with the object
being monitored. Setting a bit to true in the monitorFilter structure causes
the specific event to be filtered out, so the application will never see this
event. Initialize the structure to all 0's to receive all types of monitor events.
See cstaMonitorDeviceConfEvent for a definition of a monitorFilter
structure.

privateData

Private data extension mechanism. Setting this parameter is optional. If
the parameter is not used, the pointer should be set to NULL.
Issue 1 — December 2001

TSAPI.PDF R10.1 V16-8

Status Reporting Services
Return Values

This function returns the following values depending on whether the
application is using library or application-generated invoke identifiers:

Library-generated Identifiers - if the function call completes
successfully it will return a positive value, i.e. the invoke identifier. If
the call fails a negative error (<0) condition will be returned. For
library-generated identifiers the return will never be zero (0).

Application-generated Identifiers - if the function call completes
successfully it will return a zero (0) value. If the call fails a negative
error (<0) condition will be returned. For application-generated
identifiers the return will never be positive (>0).

The application should always check the CSTAMonitorConfEvent
message to insure that the service request has been acknowledged and
processed by the Telephony Server and the switch.

The following are possible negative error conditions for this function:

ACSERR_BADHDL

This return value indicates that a bad or unknown acsHandle was
provided by the application.

ACSERR_STREAM_FAILED

This return value indicates that a previously active ACS Stream has
been abnormally aborted.

Comments

This function is used to start a monitor on a CSTA object (a device or a
call). The confirmation event for this function, i.e. CSTAMonitorConfEvent
will provide the application with the CSTA association handle to the
monitored device or call, i.e. the Monitor Cross-Reference Identifier
(monitorCrossRefID) which defines the CSTA association on which the
monitor will exist. There are two-types of Monitor Service: call-type and
device-type.
Issue 1 — December 2001

6-9TSAPI.PDF R10.1 V1

Status Reporting Services
CSTAMonitorConfEvent

This event is in response to the cstaMonitorDevice(), cstaMonitorCall or
cstaMonitorCallsViaDevice function and contains the association handle being
assigned to the CSTA association being used for status reporting.

Syntax

The following structure shows only the relevant portions of the unions for
this message. See ACS Data Types and CSTA Data Types in Section 4
for a complete description of the event structure.

typedef struct

{

ACSHandle_t acsHandle;

EventClass_t eventClass;

EventType_t eventType;

} ACSEventHeader_t;

typedef struct

{

ACSEventHeader_t eventHeader;

union

{

struct

{

InvokeID_tinvokeID;

union

{

CSTAMonitorConfEvent_t monitorStart;

} u;

} cstaConfirmation;

} event;

} CSTAEvent_t;

typedef struct CSTAMonitorConfEvent_t {

CSTAMonitorCrossRefID_tmonitorCrossRefID;

CSTAMonitorFilter_tmonitorFilter;

} CSTAMonitorConfEvent_t;

typedef longCSTAMonitorCrossRefID_t;

typedef unsigned short CSTACallFilter_t;

#define CF_CALL_CLEARED 0x8000

#define CF_CONFERENCED 0x4000

#define CF_CONNECTION_CLEARED 0x2000

#define CF_DELIVERED 0x1000

#define CF_DIVERTED 0x0800

#define CF_ESTABLISHED 0x0400

#define CF_FAILED 0x0200

#define CF_HELD 0x0100

#define CF_NETWORK_REACHED 0x0080

#define CF_ORIGINATED 0x0040
Issue 1 — December 2001

TSAPI.PDF R10.1 V16-10

Status Reporting Services
#define CF_QUEUED 0x0020

#define CF_RETRIEVED 0x0010

#define CF_SERVICE_INITIATED 0x0008

#define CF_TRANSFERRED 0x0004

typedef unsigned char CSTAFeatureFilter_t;

#define FF_CALL_INFORMATION 0x80

#define FF_DO_NOT_DISTURB 0x40

#define FF_FORWARDING 0x20

#define FF_MESSAGE_WAITING 0x10

typedef unsigned char CSTAAgentFilter_t;

#define AF_LOGGED_ON 0x80

#define AF_LOGGED_OFF 0x40

#define AF_NOT_READY 0x20

#define AF_READY 0x10

#define AF_WORK_NOT_READY 0x08

#define AF_WORK_READY 0x04

typedef unsigned char CSTAMaintenanceFilter_t;

#define MF_BACK_IN_SERVICE 0x80

#define MF_OUT_OF_SERVICE 0x40

typedef struct CSTAMonitorFilter_t {

CSTACallFilter_tcall;

CSTAFeatureFilter_tfeature;

CSTAAgentFilter_tagent;

CSTAMaintenanceFilter_tmaintenance;

longprivateFilter;

} CSTAMonitorFilter_t;

Parameters

acsHandle

This is the handle for the ACS Stream.

eventClass

This is a tag with the value CSTACONFIRMATION, which identifies this
message as an CSTA confirmation event.

eventType

This is a tag with the value CSTA_MONITOR_CONF, which identifies this
message as an CSTAMonitorConfEvent.

invokeID

This parameter specifies the requested instance of the function or event. It
is used to match a specific functions call request with its confirmation
events. Unsolicited events will have this parameter set to zero.
Issue 1 — December 2001

6-11TSAPI.PDF R10.1 V1

Status Reporting Services
monitorCrossRefID

This parameter contains the handle to the CSTA association for which the
requested monitor has been established. This handle is typically chosen by
the switch and should be used by the application as a reference to a
specific established association.

monitorFilter

This parameter is used to specify the filter type which is active on the object
being monitored by the application. Possible classes of values are: CALL_
FILTER, FEATURE_FILTER, AGENT_FILTER, MAINTENANCE_FILTER,
and PRIVATE_FILTER.

privateData

If private data accompanied this event, then the private data would be
copied to the location pointed to by the privateData pointer in the
acsGetEventBlock() or acsGetEventPoll() function. If the privateData
pointer is set to NULL in these functions, then no private data will be
delivered to the application.

Comments

The application should check this confirmation event to obtain the
monitorCrossRefID being assigned by the switch and to ensure that the
event filter requested has been activated. The event informs the application
which filters are active on the given CSTA association.

cstaMonitorStop()

The Monitor Stop Service is used to cancel a previously registered Monitor
Service on an existing CSTA monitor association, i.e. an active
monitorCrossRefID.

Syntax

#include <acs.h>

#include <csta.h>

RetCode_tcstaMonitorStop (

ACSHandle_t acsHandle,

InvokeID_t invokeID,

CSTAMonitorCrossRefID_t monitorCrossRefID,

PrivateData_t *privateData);
Issue 1 — December 2001

TSAPI.PDF R10.1 V16-12

Status Reporting Services
Parameters

acsHandle

This is the value of the unique handle to the opened ACS Stream.

invokeID

A handle provided by the application to be used for matching a specific
instance of a function service request with its associated confirmation
event. This parameter is only used when the Invoke ID mechanism is set
for Application-generated IDs in the acsOpenStream(). The parameter is
ignored by the ACS Library when the Stream is set for Library-generated
invoke IDs.

monitorCrossRefID

This parameter identifies the original CSTA monitor association for which
unsolicited event monitoring is to be canceled. This identifier is provided as
a result of a monitor start service request in a CSTAMonitorConfEvent for
a call or device monitor within the switching domain.

privateData

Private data extension mechanism. Setting this parameter is optional. If
the parameter is not used, the pointer should be set to NULL.

Return Values

This function returns the following values depending on whether the
application is using library or application-generated invoke identifiers:

Library-generated Identifiers - if the function call completes
successfully it will return a positive value, i.e. the invoke identifier. If
the call fails a negative error (<0) condition will be returned. For
library-generated identifiers the return will never be zero (0).

Application-generated Identifiers - if the function call completes
successfully it will return a zero (0) value. If the call fails a negative
error (<0) condition will be returned. For application-generated
identifiers the return will never be positive (>0).

The application should always check the CSTAMonitorStopConfEvent
message to insure that the service request has been acknowledged and
processed by the Telephony Server and the switch.

The following are possible negative error conditions for this function:

ACSERR_BADHDL

This return value indicates that a bad or unknown acsHandle was
provided by the application.

ACSERR_STREAM_FAILED

This return value indicates that a previously active ACS Stream has
been abnormally aborted.
Issue 1 — December 2001

6-13TSAPI.PDF R10.1 V1

Status Reporting Services
Comments

cstaMonitorStop() cancels a previously registered monitor association on
a CSTA object (a device or a call object). Once a confirmation event is
issued for this function, i.e. a CSTAMonitorStopConfEvent; TSAPI
terminates the previously active monitoring association and thus end event
reporting for the monitored call or device.

CSTAMonitorStopConfEvent

This event is in response to the cstaMonitorStop() function and provides the
application with a confirmation that the monitor association has been canceled.
Once this confirmation event is issued all event reporting for the specific
monitoring association will be discontinued.

Syntax

The following structure shows only the relevant portions of the unions for
this message. See ACS Data Types and CSTA Data Types in Section 4
for a complete description of the event structure.

typedef struct

{

ACSHandle_t acsHandle;

EventClass_t eventClass;

EventType_t eventType;

} ACSEventHeader_t;

typedef struct

{

ACSEventHeader_teventHeader;

union

{

struct

{

InvokeID_tinvokeID;

union

{

CSTAMonitorStopConfEvent

monitorStop;

} u;

} cstaConfirmation;

} event;

} CSTAEvent_t;
Issue 1 — December 2001

TSAPI.PDF R10.1 V16-14

Status Reporting Services
Parameters

acsHandle

This is the handle for the ACS Stream.

eventClass

This is a tag with the value CSTACONFIRMATION, which identifies this
message as an CSTA confirmation event.

eventType

This is a tag with the value CSTA_MONITOR_STOP_CONF, which
identifies this message as an CSTAMonitorStopConfEvent.

invokeID

This parameter specifies the requested instance of the function or event. It
is used to match a specific functions call request with its confirmation
events. Unsolicited events will have this parameter set to zero.

privateData

If private data accompanied this event, then the private data would be
copied to the location pointed to by the privateData pointer in the
acsGetEventBlock() or acsGetEventPoll() function. If the privateData
pointer is set to NULL in these functions, then no private data will be
delivered to the application.

Comments

This confirmation event indicates a cancellation of a CSTA monitoring
association. After this event is issued by the Telephony Server, no further
events will be sent to the application on the monitoring association
(monitorCrossRefID) which was canceled.

cstaChangeMonitorFilter()

This function is used to request a change in the filter options for CSTA event
reporting for a specific CSTA association. It allows the application to specify for
which event category the application wishes to receive events.

Syntax

#include <acs.h>

#include <csta.h>

RetCode_tcstaChangeMonitorFilter (

ACSHandle_t acsHandle,

InvokeID_t invokeID,

CSTAMonitorCrossRefID_t monitorCrossRefID,

CSTAMonitorFilter_t *filterlist,

PrivateData_t *privateData);
Issue 1 — December 2001

6-15TSAPI.PDF R10.1 V1

Status Reporting Services
Parameters

acsHandle

This is the value of the unique handle to the opened ACS Stream.

invokeID

A handle provided by the application to be used for matching a specific
instance of a function service request with its associated confirmation
event. This parameter is only used when the Invoke ID mechanism is set
for Application-generated IDs in the acsOpenStream(). The parameter is
ignored by the ACS Library when the Stream is set for Library-generated
invoke IDs.

monitorCrossRefID

This parameter identifies the CSTA association (association handle) for
which a change in event filtering is required. The association identifier is
provided by the server/switch when the association is established.

filterlist

This parameter identifies the filter type being requested. Possible classes
of values are CALL_FILTER, FEATURE_FILTER, AGENT_FILTER,
MAINTENANCE_FILTER, and PRIVATE_FILTER. This parameter also
identifies the events to be filtered.

privateData

Private data extension mechanism. Setting this parameter is optional. If
the parameter is not used, the pointer should be set to NULL.

Return Values

This function returns the following values depending on whether the
application is using library or application-generated invoke identifiers:

Library-generated Identifiers - if the function call completes
successfully it will return a positive value, i.e. the invoke identifier. If
the call fails a negative error (<0) condition will be returned. For
library-generated identifiers the return will never be zero (0).

Application-generated Identifiers - if the function call completes
successfully it will return a zero (0) value. If the call fails a negative
error (<0) condition will be returned. For application-generated
identifiers the return will never be positive (>0).

The application should always check the
CSTAChangeMonitorFilterConfEvent message to insure that the service
request has been acknowledged and processed by the Telephony Server
and the switch.

The following are possible negative error conditions for this function:

ACSERR_BADHDL
Issue 1 — December 2001

TSAPI.PDF R10.1 V16-16

Status Reporting Services
This return value indicates that a bad or unknown acsHandle was
provided by the application.
Issue 1 — December 2001

6-17TSAPI.PDF R10.1 V1

Status Reporting Services
ACSERR_STREAM_FAILED

This return value indicates that a previously active ACS Stream has
been abnormally aborted.

Comments

An application uses cstaChangeMonitorFilter() to inform the API Client
Library and the server that application wishes to receive only certain
events. The server filters out all other events.

CSTAChangeMonitorFilterConfEvent

This event occurs as a result of the cstaChangeMonitorFilter() function and
informs the application which event filter was set by the server.

Syntax

The following structure shows only the relevant portions of the unions for
this message. See ACS Data Types and CSTA Data Types in Section 4
for a complete description of the event structure.

typedef struct

{

ACSHandle_t acsHandle;

EventClass_t eventClass;

EventType_t eventType;

} ACSEventHeader_t;

typedef struct

{

ACSEventHeader_teventHeader;

union

{

struct

{

InvokeID_tinvokeID_t;

union

{

CSTAChangeMonitorFilterConfEvent_t

changeMonitorFilter;

} u;

} cstaConfirmation;

} event;

} CSTAEvent_t;

typedef struct CSTAChangeMonitorFilterConfEvent_t

{

CSTAMonitorFilter_tmonitorfilter;

} CSTAChangeMonitorFilterConfEvent_t
Issue 1 — December 2001

TSAPI.PDF R10.1 V16-18

Status Reporting Services
Parameters

acsHandle

This is the handle for the ACS Stream.

eventClass

This is a tag with the value CSTACONFIRMATION, which identifies this
message as an CSTAConfirmation event.

eventType

This is a tag with the value CSTA_CHANGE_MONITOR_FILTER_CONF,
which identifies this message as an
CSTAChangeMonitorFilterConfEvent.

invokeID

This parameter specifies the requested instance of the function or event. It
is used to match a specific function’s call request with its confirmation
events. Unsolicited events will have this parameter set to zero.

monitorFilter

This parameter identifies the filter type being requested. Possible classes
of values are CALL_FILTER, FEATURE_FILTER, AGENT_FILTER,
MAINTENANCE_FILTER, and PRIVATE_FILTER.

This parameter also identifies the events to be filtered.

privateData

If private data accompanied this event, then the private data would be
copied to the location pointed to by the privateData pointer in the
acsGetEventBlock() or acsGetEventPoll() function. If the privateData
pointer is set to NULL in these functions, then no private data will be
delivered to the application.

Comments

This confirmation event should be checked by the application to insure that
the event filter requested has been activated and which filters are already
active on the given CSTA association.

CSTAMonitorEndedEvent

This unsolicited indication is sent by the driver/switch to indicate to the application
that the monitor associated with the monitorCrossRefID has been stopped.

Syntax

The following structure shows only the relevant portions of the unions for
this message. See Sections ACS Data Types and CSTA Data Types for a
complete description of the event structure.
Issue 1 — December 2001

6-19TSAPI.PDF R10.1 V1

Status Reporting Services
typedef struct

{

ACSHandle_t acsHandle;

EventClass_t eventClass;

EventType_t eventType;

} ACSEventHeader_t;

typedef struct

{

ACSEventHeader_t eventHeader;

union

{

struct

{

CSTAMonitorCrossRefID_tmonitorCrossRefID;

union

{

CSTAMonitorEnded_t monitorEnded;

} u;

} cstaUnsolicited;

} event;

} CSTAEvent_t;

typedef struct CSTAMonitorEndedEvent_t {

CSTAEventCause_t cause;

} CSTAMonitorEndedEvent_t;

Parameters

acsHandle

This is the handle for the ACS Stream.

eventClass

This is a tag with the value CSTAUNSOLICITED, which identifies this
message as an CSTA unsolicited event.

eventType

This is a tag with the value CSTA_MONITOR_ENDED, which identifies
this message as an CSTAMonitorEndedEvent.

monitorCrossRefID,

This parameter contains the handle to the CSTA association for which this
event is associated. This handle is typically chosen by the switch and
should be used by the application as a reference to a specific established
association.

cause

The cause code indicating the reason the monitor was stopped.
Issue 1 — December 2001

TSAPI.PDF R10.1 V16-20

Status Reporting Services
privateData

If private data accompanied this event, then the private data would be
copied to the location pointed to by the privateData pointer in the
acsGetEventBlock() or acsGetEventPoll() function. If the privateData
pointer is set to NULL in these functions, then no private data will be
delivered to the application.

Comments

This event is provided by the driver/switch when it can no longer provided
the requested events associated with the monitorCrossRefId.

Call Event Reports (Unsolicited)

This section defines the unsolicited TSAPI Event Reports that result from call
activity at the Device or the switch. These events provide an application with call
status information. Applications, users, and switch administrators may also use
switch features that interact with monitored devices and calls, resulting in
additional call events. One example of such a feature is call coverage paths.

CSTACallClearedEvent

This event report indicates when a call is torn down. This can occur when the last
device has disconnected from the call or when a call is dissolved by another party
to the call - like a conference call being dissolved by the conference controller.

Syntax

The following structure shows only the relevant portions of the unions for
this message. See ACS Data Types and CSTA Data Types in Section 4
for a complete description of the event structure.

typedef struct

{

ACSHandle_t acsHandle;

EventClass_t eventClass;

EventType_t eventType;

} ACSEventHeader_t;
Issue 1 — December 2001

6-21TSAPI.PDF R10.1 V1

Status Reporting Services
typedef struct

{

ACSEventHeader_t eventHeader;

union

{

struct

{

CSTAMonitorCrossRefID_t monitorCrossRefID;

union

{

CSTACallClearedEvent callCleared;

} u;

} cstaUnsolicited;

} event;

} CSTAEvent_t;

typedef enum LocalConnectionState_t {

CS_NULL = 0,

CS_INITIATE = 1,

CS_ALERTING = 2,

CS_CONNECT = 3,

CS_HOLD = 4,

CS_QUEUED = 5,

CS_FAIL = 6

} LocalConnectionState_t;

typedef enum CSTAEventCause_t {

ACTIVE_MONITOR = 1,

ALTERNATE = 2,

BUSY = 3,

CALL_BACK = 4,

CALL_CANCELLED = 5,

CALL_FORWARD_ALWAYS = 6,

CALL_FORWARD_BUSY = 7,

CALL_FORWARD_NO_ANSWER = 8,

CALL_FORWARD = 9,

CALL_NOT_ANSWERED = 10,

CALL_PICKUP = 11,

CAMP_ON = 12,

DEST_NOT_OBTAINABLE = 13,

DO_NOT_DISTURB = 14,

INCOMPATIBLE_DESTINATION = 15,

INVALID_ACCOUNT_CODE = 16,

KEY_CONFERENCE = 17,

LOCKOUT = 18,

MAINTENANCE = 19,

NETWORK_CONGESTION = 20,

NETWORK_NOT_OBTAINABLE = 21,

NEW_CALL = 22,

NO_AVAILABLE_AGENTS = 23,

OVERRIDE = 24,

PARK = 25,

OVERFLOW = 26,

RECALL = 27,
Issue 1 — December 2001

TSAPI.PDF R10.1 V16-22

Status Reporting Services
REDIRECTED = 28,

REORDER_TONE = 29,

RESOURCES_NOT_AVAILABLE = 30,

SILENT_MONITOR = 31,

TRANSFER = 32,

TRUNKS_BUSY = 33,

VOICE_UNIT_INITIATOR = 34

} CSTAEventCause_t;

typedef struct

{

ConnectionID_tclearedCall;

LocalConnectionState_tlocalConnectionInfo;

CSTAEventCause_tcause;

} CSTACallClearedEvent_t;

Parameters

acsHandle

This is the handle for the ACS Stream.

eventClass

This is a tag with the value CSTAUNSOLICITED, which identifies this
message as an CSTA unsolicited event.

eventType

This is a tag with the value CSTA_CALL_CLEARED, which identifies this
message as an CSTACallClearedEvent.

monitorCrossRefID,

This parameter contains the handle to the CSTA association for which this
event is associated. This handle is typically chosen by the switch and
should be used by the application as a reference to a specific established
association.

clearedCall

This parameter identifies the call which has been cleared.

localConnectionInfo

This parameter defines the local connection state of the call after it has
been cleared. This could be null, initiated, alerting, connected, held,
queued, or failed.

cause

This parameter contains the cause value which indicates the reason or
explanation for the occurrence of this event. The possible events are
defined by CSTAEventCause_t.

privateData
Issue 1 — December 2001

6-23TSAPI.PDF R10.1 V1

Status Reporting Services
If private data accompanied this event, then the private data would be
copied to the location pointed to by the privateData pointer in the
acsGetEventBlock() or acsGetEventPoll() function. If the privateData
pointer is set to NULL in these functions, then no private data will be
delivered to the application.

Comments

This event is usually provided after the cstaClearCall() function has been
called by the application. It can also occur, unsolicited, when another
endpoint (device) clears a call and the device being monitored by the API is
part of the call cleared by the another endpoint. The event is also
generated when the last remaining device has disconnected from the call.

Figure 6-1. Call Cleared Event Report

CSTAConferencedEvent

This event report provides indication that two separate calls have been
conferenced (merged) into a single call. This occurs without either party being
removed from the resulting call.

Syntax

The following structure shows only the relevant portions of the unions for
this message. See Data Types and CSTA Data Types in Section 4 for a
complete description of the event structure.

typedef struct

{

ACSHandle_t acsHandle;

EventClass_t eventClass;

EventType_t eventType;

} ACSEventHeader_t;

D2

D3

D1D2

D3

D1 C1* *

*
Before After
Issue 1 — December 2001

TSAPI.PDF R10.1 V16-24

Status Reporting Services
typedef struct

{

ACSEventHeader_t eventHeader;

union

{

struct

{

CSTAMonitorCrossRefID_t monitorCrossRefID;

union

{

CSTAConferencedEvent_t conferenced;

} u;

} cstaUnsolicited;

} event;

} CSTAEvent_t;

typedef struct

{

ConnectionID_t primaryOldCall;

ConnectionID_t secondaryOldCall;

SubjectDeviceID_t confController;

SubjectDeviceID_t addedParty;

ConnectionList_t conferenceConnections;

LocalConnectionState_t localConnectionInfo;

CSTAEventCause_t cause;

} CSTAConferencedEvent_t;

Parameters

acsHandle

This is the handle for the ACS Stream.

eventClass

This is a tag with the value CSTAUNSOLICITED, which identifies this
message as an CSTA unsolicited event.

eventType

This is a tag with the value CSTA_CONFERENCED, which identifies this
message as an CSTAConferencedEvent.

monitorCrossRefID

This parameter contains the handle to the CSTA association for which this
event is associated. This handle is typically chosen by the switch and
should be used by the application as a reference to a specific established
association.

primaryOldCall

This parameter identifies the primary known call to be conferenced. This is
usually the held call pending the conference.
Issue 1 — December 2001

6-25TSAPI.PDF R10.1 V1

Status Reporting Services
secondaryOldCall

This parameter identifies the secondary call (e.g. the consultative call)
which is to be conferenced. This is usually the active call which is to be
conferenced to the held call pending the conference.

confController

This structure identifies the device which is controlling the conference. This
is the device which setup the conference. If the device is not specified, then
the parameter will indicate that the device was not known or that it was not
required.

addedParty

This parameter identifies the device which is being added to the
conference. If the device is not specified, then the parameter will indicate
that the device was not known or that it was not required.

conferenceConnections

This is a list of connections (parties) on the call which resulted from the
conference. The call ID may be different from either the primary or
secondary old call (or both).

localConnectionInfo

This parameter defines the local connection state of the call after it has
been conferenced. This could be null, initiated, alerting, connected, held,
queued, or failed.

cause

This parameter contains the cause value which indicates the reason or
explanation for the occurrence of this event. The possible events are
defined by CSTAEventCause_t.

privateData

If private data accompanied this event, then the private data would be
copied to the location pointed to by the privateData pointer in the
acsGetEventBlock() or acsGetEventPoll() function. If the privateData
pointer is set to NULL in these functions, then no private data will be
delivered to the application.

Comments

This event provides information regarding a conference after is has been
requested by the application using the CSTAConferenceCall() function or
other endpoints on the switch. The changes in the call states are as
follows:
Issue 1 — December 2001

TSAPI.PDF R10.1 V16-26

Status Reporting Services
Figure 6-2. Conferenced Event Report

CSTAConnectionClearedEvent

This event report indicates that a device associated with a call disconnects from
the call or is dropped from the call. The event does not indicate that a transferring
device has left a call through the act of transferring that call.

Syntax

The following structure shows only the relevant portions of the unions for
this message. See Data Types and CSTA Data Types in Section 4 for a
complete description of the event structure.

typedef struct

{

ACSHandle_t acsHandle;

EventClass_t eventClass;

EventType_t eventType;

} ACSEventHeader_t;

typedef struct

{

ACSEventHeader_teventHeader;

union

{

struct

{

CSTAMonitorCrossRefID_tmonitorCrossRefID;

union

{

CSTAConnectionClearedEvent_t connectionCleared;

} u;

} cstaUnsolicited;

} event;

} CSTAEvent_t;

D1 C1 D2

D3C2

D1 D2

D3c c

h

C3

* *

**

Before After
Issue 1 — December 2001

6-27TSAPI.PDF R10.1 V1

Status Reporting Services
typedef struct

{

ConnectionID_t droppedConnection;

SubjectDeviceID_t releasingDevice;

LocalConnectionState_t localConnectionInfo;

CSTAEventCause_t cause;

} CSTAConnectionClearedEvent_t;

Parameters

acsHandle

This is the handle for the ACS StreameventClass

eventClass

This is a tag with the value CSTAUNSOLICITED, which identifies this
message as an CSTA unsolicited event.

eventType

This is a tag with the value CSTA_CONNECTION_CLEARED, which
identifies this message as an CSTAConnectionClearedEvent.

monitorCrossRefID

This parameter contains the handle to the CSTA association for which this
event is associated. This handle is typically chosen by the switch and
should be used by the application as a reference to a specific established
association.

droppedConnection

This parameter identifies the Connection which was dropped from the call
as a result of a device dropping from the call.

releasingDevice

This parameter identifies the device which dropped the call.

localConnectionInfo

This parameter defines the local connection state of the call after the
connection has been cleared. This could be null, initiated, alerting,
connected, held, queued, or failed.

cause

This parameter contains the cause value which indicates the reason or
explanation for the occurrence of this event. The possible events are
defined by CSTAEventCause_t.

privateData

If private data accompanied this event, then the private data would be
copied to the location pointed to by the privateData pointer in the
acsGetEventBlock() or acsGetEventPoll() function. If the privateData
pointer is set to NULL in these functions, then no private data will be
delivered to the application.
Issue 1 — December 2001

TSAPI.PDF R10.1 V16-28

Status Reporting Services
Comments

This event is used to determine which device disconnects from a multi-party call.
The deviceID identifies the devices which disconnected or was disconnected from
the call. The LocalConnectionInfo defines the state of the call at the monitored
device after the device has been dropped from the call.

Figure 6-3. Connection Cleared Event Report

CSTADeliveredEvent

This event report indicates that a call is alerting (e.g. ringing) at a specific device
or that the server has detected that a call is alerting at a specific device.

Syntax

The following structure shows only the relevant portions of the unions for
this message. See Chapter 4 Data Types and CSTA Data Types for a
complete description of the event structure.

typedef struct

{

ACSHandle_t acsHandle;

EventClass_t eventClass;

EventType_teventType;

} ACSEventHeader_t;

D2

D3

D1D2

D3

D1 C1 C1* *

*

* *

Before After
Issue 1 — December 2001

6-29TSAPI.PDF R10.1 V1

Status Reporting Services
typedef struct

{

ACSEventHeader_t eventHeader;

union

{

struct

{

CSTAMonitorCrossRefID_tmonitorCrossRefID;

union

{

CSTADeliveredEvent_t delivered;

} u;

} cstaUnsolicited;

} event;

} CSTAEvent_t;

typedef struct

{

ConnectionID_t connection;

SubjectDeviceID_t alertingDevice;

CallingDeviceID_t callingDevice;

CalledDeviceID_t calledDevice;

RedirectionDevice_t lastRedirectionDevice;

LocalConnectionState_t localConnectionInfo;

CSTAEventCause_t cause;

} CSTADeliveredEvent_t;

Parameters

acsHandle

This is the handle for the ACS Stream.

eventClass

This is a tag with the value CSTAUNSOLICITED, which identifies this
message as an CSTA unsolicited event.

eventType

This is a tag with the value CSTA_DELIVERED, which identifies this
message as an CSTADeliveredEvent.

monitorCrossRefID

This parameter contains the handle to the CSTA association for which this
event is associated. This handle is typically chosen by the switch and
should be used by the application as a reference to a specific established
association.

connection

This parameter identifies the Connection which is alerting

alertingDevice
Issue 1 — December 2001

TSAPI.PDF R10.1 V16-30

Status Reporting Services
This parameter indicates which device is alerting. If the device is not
specified, then the parameter will indicate that the device was not known or
that it was not required.

callingDevice

This parameter identifies the calling device. If the device is not specified,
then the parameter will indicate that the device was not known or that it
was not required

calledDevice

This parameter identifies the originally called device. If the device is not
specified, then the parameter will indicate that the device was not known or
that it was not required

lastRedirectionDevice

This parameter will identify the previously alerted device in cases where
the call was redirected or diverted to the alerting device. If the device is not
specified, then the parameter will indicate that the device was not known or
that it was not required.

localConnectionInfo

This parameter defines the local connection state of the call after the
Connection has alerted. This could be null, initiated, alerting, connected,
held, queued, or failed.

cause

This parameter contains the cause value which indicates the reason or
explanation for the occurrence of this event. The possible events are
defined by CSTAEventCause_t.

privateData

If private data accompanied this event, then the private data would be
copied to the location pointed to by the privateData pointer in the
acsGetEventBlock() or acsGetEventPoll() function. If the privateData
pointer is set to NULL in these functions, then no private data will be
delivered to the application.

Comments

This event provides all the necessary information required when a new call
arrives at a device. This will include the calling and called numbers.

Figure 6-4. Delivered Event Report

D1 C1 D1 C1 D2D2 a **

Before After
Issue 1 — December 2001

6-31TSAPI.PDF R10.1 V1

Status Reporting Services
CSTADivertedEvent

This event report identifies a call which has been deflected or diverted from a
monitored device. The call is no longer present or associated with the device.

Syntax

The following structure shows only the relevant portions of the unions for
this message. See Data Types and CSTA Data Types in Section 4 for a
complete description of the event structure.

typedef struct

{

ACSHandle_t acsHandle;

EventClass_t eventClass;

EventType_t eventType;

} ACSEventHeader_t;

typedef struct

{

ACSEventHeader_teventHeader;

union

{

struct

{

CSTAMonitorCrossRefID_tmonitorCrossRefID;

union

{

CSTADivertedEvent_t diverted;

} u;

} cstaUnsolicited;

} event;

} CSTAEvent_t;

typedef struct

{

ConnectionID_tconnection;

SubjectDeviceID_tdivertingDevice;

CalledDeviceID_tnewDestination;

LocalConnectionState_tlocalConnectionInfo;

CSTAEventCause_tcause;

} CSTADivertedEvent_t;

Parameters

acsHandle

This is the handle for the ACS Stream.

eventClass

This is a tag with the value CSTAUNSOLICITED, which identifies this
message as an CSTA unsolicited event.
Issue 1 — December 2001

TSAPI.PDF R10.1 V16-32

Status Reporting Services
eventType

This is a tag with the value CSTA_DIVERTED, which identifies this
message as an CSTADivertedEvent.

monitorCrossRefID

This parameter contains the handle to the CSTA association for which this
event is associated. This handle is typically chosen by the switch and
should be used by the application as a reference to a specific established
association.

connection

This parameter indicates the Connection which was previously alerting.
This can be the intended Connection for the call before it was diverted.

divertingDevice

This parameter indicates the device from which the call was diverted. If the
device is not specified, then the parameter will indicate that the device was
not known or that it was not required.

newDestination

This parameter indicates the device to which the call was diverted. If the
device is not specified, then the parameter will indicate that the device was
not known or that it was not required.

localConnectionInfo

This parameter defines the local connection state of the device being
monitored. This could be null, initiated, alerting, connected, held, queued,
or failed.

cause

This parameter contains the cause value which indicates the reason or
explanation for the occurrence of this event. The possible events are
defined by CSTAEventCause_t.

privateData

If private data accompanied this event, then the private data would be
copied to the location pointed to by the privateData pointer in the
acsGetEventBlock() or acsGetEventPoll() function. If the privateData
pointer is set to NULL in these functions, then no private data will be
delivered to the application.
Issue 1 — December 2001

6-33TSAPI.PDF R10.1 V1

Status Reporting Services
Comments

This event is used to determine information about a call which has been
diverted from a monitored device. This includes information on which
device the call is being diverted.

Figure 6-5. Diverted Event Report

CSTAEstablishedEvent

This event report indicates that a device connects to a call.

Syntax

The following structure shows only the relevant portions of the unions for
this message. See Data Types and CSTA Data Types in Section 4 for a
complete description of the event structure.

typedef struct

{

ACSHandle_t acsHandle;

EventClass_t eventClass;

EventType_t eventType;

} ACSEventHeader_t;

typedef struct

{

ACSEventHeader_teventHeader;

union

{

struct

{

CSTAMonitorCrossRefID_tmonitorCrossRefID;

union

{

CSTAEstablishedEvent_t established;

} u;

} cstaUnsolicited;

} event;

} CSTAEvent_t;

D1 C1 D2 D1 C1 D2

D3 D3

a * *

*

Before After
Issue 1 — December 2001

TSAPI.PDF R10.1 V16-34

Status Reporting Services
typedef struct

{

ConnectionID_t establishedConnection;

SubjectDeviceID_t answeringDevice;

CallingDeviceID_t callingDevice;

CalledDeviceID_t calledDevice;

RedirectionDeviceID_t lastRedirectionDevice;

LocalConnectionState_t localConnectionInfo;

CSTAEventCause_t cause;

} CSTAEstablishedEvent_t;

Parameters

acsHandle

This is the handle for the ACS Stream.

eventClass

This is a tag with the value CSTAUNSOLICITED, which identifies this
message as an CSTA unsolicited event.

eventType

This is a tag with the value CSTA_ESTABLISHED, which identifies this
message as an CSTAEstablishedEvent.

monitorCrossRefID

This parameter contains the handle to the CSTA association for which this
event is associated. This handle is typically chosen by the switch and
should be used by the application as a reference to a specific established
association.

establishedConnection

This parameter identifies the Connection which joined the call as a result of
answering the call.

answeringDevice

This parameter indicates the device which has joined the call, i.e. the
answering device. If the device is not specified, then the parameter will
indicate that the device was not known or that it was not required.

callingDevice

This indicates which device made the call, i.e. the calling device. If the
device is not specified, then the parameter will indicate that the device was
not known or that it was not required.

calledDevice

This parameter indicates the originally called device. This may not always
be the device answering a call as is the case with call forwarding or
coverage, i.e. call redirection. If the device is not specified, then the
parameter will indicate that the device was not known or that it was not
required.
Issue 1 — December 2001

6-35TSAPI.PDF R10.1 V1

Status Reporting Services
lastRedirectionDevice

This parameter indicates the previously alerted device in cases where a
call is redirected. If the device is not specified, then the parameter will
indicate that the device was not known or that it was not required.

localConnectionInfo

This parameter defines the local connection state of the device for the call
which has been established. This could be null, initiated, alerting,
connected, held, queued, or failed.

cause

This parameter contains the cause value which indicates the reason or
explanation for the occurrence of this event. The possible events are
defined by CSTAEventCause_t.

privateData

If private data accompanied this event, then the private data would be
copied to the location pointed to by the privateData pointer in the
acsGetEventBlock() or acsGetEventPoll() function. If the privateData
pointer is set to NULL in these functions, then no private data will be
delivered to the application.

Comments

This event is typically used to determined when a call is answered by an
endpoint being called by the application. This includes the calling and
called number identification.

Figure 6-6. Established Event Report

CSTAFailedEvent

This event report indicates that a call cannot be completed. The event applies
only to a single Connection.

Syntax

The following structure shows only the relevant portions of the unions for
this message. See Data Types and CSTA Data Types in Section 4 for a
complete description of the event structure.

D1 C1 D1 C1 D2D2 ca * *

Before After
Issue 1 — December 2001

TSAPI.PDF R10.1 V16-36

Status Reporting Services
typedef struct

{

ACSHandle_t acsHandle;

EventClass_t eventClass;

EventType_t eventType;

} ACSEventHeader_t;

typedef struct

{

ACSEventHeader_teventHeader;

union

{

struct

{

CSTAMonitorCrossRefID_tmonitorCrossRefID;

union

{

CSTAFailedEvent_t failed;

} u;

} cstaUnsolicited;

} event;

} CSTAEvent_t;

typedef struct

{

ConnectionID_t failedConnection;

SubjectDeviceID_t failingDevice;

CalledDeviceID_t calledDevice;

LocalConnectionState_t localConnectionInfo;

CSTAEventCause_t cause;

} CSTAFailedEvent_t;

Parameters

acsHandle

This is the handle for the ACS Stream.

eventClass

This is a tag with the value CSTAUNSOLICITED, which identifies this
message as an CSTA unsolicited event.

eventType

This is a tag with the value CSTA_FAILED, which identifies this message
as an CSTAFailedEvent.

monitorCrossRefID

This parameter contains the handle to the CSTA association for which this
event is associated. This handle is typically chosen by the switch and
should be used by the application as a reference to a specific established
association.

failedConnection
Issue 1 — December 2001

6-37TSAPI.PDF R10.1 V1

Status Reporting Services
This parameter indicates which Connection has failed.

failingDevice

This parameter indicates which device has failed. If the device is not
specified, then the parameter will indicate that the device was not known or
that it was not required.

calledDevice

This parameter indicates which device was called when the call failed. If
the device is not specified, then the parameter will indicate that the device
was not known or that it was not required.

localConnectionInfo

This parameter defines the local connection state of the call after the
Connection has failed. This could be null, initiated, alerting, connected,
held, queued, or failed.

cause

This parameter contains the cause value which indicates the reason or
explanation for the occurrence of this event. The possible events are
defined by CSTAEventCause_t.

privateData

If private data accompanied this event, then the private data would be
copied to the location pointed to by the privateData pointer in the
acsGetEventBlock() or acsGetEventPoll() function. If the privateData
pointer is set to NULL in these functions, then no private data will be
delivered to the application.

Comments

This event occurs anytime a call cannot be completed for any reason (e.g.
Stations Busy, Reorder Tone, Trunks Busy, etc.). The cause parameter
contains the reason why the call failed.

Figure 6-7. Failed Event Report

CSTAHeldEvent

This event report indicates that the server has detected that communications on a
particular Connection has be interrupted (i.e. put on hold) by one of the devices on
the call. This event is usually associated with a call being placed on hold at a
device.

D1 D2C1D1 D2 c fC1c

Before After
Issue 1 — December 2001

TSAPI.PDF R10.1 V16-38

Status Reporting Services
Syntax

The following structure shows only the relevant portions of the unions for
this message. See Data Types and CSTA Data Types in Section 4 for a
complete description of the event structure.

typedef struct

{

ACSHandle_t acsHandle;

EventClass_t eventClass;

EventType_t eventType;

} ACSEventHeader_t;

typedef struct

{

ACSEventHeader_teventHeader;

union

{

struct

{

CSTAMonitorCrossRefID_tmonitorCrossRefID;

union

{

CSTAHeldEvent_t held;

} u;

} cstaUnsolicited;

} event;

} CSTAEvent_t;

typedef struct

{

ConnectionID_t heldConnection;

SubjectDeviceID_t holdingDevice;

LocalConnectionState_t localConnectionInfo;

CSTAEventCause_t cause;

} CSTAHeldEvent_t;

Parameters

acsHandle

This is the handle for the ACS Stream.

eventClass

This is a tag with the value CSTAUNSOLICITED, which identifies this
message as an CSTA unsolicited event.

eventType

This is a tag with the value CSTA_HELD, which identifies this message as
an CSTAHeldEvent.
Issue 1 — December 2001

6-39TSAPI.PDF R10.1 V1

Status Reporting Services
monitorCrossRefID

This parameter contains the handle to the CSTA association for which this
event is associated. This handle is typically chosen by the switch and
should be used by the application as a reference to a specific established
association.

heldConnection

This parameter identifies the Connection which was put on hold by the
device.

holdingDevice

This parameter identifies the device which placed the connection on hold. If
the device is not specified, then the parameter will indicate that the device
was not known or that it was not required.

localConnectionInfo

This parameter defines the local connection state of the call after the
Connection has been put on hold. This could be null, initiated, alerting,
connected, held, queued, or failed.

cause

This parameter contains the cause value which indicates the reason or
explanation for the occurrence of this event. The possible events are
defined by CSTAEventCause_t.

privateData

If private data accompanied this event, then the private data would be
copied to the location pointed to by the privateData pointer in the
acsGetEventBlock() or acsGetEventPoll() function. If the privateData
pointer is set to NULL in these functions, then no private data will be
delivered to the application.

Comments

This event occurs after a call has been placed on hold at a specific device.
This informs the application what device placed the connection on hold.

Figure 6-8. Held Event Report

D1 C1 D1 C1 D2D2 hc * *

Before After
Issue 1 — December 2001

TSAPI.PDF R10.1 V16-40

Status Reporting Services
CSTANetworkReachedEvent

This event report informs the application that a call has left the switch on an
outbound trunk and is being routed through the telephone network.

Syntax

The following structure shows only the relevant portions of the unions for
this message. See Data Types and CSTA Data Types in Section 4 for a
complete description of the event structure.

typedef struct

{

ACSHandle_t acsHandle;

EventClass_t eventClass;

EventType_t eventType;

} ACSEventHeader_t;

typedef struct

{

ACSEventHeader_teventHeader;

union

{

struct

{

CSTAMonitorCrossRefID_tmonitorCrossRefID;

union

{

CSTANetworkReachedEvent_t networkReached;

} u;

} cstaUnsolicited;

} event;

} CSTAEvent_t;

typedef struct

{

ConnectionID_t connection;

SubjectDeviceID_t trunkUsed;

CalledDeviceID_t calledDevice;

LocalConnectionState_t localConnectionInfo;

CSTAEventCause_t cause;

} CSTANetworkReachedEvent_t;

Parameters

acsHandle

This is the handle for the ACS Stream.

eventClass

This is a tag with the value CSTAUNSOLICITED, which identifies this
message as an CSTA unsolicited event.
Issue 1 — December 2001

6-41TSAPI.PDF R10.1 V1

Status Reporting Services
eventType

This is a tag with the value CSTA_NETWORK_REACHED, which
identifies this message as an CSTANetworkReachedEvent.

monitorCrossRefID

This parameter contains the handle to the CSTA association for which this
event is associated. This handle is typically chosen by the switch and
should be used by the application as a reference to a specific established
association.

connection

This parameter specifies the Connection ID for the outbound connection
associated with the trunk and its connection to the network (see figure
below).

trunkUsed

This parameter specifies the trunk that was used to establish the
Connection with the telephone network. If the device (i.e. the trunk) is not
specified, then the parameter will indicate that the device was not known or
that it was not required.

calledDevice

This parameter indicates the destination device for the call. If the device is
not specified, then the parameter will indicate that the device was not
known or that it was not required.

localConnectionInfo

This parameter defines the local connection state of the call after the
Connection has cut-through into the telephone network. This could be null,
initiated, alerting, connected, held, queued, or failed.

cause

This parameter contains the cause value which indicates the reason or
explanation for the occurrence of this event. The possible events are
defined by CSTAEventCause_t.

privateData

If private data accompanied this event, then the private data would be
copied to the location pointed to by the privateData pointer in the
acsGetEventBlock() or acsGetEventPoll() function. If the privateData
pointer is set to NULL in these functions, then no private data will be
delivered to the application.

Comments

Once this event occurs the level of call related status information may decrease
depending on the type of trunk being used to route the call to it's destination
across the telephone network. The amount of call related status information
provided by the network will depend on the type of trunk and telephone network
Issue 1 — December 2001

TSAPI.PDF R10.1 V16-42

Status Reporting Services
being used to complete the call. Call status information may be limited to the
disconnect or drop event. This only applies for calls to other network endpoints
and not to calls within the switch being controlled by the server.

Figure 6-9. Networked Reached Event Report

CSTAOriginatedEvent

This event report informs the application that the switch is attempting to establish
a call as a result of a completed request from the application.

Syntax

The following structure shows only the relevant portions of the unions for
this message. See Data Types and CSTA Data Types in Section 4 for a
complete description of the event structure.

typedef struct

{

ACSHandle_t acsHandle;

EventClass_t eventClass;

EventType_t eventType;

} ACSEventHeader_t;

typedef struct

{

ACSEventHeader_teventHeader;

union

{

struct

{

CSTAMonitorCrossRefID_tmonitorCrossRefID;

union

{

CSTAOriginatedEvent_t orginated;

} u;

} cstaUnsolicited;

} event;

} CSTAEvent_t;

D1 C1D1 D2 cC1c c D2
TrunkTrunk

Switching Sub-Domain Bound

Before After
Issue 1 — December 2001

6-43TSAPI.PDF R10.1 V1

Status Reporting Services
typedef struct

{

ConnectionID_t orginatedConnection;

SubjectDeviceID_t callingDevice;

CalledDeviceID_t calledDevice;

LocalConnectionState_t localConnectionInfo;

CSTAEventCause_t cause;

} CSTAOrginatedEvent_t;

Parameters

acsHandle

This is the handle for the ACS Stream.

eventClass

This is a tag with the value CSTAUNSOLICITED, which identifies this
message as an CSTA unsolicited event.

eventType

This is a tag with the value CSTA_ORGINATED, which identifies this
message as an CSTAOriginatedEvent.

monitorCrossRefID

This parameter contains the handle to the CSTA association for which this
event is associated. This handle is typically chosen by the switch and
should be used by the application as a reference to a specific established
association.

originatedConnection

This parameter identifies the Connection where a call has been originated.

callingDevice

This parameter identifies the device from which the call has been
originated. If the device is not specified, then the parameter will indicate
that the device was not known or that it was not required.

calledDevice

This parameter identifies the device for which the originated call is
intended. If the device is not specified, then the parameter will indicate that
the device was not known or that it was not required.

localConnectionInfo

This parameter defines the local connection state of the call after the
Connection has been originated. This could be null, initiated, alerting,
connected, held, queued, or failed.

cause

This parameter contains the cause value which indicates the reason or
explanation for the occurrence of this event. The possible events are
defined by CSTAEventCause_t.
Issue 1 — December 2001

TSAPI.PDF R10.1 V16-44

Status Reporting Services
privateData

If private data accompanied this event, then the private data would be
copied to the location pointed to by the privateData pointer in the
acsGetEventBlock() or acsGetEventPoll() function. If the privateData
pointer is set to NULL in these functions, then no private data will be
delivered to the application.

Comments

This event indicates that a call is being launched by the switch on behalf of
the request from the application. The event only indicates that the switch is
attempting to make the call. The application should check for additional
events to determine the status of the call as it proceeds either through the
switch or out to the telephone network.

Figure 6-10. Originated Event Report

CSTAQueuedEvent

This event report indicates that a call has been queued to an ACD Split, a
hunt group, or others devices which support call queues. Call can also be
queued during network re-routing without specifying a device.

Syntax

The following structure shows only the relevant portions of the unions for
this message. See Data Types and CSTA Data Types in Section 4 for a
complete description of the event structure.

typedef struct

{

ACSHandle_t acsHandle;

EventClass_ eventClass;

EventType_t eventType;

} ACSEventHeader_t;

D1 D2C1D1 D2 c

Before After
Issue 1 — December 2001

6-45TSAPI.PDF R10.1 V1

Status Reporting Services
typedef struct

{

ACSEventHeader_teventHeader;

union

{

struct

{

CSTAMonitorCrossRefID_tmonitorCrossRefID;

union

{

CSTAQueuedEvent_t queued;

} u;

} cstaUnsolicited;

} event;

} CSTAEvent_t;

typedef struct

{

ConnectionID_t queuedConnection;

SubjectDeviceID_t queue;

SubjectDeviceID_t callingDevice;

CalledDeviceID_t calledDevice;

RedirectionDeviceID_t lastRedirectionDevice;

int numberQueued;

LocalConnectionState_t localConnectionInfo;

CSTAEventCause_t cause;

} CSTAQueuedEvent_t;

Parameters

acsHandle

This is the handle for the ACS Stream.

eventClass

This is a tag with the value CSTAUNSOLICITED, which identifies this
message as an CSTA unsolicited event.

eventType

This is a tag with the value CSTA_QUEUED, which identifies this
message as an CSTAQueuedEvent.

monitorCrossRefID

This parameter contains the handle to the CSTA association for which this
event is associated. This handle is typically chosen by the switch and
should be used by the application as a reference to a specific established
association.

queuedConnection

This indicates the Connection was queued to the device.
Issue 1 — December 2001

TSAPI.PDF R10.1 V16-46

Status Reporting Services
queue

This parameter specifies the device to which the call has been queued. If
the device is not specified, then the parameter will indicate that the device
was not known or that it was not required.

callingDevice

This parameter indicates the device who queued the call. If the device is
not specified, then the parameter will indicate that the device was not
known or that it was not required.

calledDevice

This parameter indicates the device which was called (the intended
recipient of the call). If the device is not specified, then the parameter will
indicate that the device was not known or that it was not required.

lastRedirectionDevice

This parameter identifies the last device which redirected the call, if the call
has been redirected. If the device is not specified, then the parameter will
indicate that the device was not known or that it was not required.

numberQueued

This parameter indicates how many calls are queued to the queuing
device.

localConnectionInfo

This parameter defines the local connection state of the call after the call
has been queued. This could be null, initiated, alerting, connected, held,
queued, or failed.

cause

This parameter contains the cause value which indicates the reason or
explanation for the occurrence of this event. The possible events are
defined by CSTAEventCause_t.

privateData

If private data accompanied this event, then the private data would be
copied to the location pointed to by the privateData pointer in the
acsGetEventBlock() or acsGetEventPoll() function. If the privateData
pointer is set to NULL in these functions, then no private data will be
delivered to the application.

Comments

This event usually occurs when an application is monitoring a call, a Vector
Directory Number (VDN), an ACD Split, or a hunt group. The event also
provides information pertaining to the number of calls that have been
queued to a device. This information can be useful to applications
managing the queue at the device.
Issue 1 — December 2001

6-47TSAPI.PDF R10.1 V1

Status Reporting Services
Figure 6-11. Queued Event Report

CSTARetrieveEvent

This event report identifies a call which was previously on hold and has been
retrieved at a device. This is equivalent to taking the call off the hold state and into
the active state.

Syntax

The following structure shows only the relevant portions of the unions for
this message. See Data Types and CSTA Data Types in Section 4 for a
complete description of the event structure.

typedef struct

{

ACSHandle_t acsHandle;

EventClass_t eventClass;

EventType_t eventType;

} ACSEventHeader_t;

typedef struct

{

ACSEventHeader_teventHeader;

union

{

struct

{

CSTAMonitorCrossRefID_tmonitorCrossRefID;

union

{

CSTARetrievedEvent_t retrieved;

} u;

} cstaUnsolicited;

} event;

} CSTAEvent_t;

typedef struct

{

ConnectionID_t retrievedConnection;

SubjectDeviceID_t retrievingDevice;

LocalConnectionState_t localConnectionInfo;

CSTAEventCause_t cause;

} CSTARetrievedEvent_t;

D1 D2C1D1 D2 cC1c q

Before After
Issue 1 — December 2001

TSAPI.PDF R10.1 V16-48

Status Reporting Services
Parameters

acsHandle

This is the handle for the ACS Stream.

eventClass

This is a tag with the value CSTAUNSOLICITED, which identifies this
message as an CSTA unsolicited event.

eventType

This is a tag with the value CSTA_RETRIEVED, which identifies this
message as an CSTARetrievedEvent.

monitorCrossRefID

This parameter contains the handle to the CSTA association for which this
event is associated. This handle is typically chosen by the switch and
should be used by the application as a reference to a specific established
association.

retrievedConnection

This parameter specifies the Connection for which the call has been taken
off the hold state.

retrievingDevice

This specifies the device which de-activated the call from the hold state.

localConnectionInfo

This parameter defines the local connection state of the call after the call
has been retrieved from the hold state. This could be null, initiated, alerting,
connected, held, queued, or failed.

cause

This parameter contains the cause value which indicates the reason or
explanation for the occurrence of this event. The possible events are
defined by CSTAEventCause_t.

privateData

If private data accompanied this event, then the private data would be
copied to the location pointed to by the privateData pointer in the
acsGetEventBlock() or acsGetEventPoll() function. If the privateData
pointer is set to NULL in these functions, then no private data will be
delivered to the application.

Comments

This event informs the application that a call is no longer on hold. This can
occur if the end-user physically takes the call off the hold state or in
response to the cstaRetrieveCall() function request.
Issue 1 — December 2001

6-49TSAPI.PDF R10.1 V1

Status Reporting Services
Figure 6-12. Retrieved Event Report

CSTAServiceInitiatedEvent

This event report indicates to the application that telephony service was initiated
at a device. The switch sends this event when it provides “dial tone”. Note that the
user may be going off hook to invoke a feature using a feature access code, so
call setup events do not necessarily follow.

Syntax

The following structure shows only the relevant portions of the unions for
this message. See Data Types and CSTA Data Types in Section 4 for a
complete description of the event structure.

typedef struct

{

ACSHandle_tacsHandle;

EventClass_teventClass;

EventType_teventType;

} ACSEventHeader_t;

typedef struct

{

ACSEventHeader_teventHeader;

union

{

struct

{

CSTAMonitorCrossRefID_tmonitorCrossRefID;

union

{

CSTAServiceInitiatedEvent_t serviceInitiated;

}u ;

} cstaUnsolicited;

} event;

} CSTAEvent_t;

typedef struct

{

ConnectionID_t initiatedConnection;

LocalConnectionState_t localConnectionInfo;

CSTAEventCause_t cause;

} CSTAServiceInitiatedEvent_t;

D1 C1 D1 C1 D2D2 ch * *

Before After
Issue 1 — December 2001

TSAPI.PDF R10.1 V16-50

Status Reporting Services
Parameters

acsHandle

This is the handle for the ACS Stream.

eventClass

This is a tag with the value CSTAUNSOLICITED, which identifies this
message as an CSTA unsolicited event.

eventType

This is a tag with the value CSTA_SERVICE_INITIATED, which identifies
this message as an CSTAServiceInitiatedEvent.

monitorCrossRefID

This parameter contains the handle to the CSTA association for which this
event is associated. This handle is typically chosen by the switch and
should be used by the application as a reference to a specific established
association.

initiatedConnection

This parameter indicates the Connection for which service (dial tone) has
been established or a feature is invoked. The same Connection identifier
will continue to be used if a call is eventually established by the device.

localConnectionInfo

This parameter defines the local connection state of the call after the
service has been initiated. This could be null, initiated, alerting, connected,
held, queued, or failed.

cause

This parameter contains the cause value which indicates the reason or
explanation for the occurrence of this event. The possible events are
defined by CSTAEventCause_t.

privateData

If private data accompanied this event, then the private data would be
copied to the location pointed to by the privateData pointer in the
acsGetEventBlock() or acsGetEventPoll() function. If the privateData
pointer is set to NULL in these functions, then no private data will be
delivered to the application.

Comments

CSTA-179 states that switches are not required to send the service initiated
event for calls that are originated from functional type devices (e.g. ISDN
BRI devices that do en bloc dialing) or for calls that other applications
originate using cstaMakeCall(). Thus, some PBX drivers may not provide
this event in these circumstances.
Issue 1 — December 2001

6-51TSAPI.PDF R10.1 V1

Status Reporting Services
Figure 6-13. Service Initiated Event Report

CSTATransferredEvent

This event report indicates that an existing call was transferred to another device
and that the device which transferred the call is no longer part of the call, i.e. the
transferring device has dropped from the call.

Syntax

The following structure shows only the relevant portions of the unions for
this message. See Data Types and CSTA Data Types in section 4 for a
complete description of the event structure.

typedef struct

{

ACSHandle_t acsHandle;

EventClass_t eventClass;

EventType_t eventType;

} ACSEventHeader_t;

typedef struct

{

ACSEventHeader_t eventHeader;

union

{

struct

{

CSTAMonitorCrossRefID_tmonitorCrossRefID;

union

{

CSTATransferEvent_t transferred;

} u;

} cstaUnsolicited;

} event;

} CSTAEvent_t;

D1 C1D1 i

Before After
Issue 1 — December 2001

TSAPI.PDF R10.1 V16-52

Status Reporting Services
typedef struct

{

ConnectionID_t primaryOldCall;

ConnectionID_t secondaryOldCall;

SubjectDeviceID_t transferringDevice;

SubjectDeviceID_t transferredDevice;

ConnectionList_t transferredConnections;

LocalConnectionState_t localConnectionInfo;

CSTAEventCause_t cause;

} CSTATransferredEvent_t;

Parameters

acsHandle

This is the handle for the ACS Stream.

eventClass

This is a tag with the value CSTAUNSOLICITED, which identifies this
message as an CSTA unsolicited event.

eventType

This is a tag with the value CSTA_TRANSFERRED, which identifies this
message as an CSTATransferredEvent.

monitorCrossRefID

This parameter contains the handle to the CSTA association for which this
event is associated. This handle is typically chosen by the switch and
should be used by the application as a reference to a specific established
association.

primaryOldCall

This parameter identifies the primary known call that was transferred.

secondaryOldCall

This parameter identifies the secondary call that was transferred. This
would identify the consultative call used to make the transfer, after the
primary call was placed on hold.

transferringDevice

This indicates which device transferred the call. If the device is not
specified, then the parameter will indicate that the device was not known or
that it was not required.

transferredDevice

This indicates to which device the call was transferred. If the device is not
specified, then the parameter will indicate that the device was not known or
that it was not required.
Issue 1 — December 2001

6-53TSAPI.PDF R10.1 V1

Status Reporting Services
transferredConnections

This is a list of connections (parties) on the call which resulted from the
transfer. The call ID may be different from either the primary or secondary
old call (or both).

localConnectionInfo

This parameter defines the local connection state of the call after the calls
have been transferred from the device which performed the transfer. This
could be null, initiated, alerting, connected, held, queued, or failed.

cause

This parameter contains the cause value which indicates the reason or
explanation for the occurrence of this event. The possible events are
defined by CSTAEventCause_t.

privateData

If private data accompanied this event, then the private data would be
copied to the location pointed to by the privateData pointer in the
acsGetEventBlock() or acsGetEventPoll() function. If the privateData
pointer is set to NULL in these functions, then no private data will be
delivered to the application.

Comments

This event provides the application with all the information it needs
regarding a call which was transferred from one device to another.

Figure 6-14. Transferred Event report

D1 C1 D2

D3C2

D1 D2

D3c

h

C3

*

**

*

Before After
Issue 1 — December 2001

TSAPI.PDF R10.1 V16-54

Status Reporting Services
Feature Event Reports (Unsolicited)

TSAPI feature event reports indicate a change in the state of a specific feature
operating on a call or a device on the switch. Each feature event gives the current
state of the feature regardless of what the state of the feature was before an
application receives a feature event.

CSTACallInfoEvent

This event report is provided when a user account code feature has collected data
for a party on the call. The event includes the account code and authorization
information which was collected by the switch feature.

Syntax

The following structure shows only the relevant portions of the unions for
this message. See Data Types and CSTA Data Types in section 4 for a
complete description of the event structure.

typedef struct

{

ACSHandle_t acsHandle;

EventClass_t eventClass;

EventType_t eventType;

} ACSEventHeader_t;

typedef struct

{

ACSEventHeader_teventHeader;

union

{

struct

{

CSTAMonitorCrossRefID_tmonitorCrossRefID;

union

{

CSTACallInfoEvent_t callInformation;

} u;

} cstaUnsolicited;

} event;

} CSTAEvent_t;

typedef struct

{

ConnectionID_t connection;

SubjectDeviceID_t device;

AccountInfo_t accountInfo;

AuthCode_t authorisationCode;

} CSTACallInfoEvent_t;
Issue 1 — December 2001

6-55TSAPI.PDF R10.1 V1

Status Reporting Services
typedef char AccountInfo_t[32];

typedef char AuthCode_t[32];

Parameters

acsHandle

This is the handle for the ACS Stream.

eventClass

This is a tag with the value CSTAUNSOLICITED, which identifies this
message as an CSTA unsolicited event.

eventType

This is a tag with the value CSTA_CALL_INFORMATION, which identifies
this message as an CSTACallInfoEvent.

monitorCrossRefID

This parameter contains the handle to the CSTA association for which this
event is associated. This handle is typically chosen by the switch and
should be used by the application as a reference to a specific established
association.

connection

This parameter identifies the party that has entered the account code.

device

Indicates from which device was the account code information entered. If
the device is not specified, then the parameter will indicate that the device
was not known or that it was not required.

accountInfo

Specifies the account code which was entered at the device.

authorizationCode

Specifies the authorization code which was entered at the device.

privateData

If private data accompanied this event, then the private data would be
copied to the location pointed to by the privateData pointer in the
acsGetEventBlock() or acsGetEventPoll() function. If the privateData
pointer is set to NULL in these functions, then no private data will be
delivered to the application.

Comments

This event informs the application when an account code feature has been
activated and what information was collected by the switch as a result of
the feature being activated.
Issue 1 — December 2001

TSAPI.PDF R10.1 V16-56

Status Reporting Services
CSTADoNotDisturbEvent

This event report indicates a change in the status of the Do Not Disturb feature for
a specific device. The Do Not Disturb event will result in all calls to a device to be
automatically forwarded to the device coverage path.

Syntax

The following structure shows only the relevant portions of the unions for
this message. See ACS Data Types and CSTA Data Types in section 4
for a complete description of the event structure.

typedef struct

{

ACSHandle_t acsHandle;

EventClass_t eventClass;

EventType_t eventType;

} ACSEventHeader_t;

typedef struct

{

ACSEventHeader_teventHeader;

union

{

struct

{

CSTAMonitorCrossRefID_tmonitorCrossRefID;

union

{

CSTADoNotDisturbEvent_t doNotDisturb,

} u;

} cstaUnsolicited;

} event;

} CSTAEvent_t;

typedef struct

{

SubjectDeviceID_t device;

Boolean doNotDisturbOn;

} CSTADoNotDisturbEvent_t;

Parameters

acsHandle

This is the handle for the ACS Stream.

eventClass

This is a tag with the value CSTAUNSOLICITED, which identifies this
message as an CSTA unsolicited event.
Issue 1 — December 2001

6-57TSAPI.PDF R10.1 V1

Status Reporting Services
eventType

This is a tag with the value CSTA_DO_NOT_DISTURB, which identifies
this message as an CSTADoNotDisturbEvent.

monitorCrossRefID

This parameter contains the handle to the CSTA association for which this
event is associated. This handle is typically chosen by the switch and
should be used by the application as a reference to a specific established
association.

device

Specifies the device for which the DO Not Disturb feature has been
activated/deactivated. If the device is not specified, then the parameter will
indicate that the device was not known or that it was not required.

doNotDisturbON

Specifies whether the DO Not Disturb feature is on (1) or off (0).

privateData

If private data accompanied this event, then the private data would be
copied to the location pointed to by the privateData pointer in the
acsGetEventBlock() or acsGetEventPoll() function. If the privateData
pointer is set to NULL in these functions, then no private data will be
delivered to the application.

CSTAForwardingEvent

This event report will indicate a change in the state of the Forwarding feature for a
specific device. The event will also indicate the type of forwarding being invoked
when the feature is activated.

Syntax

The following structure shows only the relevant portions of the unions for
this message. See ACS Data Types and CSTA Data Types in section 4 for
a complete description of the event structure.

typedef struct

{

ACSHandle_t acsHandle;

EventClass_t eventClass;

EventType_t eventType;

ACSEventHeader_t;
Issue 1 — December 2001

TSAPI.PDF R10.1 V16-58

Status Reporting Services
typedef struct

{

ACSEventHeader_teventHeader;

union

{

struct

{

CSTAMonitorCrossRefID_tmonitorCrossRefID;

union

{

CSTAForwardingEvent_t forwarding;

} u;

} cstaUnsolicited;

} event;

} CSTAEvent_t;

typedef struct

{

SubjectDeviceID_tdevice;

ForwardingInfo_tforwardingInformation;

} CSTAForwardingEvent_t;

typedef enum ForwardingType_t {

FWD_IMMEDIATE = 0,

FWD_BUSY = 1,

FWD_NO_ANS = 2,

FWD_BUSY_INT = 3,

FWD_BUSY_EXT = 4,

FWD_NO_ANS_INT = 5,

FWD_NO_ANS_EXT = 6

} ForwardingType_t;

typedef struct ForwardingInfo_t {

ForwardingType_t forwardingType;

Boolean forwardingOn;

DeviceID_t forwardDN;/* NULL for not present */

} ForwardingInfo_t;

Parameters

acsHandle

This is the handle for the ACS Stream.

eventClass

This is a tag with the value CSTAUNSOLICITED, which identifies this
message as an CSTA unsolicited event.

eventType

This is a tag with the value CSTA_FORWARDING which identifies this
message as an CSTAForwardingEvent.
Issue 1 — December 2001

6-59TSAPI.PDF R10.1 V1

Status Reporting Services
monitorCrossRefID

This parameter contains the handle to the CSTA association for which this
event is associated. This handle is typically chosen by the switch and
should be used by the application as a reference to a specific established
association.

device

Specifies the device for which the Forwarding feature has been
activated/deactivated. If the device is not specified, then the parameter will
indicate that the device was not known or that it was not required.

forwardingType

Specifies the type of forwarding being invoked for the specific device. This
may include one of the following:

forwardingON

Specifies whether the Forward feature is on (1) or off (0).

forwardDN

Specifies the destination device to which the calls are being forwarded. If
the device is not specified, then the parameter will indicate that the device
was not known or that it was not required.

privateData

If private data accompanied this event, then the private data would be
copied to the location pointed to by the privateData pointer in the
acsGetEventBlock() or acsGetEventPoll() function. If the privateData
pointer is set to NULL in these functions, then no private data will be
delivered to the application.

Immediate Forwarding all calls

Busy Forwarding when busy

No Answer Forwarding after no answer

Busy Internal Forwarding when busy for an internal call

Busy External Forwarding when busy for an external call

No Answer Internal Forwarding after no answer for an internal call

No Answer External Forwarding after no answer for an external
call.
Issue 1 — December 2001

TSAPI.PDF R10.1 V16-60

Status Reporting Services
Comments

The application should be aware that the forwardingInfo parameter can indicate
any of the defined values depending on the switch implementation of the
forwarding feature.

CSTAMessageWaitingEvent

This event report is used to indicate whether the Message Waiting feature has
been activated/deactivated.

Syntax

The following structure shows only the relevant portions of the unions for
this message. See ACS Data Types and CSTA Data Types in section 4
for a complete description of the event structure.

typedef struct

{

ACSHandle_t acsHandle;

EventClass_t eventClass;

EventType_t eventType;

} ACSEventHeader_t;

typedef struct

{

ACSEventHeader_teventHeader;

union

{

struct

{

CSTAMonitorCrossRefID_tmonitorCrossRefID;

union

{

CSTAMessageWaitingEvent_t messageWaiting;

} u;

} cstaUnsolicited;

} event;

} CSTAEvent_t;

typedef struct

{

CalledDeviceID_t deviceForMessage;

SubjectDeviceID_t invokingDevice;

Boolean messageWaitingOn;

} CSTAMessageWaitingEvent_t;
Issue 1 — December 2001

6-61TSAPI.PDF R10.1 V1

Status Reporting Services
Parameters

acsHandle

This is the handle for the ACS Stream.

eventClass

This is a tag with the value CSTAUNSOLICITED, which identifies this
message as an CSTA unsolicited event.

eventType

This is a tag with the value CSTA_MESSAGE_WAITING which identifies
this message as an CSTAMessageWaitingEvent.

monitorCrossRefID

This parameter contains the handle to the CSTA association for which this
event is associated. This handle is typically chosen by the switch and
should be used by the application as a reference to a specific established
association.

deviceForMessage

Indicates the device where the message is waiting (i.e. address of device
where the message waiting feature was activated). If the device is not
specified, then the parameter will indicate that the device was not known or
that it was not required.

invokingDevice

Specifies which device invoked the message waiting feature (i.e. address
of the device who activated the message waiting feature). If the device is
not specified, then the parameter will indicate that the device was not
known or that it was not required.

messageWaitingOn

Specifies whether the Message Waiting feature is on (1) or off (0).

privateData

If private data accompanied this event, then the private data would be
copied to the location pointed to by the privateData pointer in the
acsGetEventBlock() or acsGetEventPoll() function. If the privateData
pointer is set to NULL in these functions, then no private data will be
delivered to the application.

Comments

This event can occur for both a device or a call association.
Issue 1 — December 2001

TSAPI.PDF R10.1 V16-62

Status Reporting Services
Agent Status Event Reports
(Unsolicited)

This section covers event reports which pertain to the use of ACD agent features.
The agent feature event reports indicate a change in the state of a specific agent.
Each event defines the current state of the agent feature regardless of the state of
the feature before the event. Typically, applications in the call center or message
center environment use agent status event reports.

CSTALoggedOnEvent

This event report informs the application that an agent has logged into a device
(usually an ACD Split).

Syntax

The following structure shows only the relevant portions of the unions for
this message. See ACS Data Types and CSTA Data Types in section 4
for a complete description of the event structure.

typedef struct

{

ACSHandle_t acsHandle;

EventClass_t eventClass;

EventType_t eventType;

} ACSEventHeader_t;

typedef struct

{

ACSEventHeader_teventHeader;

union

{

struct

{

CSTAMonitorCrossRefID_tmonitorCrossRefID;

union

{

CSTALoggedOnEvent_t loggedOn,

} u;

} cstaUnsolicited;

} event;

} CSTAEvent_t;

typedef struct

{

SubjectDeviceID_t agentDevice;

AgentID_t agentID;

AgentGroup_t agentGroup;

AgentPassword_t password;

} CSTALoggedOnEvent_t;
Issue 1 — December 2001

6-63TSAPI.PDF R10.1 V1

Status Reporting Services
Parameters

acsHandle

This is the handle for the ACS Stream.

eventClass

This is a tag with the value CSTAUNSOLICITED, which identifies this
message as an CSTA unsolicited event.

eventType

This is a tag with the value CSTA_LOGGED_ON which identifies this
message as an CSTALoggedOnEvent.

monitorCrossRefID

This parameter contains the handle to the CSTA association for which this
event is associated. This handle is typically chosen by the switch and
should be used by the application as a reference to a specific established
association.

agentDevice

Specifies the device from which the agent is logged on to the system. If the
device is not specified, then the parameter will indicate that the device was
not known or that it was not required.

agentID

This parameter specifies the agent identifier of the agent who logged into
the system.

agentGroup

Specifies the group or ACD Split to which the agent is logging into.

password

This parameter specifies the agent's password used to log into the system.

privateData

If private data accompanied this event, then the private data would be
copied to the location pointed to by the privateData pointer in the
acsGetEventBlock() or acsGetEventPoll() function. If the privateData
pointer is set to NULL in these functions, then no private data will be
delivered to the application.

Comments

In most cases, when an agent logs into a device it usually means that the
agent is ready to start receiving calls at the device. This may not be true for
some implementations.
Issue 1 — December 2001

TSAPI.PDF R10.1 V16-64

Status Reporting Services
CSTALoggedOffEvent

This event report indicates that an agent has logged out of the device/ACD
Split for which the agent had previously logged in and was providing
service.

Syntax

The following structure shows only the relevant portions of the unions for
this message. See ACS Data Types and CSTA Data Types in section 4
for a complete description of the event structure.

typedef struct

{

ACSHandle_t acsHandle;

EventClass_t eventClass;

EventType_t eventType;

} ACSEventHeader_t;

typedef struct

{

ACSEventHeader_teventHeader;

union

{

struct

{

CSTAMonitorCrossRefID_tmonitorCrossRefID;

union

{

CSTALoggedOffEvent_t loggedOff;

} u;

} cstaUnsolicited;

} event;

} CSTAEvent_t;

typedef struct

{

SubjectDeviceID_t agentDevice;

AgentID_t agentID;

AgentGroup_t agentGroup;

} CSTALoggedOffEvent_t;

Parameters

acsHandle

This is the handle for the ACS Stream.

eventClass

This is a tag with the value CSTAUNSOLICITED, which identifies this
message as an CSTA unsolicited event.

eventType
Issue 1 — December 2001

6-65TSAPI.PDF R10.1 V1

Status Reporting Services
This is a tag with the value CSTA_LOGGED_OFF which identifies this
message as an CSTALoggedOffEvent.

agentDevice

Specifies the device from which the agent is logged off the system. If the
device is not specified, then the parameter will indicate that the device was
not known or that it was not required.

agentID

This parameter specifies the agent identifier of the agent who logged off
the system.

agentGroup

Specifies the group or ACD Split from which the agent is logging out.

privateData

If private data accompanied this event, then the private data would be
copied to the location pointed to by the privateData pointer in the
acsGetEventBlock() or acsGetEventPoll() function. If the privateData
pointer is set to NULL in these functions, then no private data will be
delivered to the application.

CSTANotReadyEvent

This event report indicates that an agent is busy with tasks other than servicing an
ACD call at the device. In most cases this will imply that the agent is not ready to
receive a call or that the agent is taking a break.

Syntax

The following structure shows only the relevant portions of the unions for
this message. See ACS Data Types and CSTA Data Types in section 4
for a complete description of the event structure.

typedef struct

{

ACSHandle_t acsHandle;

EventClass_t eventClass;

EventType_t eventType;

} ACSEventHeader_t;
Issue 1 — December 2001

TSAPI.PDF R10.1 V16-66

Status Reporting Services
typedef struct

{

ACSEventHeader_teventHeader;

union

{

struct

{

CSTAMonitorCrossRefID_tmonitorCrossRefID;

union

{

CSTANotReadyEvent_t notReady;

} u;

} cstaUnsolicited;

} event;

} CSTAEvent_t;

typedef struct

{

SubjectDeviceID_t agentDevice;

AgentID_t agentID;

} CSTANotReadyEvent_t;

Parameters

acsHandle

This is the handle for the ACS Stream.

eventClass

This is a tag with the value CSTAUNSOLICITED, which identifies this
message as an CSTA unsolicited event.

eventType

This is a tag with the value CSTA_NOT_READY which identifies this
message as an CSTANotReadyEvent.

agentDevice

Specifies the device from which the agent is logged on to the system. If the
device is not specified, then the parameter will indicate that the device was
not known or that it was not required.

agentID

This parameter specifies the identifier of the agent who in not ready to
receive calls.

privateData

If private data accompanied this event, then the private data would be
copied to the location pointed to by the privateData pointer in the
acsGetEventBlock() or acsGetEventPoll() function. If the privateData
pointer is set to NULL in these functions, then no private data will be
delivered to the application.
Issue 1 — December 2001

6-67TSAPI.PDF R10.1 V1

Status Reporting Services
CSTAReadyEvent

This event report indicates that an agent is ready to receive calls at the device.
This event can occur even if the agent is busy on an active call at the device.

Syntax

The following structure shows only the relevant portions of the unions for
this message. See Data Types and CSTA Data Types in section 4 for a
complete description of the event structure.

typedef struct

{

ACSHandle_t acsHandle;

EventClass_t eventClass;

EventType_t eventType;

} ACSEventHeader_t;

typedef struct

{

ACSEventHeader_teventHeader;

union

{

struct

{

CSTAMonitorCrossRefID_tmonitorCrossRefID;

union

{

CSTAReadyEvent_t ready;

} u;

} cstaUnsolicited;

} event;

} CSTAEvent_t;

typedef struct

{

SubjectDeviceID_t agentDevice;

AgentID_t agentID;

} CSTAReadyEvent_t;

Parameters

acsHandle

This is the handle for the ACS Stream.

eventClass

This is a tag with the value CSTAUNSOLICITED, which identifies this
message as an CSTA unsolicited event.

eventType

This is a tag with the value CSTA_READY which identifies this message
as an CSTAReadyEvent.
Issue 1 — December 2001

TSAPI.PDF R10.1 V16-68

Status Reporting Services
agentDevice

Specifies the device which is ready to receive calls from the ACD. If the
device is not specified, then the parameter will indicate that the device was
not known or that it was not required.

agentID

This parameter specifies the identifier of the agent who in ready to receive
calls.

privateData

If private data accompanied this event, then the private data would be
copied to the location pointed to by the privateData pointer in the
acsGetEventBlock() or acsGetEventPoll() function. If the privateData
pointer is set to NULL in these functions, then no private data will be
delivered to the application.

CSTAWorkNotReadyEvent

This event report indicates that the agent is in after call work mode completing the
tasks involved in servicing a call after the connection has been disconnected. This
will implies that the agents is no longer on the call but is completing the servicing
of the last call and the agent should not receive any additional calls.

Syntax

The following structure shows only the relevant portions of the unions for
this message. See ACS Data Types and CSTA Data Types in section 4 for
a complete description of the event structure.

typedef struct

{

ACSHandle_tacsHandle;

EventClass_teventClass;

EventType_teventType;

} ACSEventHeader_t;

typedef struct

{

ACSEventHeader_teventHeader;

union

{

struct

{

CSTAMonitorCrossRefID_tmonitorCrossRefID;

union

{

CSTAWorkNotReadyEvent_t workNotReady;

} u;

} cstaUnsolicited;

} event;

} CSTAEvent_t;
Issue 1 — December 2001

6-69TSAPI.PDF R10.1 V1

Status Reporting Services
Issue 1 — December 2001

TSAPI.PDF R10.1 V16-70

Status Reporting Services
typedef struct

{

SubjectDeviceID_tagentDevice;

AgentID_tagentID;

} CSTAWorkNotReadyEvent_t;

Parameters

acsHandle

This is the handle for the ACS Stream.

eventClass

This is a tag with the value CSTAUNSOLICITED, which identifies this
message as an CSTA unsolicited event.

eventType

This is a tag with the value CSTA_WORK_NOT_READY which identifies
this message as an CSTAWorkNotReadyEvent.

agentDevice

Specifies the device which has invoked the Work Not Ready mode. If the
device is not specified, then the parameter will indicate that the device was
not known or that it was not required.

agentID

This parameter specifies the identifier of the agent who is in the Work Not
Ready mode.

privateData

If private data accompanied this event, then the private data would be
copied to the location pointed to by the privateData pointer in the
acsGetEventBlock() or acsGetEventPoll() function. If the privateData
pointer is set to NULL in these functions, then no private data will be
delivered to the application.

Comments

In the case of this event the agent is still working on completing the after
call work for the last call. The difference between this event and the
CSTAWorkReadyEvent is that the agent has indicated that he/she is not
ready to receive additional calls.

CSTAWorkReadyEvent

This event report indicates that the agent is in "after call work mode" completing
the tasks involved in servicing a call after the connection has been disconnected.
This implies that the agents is no longer on the call but is completing the servicing
of the last call and the agent may receive any additional calls.
Issue 1 — December 2001

6-71TSAPI.PDF R10.1 V1

Status Reporting Services
Syntax

The following structure shows only the relevant portions of the unions for
this message. See ACS Data Types and CSTA Data Types in section 4
for a complete description of the event structure.

typedef struct

{

ACSHandle_t acsHandle;

EventClass_t eventClass;

EventType_t eventType;

} ACSEventHeader_t;

typedef struct

{

ACSEventHeader_teventHeader;

union

{

struct

{

CSTAMonitorCrossRefID_tmonitorCrossRefID;

union

{

CSTAWorkReadyEvent_t workReady;

} u;

} cstaUnsolicited;

} event;

} CSTAEvent_t;

typedef struct

{

SubjectDeviceID_t agentDevice;

AgentID_t agentID;

} CSTAWorkReadyEvent_t;

Parameters

acsHandle

This is the handle for the ACS Stream.

eventClass

This is a tag with the value CSTAUNSOLICITED, which identifies this
message as an CSTA unsolicited event.

eventType

This is a tag with the value CSTA_WORK_READY which identifies this
message as an CSTAWorkReadyEvent.

agentDevice

Specifies the device which has invoked the Work Ready mode. If the
device is not specified, then the parameter will indicate that the device was
not known or that it was not required.
Issue 1 — December 2001

TSAPI.PDF R10.1 V16-72

Status Reporting Services
agentID

This parameter specifies the identifier of the agent who is in the Work
Ready mode.

privateData

If private data accompanied this event, then the private data would be
copied to the location pointed to by the privateData pointer in the
acsGetEventBlock() or acsGetEventPoll() function. If the privateData
pointer is set to NULL in these functions, then no private data will be
delivered to the application.

Comments

In the case of this event the agent is still working on completing the after
call work for the last call. The difference between this event and the
CSTAWorkNotReadyEvent is that the agent has indicated that he/she is
ready to receive additional calls.
Issue 1 — December 2001

6-73TSAPI.PDF R10.1 V1

Status Reporting Services
Event Report Data Types (Unsolicited)

This section defines the data structures associated with the CSTA Event Reports
defined in the Status Reporting Services section of this document.

CSTAMonitorFilter_t

This structure is used to identify the event type filters requested or available on a
monitored CSTA association.

typedef unsigned short CSTACallFilter_t;

#define CF_CALL_CLEARED 0x8000

#define CF_CONFERENCED 0x4000

#define CF_CONNECTION_CLEARED 0x2000

#define CF_DELIVERED 0x1000

#define CF_DIVERTED 0x0800

#define CF_ESTABLISHED 0x0400

#define CF_FAILED 0x0200

#define CF_HELD 0x0100

#define CF_NETWORK_REACHED 0x0080

#define CF_ORIGINATED 0x0040

#define CF_QUEUED 0x0020

#define CF_RETRIEVED 0x0010

#define CF_SERVICE_INITIATED 0x0008

#define CF_TRANSFERRED 0x0004

typedef unsigned char CSTAFeatureFilter_t;

#define FF_CALL_INFORMATION 0x80

#define FF_DO_NOT_DISTURB 0x40

#define FF_FORWARDING 0x20

#define FF_MESSAGE_WAITING 0x10

typedef unsigned char CSTAAgentFilter_t;

#define AF_LOGGED_ON 0x80

#define AF_LOGGED_OFF 0x40

#define AF_NOT_READY 0x20

#define AF_READY 0x10

#define AF_WORK_NOT_READY 0x08

#define AF_WORK_READY 0x04

typedef unsigned char CSTAMaintenanceFilter_t;

#define MF_BACK_IN_SERVICE 0x80

#define MF_OUT_OF_SERVICE 0x40

typedef struct CSTAMonitorFilter_t {

CSTACallFilter_t call;

CSTAFeatureFilter_t feature;

CSTAAgentFilter_t agent;

CSTAMaintenanceFilter_t maintenance;

Boolean private;

} CSTAMonitorFilter_t;
Issue 1 — December 2001

TSAPI.PDF R10.1 V16-74

Status Reporting Services
CALL_FILTERS

These values indicate that a call event filter should be used for processing
events. The provided filter may be different than the one requested.

FEATURE_FILTERS

These values indicate that a feature event filter should be used for
processing events. The provided filter may be different than the one
requested.

AGENT_FILTERS

These values indicate that a agent event filter should be used for
processing events. The provided filter may be different than the one
requested.

MAINTENANCE_FILTERS

These values indicate that a maintenance event filter should be used for
processing events. The provided filter may be different than the one
requested.

PRIVATE_FILTER

This value indicates that a private filter should be used for processing
events. The provided filter may be different than the one requested.

CSTAEventCause_t

This structure contains an enumerated list of all the possible event causes which
can occur with different events. The definitions of these event cause codes are
also provided.

typedef enum CSTAEventCause_t {

EC_NONE = -1,

EC_ACTIVE_MONITOR = 1,

EC_ALTERNATE = 2,

EC_BUSY = 3,

EC_CALL_BACK = 4,

EC_CALL_CANCELLED = 5,

EC_CALL_FORWARD_ALWAYS = 6,

EC_CALL_FORWARD_BUSY = 7,

EC_CALL_FORWARD_NO_ANSWER = 8,

EC_CALL_FORWARD = 9,

EC_CALL_NOT_ANSWERED = 10,

EC_CALL_PICKUP = 11,

EC_CAMP_ON = 12,

EC_DEST_NOT_OBTAINABLE = 13,

EC_DO_NOT_DISTURB = 14,

EC_INCOMPATIBLE_DESTINATION = 15,

EC_INVALID_ACCOUNT_CODE = 16,

EC_KEY_CONFERENCE = 17,

EC_LOCKOUT = 18,

EC_MAINTENANCE = 19,
Issue 1 — December 2001

6-75TSAPI.PDF R10.1 V1

Status Reporting Services
EC_NETWORK_CONGESTION = 20,

EC_NETWORK_NOT_OBTAINABLE = 21,

EC_NEW_CALL = 22,

EC_NO_AVAILABLE_AGENTS = 23,

EC_OVERRIDE = 24,

EC_PARK = 25,

EC_OVERFLOW = 26,

EC_RECALL = 27,

EC_REDIRECTED = 28,

EC_REORDER_TONE = 29,

EC_RESOURCES_NOT_AVAILABLE = 30,

EC_SILENT_MONITOR = 31,

EC_TRANSFER = 32,

EC_TRUNKS_BUSY = 33,

EC_VOICE_UNIT_INITIATOR = 34

} CSTAEventCause_t;

Certain cause codes will appear in events only if they make sense. The Table 6-1
gives cause code definitions. Table 6-2 illustrates which cause codes are
possible for the each of the call events.

Cause Code Definition

Active Monitor an Active Monitor Feature has occurred. This feature typically allows
intrusion by a supervisor into an agent call with the ability to speak
and listen. The resultant call can be considered as a conference so
this cause code may be supplied with the Conferenced Event
Report.

Alternate the call is in the process of being exchanged. This feature is typically
found on single-line telephones, where the human interface puts one
call on hold and retrieves a held call or answers a waiting call in an
atomic action.

Busy the call encountered a busy tone or device

Call Back Call Back is a feature invoked (by a user or via CSTA) in an attempt
to complete a call that has encountered a busy or no answer
condition. As a result of invoking the feature, the failed call is cleared
and the call can be considered as queued. The switch may
subsequently automatically retry the call (normally when the called
party next becomes free). Consequently, this cause code may
appear in Event Reports related to the feature invocation (Call
Cleared, Connection Cleared and Queued) or related to the
subsequent, retried call (Service Initiated, Originated, Delivered, and
Established).

Call Canceled the user has terminated a call without going on-hook.

Call Forward the call has been redirected via a Call Forwarding feature set for
general, unknown, or multiple conditions.

Call Fd. - Immediate the call has been redirected via a Call Forwarding feature set for all
conditions.
Issue 1 — December 2001

TSAPI.PDF R10.1 V16-76

Status Reporting Services
Call Fd. - Busy the call has been redirected via a Call Forwarding feature set for a
busy endpoint.

Call Fd. - No
Answer

the call has been redirected via a Call Forwarding feature set for an
endpoint that does not answer.

Call Not Answered the call was not answered because a timer has elapsed.

Call Pickup the call has been redirected via a Call Pickup feature.

Camp On a Camp On feature has beeninvoked or has matured.

Dest. Not
Obtainable

the call could not obtain the destination.

Do Not Disturb the call encounterred a Do Not Disturb condition.

Incompatible
Destination

the call encountered an incompatible destination.

Invalid Account
Code

the call has an invalid account code.

Key Operation1 indicates that the Event Report occurred at a bridged or twin device.

Lockout the call encountered inter-digit time-out while dialing.

Maintenance the call encountered a facility or endpoint in a maintenance
condition.

Net Congestion the call encountered a congested network. In some circumstances
this cause code indicates that the user is listening to a "No Circuit"
Special Information Tone (SIT) from a network that is accompanied
by a statement similar to "All circuits are busy..."

Net Not Obtainable the call could not reach a destination network.

Resources not
Available

resources were not available.

Silent Monitor the event was caused by the invocation of a feature that allows a
third party, such as an ACD agent supervisor, to join the call. The
joining party can hear the entire conversation, but cannot be heard
by either original party. The feature, sometimes called silent
intrusion, may provide a tone to one or both parties to indicate that
they are being monitored. This feature is not the same as a CSTA
Monitor request. This cause shall not indicate that a CSTA Monitor
has been initiated.

Transfer a Transfer is in progress or has occurred.

Trunks Busy the call encountered Trunks Busy.

Voice Unit Initiator indicates that the event was the result of action by automated
equipment (voice mail device, voice response unit, announcement)
rather than the result of action by a human user.

1. Telephone numbers associated primarily with one device often appear also on a
second device. One example is a secretary who’s phone has mirrored or bridged
lines of a boss’s phone.

Cause Code Definition
Issue 1 — December 2001

6-77TSAPI.PDF R10.1 V1

Status Reporting Services
CSTA Event Report - Cause Relationships

Cause Call
Clr.

Conf Con.
Clr.

Dlv. Div. Est. Fail Held Net.
Rch
.

Orig. Q-ed Retr. Svc.
Init.

Tran

Active Monitor y

Alternate y y y y

Busy y y

Call Back y y y y y y

Call Canceled y y y y

Call Forward y y y y y y

Call Fd. -
Immediate

y y y y y

Call Fd. - Busy y y y y y

Call Fd. - No
Answer

y y y y y y

Call Not
Answered

y y y y

Call Pickup y y

Camp On y y y

Dest. not
Obtainable

y y y

Do Not Disturb y y y y

Incpt. Destina-
tion

y y y y

Invalid Account
Code

y y

Key Operation y y y y y y y y y y y y y y

Lockout y
Issue 1 — December 2001

TSAPI.PDF R10.1 V16-78

Status Reporting Services
CSTA Event Report - Cause Relationships

Cause Call
Clr.

Conf Con.
Clr.

Dlv. Div. Est. Fail Held Net.
Rch.

Orig
.

Q-ed Retr. Svc.
Init.

Tran

Maintenance y y

Net
Congestion

y y

Net Not
Obtainable

y y

New Call y y y y y

No Available
Agents

y y y y

Overflow y y y y y y y

Override y y y y y y y y

Park y y

Recall y y y y y y y y y

Redirected y y y y y y

Reorder Tone y

Resrcs. not
Available

y y y y y

Silent
Monitor

y y

Transfer y y y y y y y y

Trunks Busy y y

Voice Unit
Initiator

y y
Issue 1 — December 2001

6-79TSAPI.PDF R10.1 V1

Status Reporting Services
Issue 1 — December 2001

TSAPI.PDF R10.1 V16-80

Issue 1 — December 2001

TSAPI.PDF R10.1 V1
7

Snapshot Services
An application uses CSTA Snapshot Services to query the current state of a CSTA
Call or a Device object. Snapshot services query the switch to provide an
application with information about the object. The information is a "snapshot"
since the state of the Call or Device object changes over time.

The Call Snapshot Services return a list of the Devices and Connections
associated with a given Call, and the Connection States for each of those
Devices. As Figure 7-1 illustrates, the union of the Connection States for the Call
defines the overall Call State. Also refer to the definition of Call State in
Chapter 3.

Figure 7-1 shows a Call that has four associated devices. Recall from Chapter 3
that the relationship between a CSTA Call and a CSTA Device is a CSTA
Connection (C1, C2, C3, and C4 are Connections). Each Connection has an
associated Connection State. The Call Snapshot Services inform an application
of each Device that is on a given Call and the associated Connection State for
those Devices. The Call State is the union of all the Connection States associated
with the Call. The application can use snapshot information to control
Connections. For example, if Figure 7-1 shows a four-party conference call, then
an application can use the Call Snapshot Services together with the
cstaClearConnection() service to disconnect any party from the conference. To
disconnect connection C4, an application uses the Call Snapshot Services to
obtain a Connection Identifier (for C4) that it then passes to the
cstaClearConnection() service.
7-1

Snapshot Services
Figure 7-1. Call Snapshot Service

Device Snapshot Services return information about Calls that are associated with
a given CSTA Device object. The information includes a list of Calls associated
with the given Device and the Connection State of each Call (at that Device).
Note the duality here: Call Snapshot Services return information about
Connections at all Devices associated with a given Call, while Device Snapshot
Services return information about all Connections at a given Device. Applications
use the Device Snapshot Services when they need to know what is happening at
a specific Device. As Figure 7-2 shows, Device Snapshot Services do not provide
information about the other parties on those Calls connected to the given Device.

An application can use Device Snapshot information to manipulate any
Connection, (C1, C2, or C3 in Figure 7-2) at the given Device.

Device 2

Device 1 Device 3

Device 4
Call

Call State =

C1 C3

C4C2

C1 C2 C3 C4

Connection State
Issue 1 — December 2001

TSAPI.PDF R10.1 V17-2

Snapshot Services
Figure 7-2. Device Snapshot Service

NOTE:
Before an application requests the Call or Device Snapshot Services, it must
have previously obtained a Call or Device identifier (that it will use as a
parameter to request those services). The identifier specifies a Call or
Device in the switching domain. Depending on the implementation,
Snapshot Services may not provide information about devices or
connections outside of that switching domain (devices not attached to that
switch) .

Call Snapshot Services

This section defines the Call Snapshot Services that query the switch for the
status of calls within the switching domain. Call Snapshot Services return
information about all Devices and Connections associated with a specified CSTA
Call object.

Call 1

Call 2

Call 3

Device State =

C1

C2

C3

Device

C1 C2 C3

Connection State
Issue 1 — December 2001

7-3TSAPI.PDF R10.1 V1

Snapshot Services
cstaSnapshotCallReq()

The cstaSnapshotCallReq() service provides information about a Call object in
the switching domain. The service will return the Devices associated with a given
Call and the Connection State for each Device. The Call State is the union of the
Connection States.

Syntax

#include <acs.h>

#include <csta.h>

RetCode_t cstaSnapshotCallReq (

ACSHandle_t acsHandle,

InvokeID_t invokeID,

ConnectionID_t *snapshotObj,

PrivateData_t *privateData),

Parameters

acsHandle

This is the handle to an active ACS Stream over which the request will be
made.

invokeID

This is an application provided handle that the application uses to match a
specific instance of a service request with its confirmation event. The
application supplies this parameter only when the Invoke ID mechanism is
set for Application-generated IDs in acsOpenStream(). The ACS Library
ignores this parameter when the Stream is set for Library-generated invoke
IDs.

snapshotObj

This is a pointer to the Connection Identifier identifying the Call object for
which Snapshot information is requested.

privateData

This is an optional pointer to CSTA private data.

Return Values

cstaSnapshotCallReq() returns the following values depending on
whether the application is using library or application-generated invoke
identifiers:

Library-generated Identifiers - if the function call completes
successfully it will return a positive value, the invoke identifier. If the
call fails it will return a negative error (<0). For library-generated
identifiers the return will never be zero (0).
Issue 1 — December 2001

TSAPI.PDF R10.1 V17-4

Snapshot Services
Application-generated Identifiers - if the function call completes
successfully it will return a zero (0) value. If the call fails it will return
a negative error (<0). For application-generated identifiers the return
is never positive (>0).

An application should always check the CSTASnapshotCallConfEvent
message to insure that the Telephony Server and switch have
acknowledged and processed the cstaSnapshotCallReq() request.

The following are possible negative error conditions for this function:

ACSERR_BADHDL

The application provided a bad or unknown acsHandle.

ACSERR_STREAM_FAILED

A previously active ACS Stream has been abnormally aborted.

Comments

A call to cstaSnapshotCallReq() results in a confirmation event,
CSTASnapshotCallConfEvent, that returns the information about the call.
cstaSnapshotCallReq() provides information about calls that make
further monitoring meaningful. For example, when an application requests
cstaMonitorStart(), there may already be active calls at the Device being
monitored. The application can use Call Snapshot information to obtain
information about those existing calls process additional events about them
in a reasonable way.

cstaSnapshotCallReq() is passive and does not affect the state of any
object in the switching domain.

CSTASnapshotCallConfEvent

The Call Snapshot confirmation event returns call related information in response
to the cstaSnapshotCallReq() service. The call information includes the static
Device Identifiers, the Connection Identifiers, and Connection States for every
endpoint in the specified call.

Syntax

The following structure shows only the relevant portions of the unions for
this message. See ACS Data Types and CSTA Data Types in section 4
for a complete description of the event structure.

typedef struct

{

ACSHandle_t acsHandle;

EventClass_t eventClass;

EventType_t eventType;

} ACSEventHeader_t;
Issue 1 — December 2001

7-5TSAPI.PDF R10.1 V1

Snapshot Services
typedef struct

{

ACSEventHeader_teventHeader;

union

{

struct

{

InvokeID_tinvokeID;

union

{

CSTASnapshotCallConfEvent_t snapshotCall;

} u;

} cstaConfirmation

} event;

} CSTAEvent_t;

typedef struct CSTASnapshotCallConfEvent_t {

CSTASnapshotCallData_t snapshotData;

} CSTASnapshotCallConfEvent_t;

typedef struct CSTASnapshotCallData_t {

int count;

struct CSTASnapshotCallResponseInfo_t *info;

} CSTASnapshotCallData_t;

typedef struct CSTASnapshotCallResponseInfo_t {

SubjectDeviceID_tdeviceOnCall;

ConnectionID_tcallIdentifier;

LocalConnectionState_tlocalConnectionState;

} CSTASnapshotCallResponseInfoEvent_t;

Parameters

acsHandle

This is the handle for the ACS Stream over which the confirmation arrived.
This is the same as the ACS Stream over which the request was made.

eventClass

This is a tag with the value CSTACONFIRMATION, which identifies this
message as an CSTA confirmation event.

eventType

This is a tag with the value CSTA_SNAPSHOT_CALL_CONF, which
identifies this message as an CSTASnapshotCallConfEvent.

invokeID

This parameter specifies the service request instance for the
cstaSnapshotCallReq() The application uses this parameter to correlate
responses with requests.

snapshotData
Issue 1 — December 2001

TSAPI.PDF R10.1 V17-6

Snapshot Services
Contains all the snapshot information for the Call for which the query was
made.

count: A count of the number of CSTASnapshotCallResponseInfo_
t structures. Each structure contains information about one device
on the call.

info: A pointer to an array of CSTASnapshotCallResponseInfo_t
structures, each of which contains the following fields:

deviceOnCall — A pointer to the Device Identifier of a device
that is a party on the call for which the query was made.

callIdentifier — The Connection Identifier for the Connection
between the deviceOnCall and the call for which the query
was made.

localConnectionState — The Connection State for the local
Connection in the callIdentifier parameter.

privateData

If private data accompanies this event, then the private data would be
stored in the location that the application specified as the privateData
parameter in the acsGetEventBlock() or acsGetEventPoll() request. If
the privateData pointer is set to NULL in these requests, then
CSTASnapshotCallConfEvent does not deliver private data to the
application.

Comments

The CSTASnapshotCallConfEvent returns an array or variable length
since the number of devices on a call can be greater than one. Each array
element identifies a Device on the call, the Connection between the Device
and the Call, and the Connection State (see Figure 7-1). An application
should use count to determine the number of array elements.

Device Snapshot Service

This section defines the Device Snapshot Services that query the switch for the
status of Devices within the switching domain. Device Snapshot Services return
information about Calls (Connections) associated with a specified Device.

cstaSnapshotDeviceReq()

The cstaSnapshotDeviceReq() service returns information about a Device
object in the switching domain. The service returns a list of calls associated with
the given Device and the Connection State of each of those calls at that Device.
Issue 1 — December 2001

7-7TSAPI.PDF R10.1 V1

Snapshot Services
Syntax

#include <acs.h>

#include <csta.h>

RetCode_t cstaSnapshotDeviceReq (

ACSHandle_t acsHandle,

InvokeID_t invokeID,

DeviceID_t *snapshotObj,

PrivateData_t *privateData);

Parameters

acsHandle

This is the handle to an active ACS Stream over which the request will be
made.

invokeID

This is an application provided handle that the application uses to match a
specific instance of a service request with its confirmation event. The
application supplies this parameter only when the Invoke ID mechanism is
set for Application-generated IDs in acsOpenStream(). The ACS Library
ignores this parameter when the Stream is set for Library-generated invoke
IDs.

snapshotObj

This parameter is a pointer to the Device Identifier for the Device object for
which Snapshot information is being requested.

privateData

This is an optional pointer to CSTA private data.

Return Values

This function returns the following values depending on whether the
application is using library or application-generated invoke identifiers:

Library-generated Identifiers - if the function call completes
successfully it will return a positive value, the invoke identifier. If the
call fails it will return a negative error (<0). For library-generated
identifiers the return will never be zero (0).

Application-generated Identifiers - if the function call completes
successfully it will return a zero (0) value. If the call fails it will return
a negative error (<0). For application-generated identifiers the return
is never positive (>0).

The application should always check the
CSTASnapshotDeviceConfEvent message to insure that the Telephony
Server and the switch have acknowledged and processed the
cstaSnapshotDeviceReq() request.

The following are possible negative error conditions for this function:
Issue 1 — December 2001

TSAPI.PDF R10.1 V17-8

Snapshot Services
ACSERR_BADHDL

This return value indicates that a bad or unknown acsHandle was
provided by the application.

ACSERR_STREAM_FAILED

This return value indicates that a previously active ACS Stream has
been abnormally aborted.

Comments

A call to cstaSnapshotDeviceReq() results in a confirmation event,
CSTASnapshotDeviceConfEvent, which returns information about the
Device. cstaSnapshotDeviceReq() provides information about Devices
that permit an application to synchronize state with the switching domain.
For example, an application can call cstaSnapshotDeviceReq() to find
out about the Calls present at a Device, then call cstaMonitorStart() to
monitor the Device. The information from the Device query permits the
application to process the monitoring events in a proper context.

The cstaSnapshotDeviceReq() is passive and does not affect the state of
any object within the switching domain.

CSTASnapshotDeviceConfEvent

The Device Snapshot confirmation event returns Device related information in
response to the cstaSnapshotDeviceReq() service. The Device information
includes a Connection Identifier for each Call at the Device and the Connection
State for each Call at the Device.

Syntax

The following structure shows only the relevant portions of the unions for
this message. See ACS Data Types and CSTA Data Types in section 4
for a complete description of the event structure.

typedef struct

{

ACSHandle_t acsHandle;

EventClass_t eventClass;

EventType_t eventType;

} ACSEventHeader_t;
Issue 1 — December 2001

7-9TSAPI.PDF R10.1 V1

Snapshot Services
typedef struct

{

ACSEventHeader_t eventHeader;

union

{

struct

{

InvokeID_tinvokeID;

union

{

CSTASnapshotDeviceConfEvent_t snapshotDevice;

} u;

} cstaConfirmation;

} event;

} CSTAEvent_t;

typedef struct CSTASnapshotDeviceConfEvent_t {

CSTASnapshotDeviceData_t snapshotData;

} CSTASnapshotDeviceConfEvent_t;

typedef struct CSTASnapshotDeviceData_t {

int count;

struct CSTASnapshotDeviceResponseInfo_t *info;

} CSTASnapshotDeviceData_t;

typedef struct CSTASnapshotDeviceResponseInfo_t {

ConnectionID_tcallIdentifier;

CSTACallState_tlocalcallState;

} CSTASnapshotDeviceResponseInfo_t;

typedef struct CSTACallState_t {

int count;

LocalConnectionState_t *state;

} CSTACallState_t;

typedef enum CSTASimpleCallState_t {

CALL_NULL = 0,

CALL_PENDING = 1,

CALL_ORIGINATED = 3,

CALL_DELIVERED = 35,

CALL_DELIVERED_HELD = 36,

CALL_RECEIVED = 50,

CALL_ESTABLISHED = 51,

CALL_ESTABLISHED_HELD = 52,

CALL_RECEIVED_ON_HOLD = 66,

CALL_ESTABLISHED_ON_HOLD = 67,

CALL_QUEUED = 83,

CALL_QUEUED_HELD = 84,

CALL_FAILED = 99,

CALL_FAILED_HELD = 100

} CSTASimpleCallState_t;
Issue 1 — December 2001

TSAPI.PDF R10.1 V17-10

Snapshot Services
/*

*

*/

#define SIMPLE_CALL_STATE(ccs) (ccs.stat[0]+(ccs.state[1] << 4))

typedef struct CSTACallState_t {

int count;

LocalConnectionState_t*state;

} CSTACallState_t;

Parameters

acsHandle

This is the handle for the ACS Stream over which the confirmation arrived.
This is the same as the ACS Stream over which the request was made.

eventClass

This is a tag with the value CSTACONFIRMATION, which identifies this
message as an CSTA confirmation event.

eventType

This is a tag with the value CSTA_SNAPSHOT_DEVICE_CONF, which
identifies this message as an CSTASnapshotDeviceConfEvent.

invokeID

This parameter specifies the service request instance for the
cstaSnapshotDeviceReq() The application uses this parameter to
correlate responses with requests.

snapshotData

Contains all the snapshot information for the Device for which the query
was made.

count: A count of the number of
CSTASnapshotDeviceResponseInfo_t structures. Each contains
information about one Call at the Device.

info: A pointer to an array of CSTASnapshotDeviceResponseInfo_
t structures, each of which contains the following fields:

callIdentifier — A pointer to a Connection Identifier for each
call at the device. For some implementations, this parameter
points to the device's dynamic device identifier for the call
object.

callState — The CSTA Call State. The Call State is returned
as a list of local Call States.

privateData

If private data accompanies this event, then the private data would be
stored in the location that the application specified as the privateData
parameter in the acsGetEventBlock() or acsGetEventPoll() request. If
Issue 1 — December 2001

7-11TSAPI.PDF R10.1 V1

Snapshot Services
the privateData pointer is set to NULL in these requests, then
CSTASnapshotDeviceConfEvent does not deliver private data to the
application.

Comments

The CSTASnapshotDeviceConfEvent returns a linked list since the
number of calls on a device can be greater than one. Each member of the
list identifies a call at the device, and the local call state of the Connection
for that call at the device (see Figure 7-2). An application should be aware
that the number of members on the list is not fixed. The pointer, *next, will
be NULL for the last member (call) on the list.
Issue 1 — December 2001

TSAPI.PDF R10.1 V17-12

Issue 1 — December 2001

TSAPI.PDF R10.1 V1
8

CSTA Computing Function Services
CSTA Computing Functions are those functions where the switching domain is
the client (service requester) and the computing domain is the server. Presently,
Application Call Routing is the only CSTA Computing Function. A switch uses
application call routing when it needs the application to supply call destinations on
a call-by-call basis. Applications can use internal databases together with call
information to determine a destination for each call. For Example, an application
might use the caller's number, caller-entered digits (provided as private data), or
information in an application database to route incoming calls.

TSAPI Version 2 Routing

TSAPI Version 2 more closely aligns with the CSTA standard. Version 2 adds two
new TSAPI functions and provides additional information in two event reports.
The new function calls are cstaRouteSelectInv() and cstaRouteEndInv(), and
the two enhanced events are CSTARouteRequestEvent and
CSTARouteUsedEvent.

The new functions, cstaRouteSelectInv() and cstaRouteEndInv(), allow an
application to supply an invoke identifier (invokeID) in these requests. Although
TSAPI does not define a confirmation event for these services, the CSTA
standard does define a negative acknowledgement. By using the Version 2
functions, the application can associate a potential
CSTAUniversalFailureConfEvent with the original request. This is not possible
with the Version 1 APIs because they did not include an invokeID parameter (a
PBX Driver may instead send a CSTARouteEndEvent to indicate an error, but
doing so is not strictly in compliance with the CSTA standard).
8-1

CSTA Computing Function Services
The enhancements in the routing event reports, CSTARouteRequestEvent and
CSTARouteUsedEvent allow inclusion of ExtendedDeviceID_t type fields for
certain event data instead of the currently defined DeviceID_t types. In version 2,
the currentRoute and callingDevice members of CSTARouteRequestExtEvent
are defined as CalledDeviceID_t and CallingDeviceID_t types, respectively. The
routeUsed and callingDevice members of CSTARouteUsedEvent are defined
as CalledDeviceID_t and CallingDeviceID_t types, respectively. The version 2
definitions align with the CSTA standard. Note that a routing server application
that requests and gets the TSAPI version 2 (i.e., "TS2") will always receive the
version 2 events. Existing applications that do not use version control to request
the Version 2 API version will continue to receive the Version 1 events.

Application Call Routing

Application call routing requires that the switch be configured to direct calls to a
special type of device know as the "routing device". When a call arrives at a
routing device, the switch sends a message to the Telephony Server requesting a
route for the call.

Before an application can route calls, it must register with the Telephony Server as
a routing server. The application may either register as the routing server for a
specific routing device or as the default routing server for an advertised service.
Recall that a PBX driver advertises its services. Often these services correspond
to a CTI link, so an application can, in effect, register to be the default routing
server for a CTI link. An application uses cstaRouteRegisterReq() to register as
a routing server. This request has an associated confirmation event,
CSTARouteRegisterReqConfEvent, that contains the routing cross-reference
identifier (routingCrossRefID) that the application uses to identify requests that
arrive on this registration.

NOTE:
At any one time, one, and only one application can be the routing server for
a routing device. Similarly, one, and only one application can be the default
routing server for an advertised service.

Routing Procedure

The registration above must occur before this procedure can take place. This
procedure description uses the version 2 functions.

1. The switch queues an incoming call at a special device object, the routing
device. The routing device may be a "soft" extension on the switch for
application-based routing, or similar device defined within the switching
domain.

2. When the call arrives at the routing device, the switch and the Telephony
Services PBX driver create a CSTA routing dialog for the call. The PBX
driver allocates a routing cross-reference identifier (routingCrossRefID)
that references this routing dialog.
Issue 1 — December 2001

TSAPI.PDF R10.1 V18-2

CSTA Computing Function Services
3. The PBX Driver directs the route request to the application registered as
the routing server for the routing device. If no application is registered for
that specific routing device, then the PBX Driver directs the route request to
the default routing server application for its advertised service. The routing
application receives an unsolicited route request event
(CSTARouteRequestEvent) for the call. This event contains the routing
cross-reference identifier and call information (such as calling and called
numbers). The application which provides the call routing destination is
called the "routing server" for the routing device.

4. the routing server sends the switch a route select message
(cstaRouteSelectInv) containing a destination for the call. The routing
server typically uses information from the route request event together with
information from an application database to determine this destination.
The routing server may include an optional flag in the route select
(routeUsedReq) instructing the switch to inform it of the final destination for
the call. The final destination may be different than the application-provided
destination when switch features such as call forwarding redirect the call.

5. the switch receives the route select message (cstaRouteSelectInv) and
attempts to route the call to the application-provided destination. If the
destination is valid, the switch routes the call to that destination and sends
the application a route end event (cstaRouteEndInv). This terminates the
routing dialog for that call. If the application-provided destination is not
valid (an invalid extension number, the destination is busy, etc.), then the
switch may send a re-route event (CSTAReRouteRequestEvent) to the
application to request another route to a different destination.

6. If the application receives a re-route event (CSTAReRouteRequestEvent) it
can select a different destination for the call and send the switch another
route select message (cstaRouteSelectInv). Depending on the switch
implementation, the re-routing message exchange can repeat until the
application provides a valid route. The routing server application will find
out about a successful route if the switch sends a route end event
(cstaRouteEndInv) or if the application included the routeUsedReq flag in
its last route select message (cstaRouteSelectInv).

Either the switch or the routing server (application) may send a route end event
(cstaRouteEndInv) to end the routing process and terminate the CSTA routing
dialog (this releases the routing cross-reference identifier, routingCrossRefID for
use in the future). Either endpoint may send a route end at any time. This
message indicates that the routing server does not want to route the call, or the
switch (usually in the absence of a cstaRouteSelectInv message) routed the call
using some mechanism within the switching domain.

NOTE:
Certain switch implementations may not support the optional flags described
above.

Figure 8-17 illustrates the Routing Procedure.
Issue 1 — December 2001

8-3TSAPI.PDF R10.1 V1

CSTA Computing Function Services
Figure 8-1. Routing Procedure

Routing Registration Functions and
Events

This section describes the service requests and events that an application uses to
register with the Telephony Server as a call routing server

cstaRouteRegisterReq()

An application uses cstaRouteRegisterReq() to register as a routing server for a
specific routing device or as a default routing server for an advertised service. The
application must register for routing services before it can receive any route
requests for a routing device. An application may be a routing server for more
than one routing device. However, only one application may be a routing server
for any given routing device. Similarly, only one application may register as the
default routing server for an advertised service.

Driver/Switch Domain Routing Server (application)

(1) a call arrives at the routing device
(routingCrossRefIDcreated and
CSTARouteRequestEventis sent)

call related Info is passed
(e.g. ANI, DNIS, collected digits)

(2) Application selects a
destination for the call (based on
the call and other customer info). A
cstaRouteSelectInv()) message is

Route Used

(3) the switch attempts to route the
queued call to selected dest.
(3a) If destination address is o.k. a
CSTARouteEndEventis sent
(3b) If destination is invalid, then a
CSTAReRouteEventis sent

or

(1)

(2)

(3a)

(3b)
(4a) If (3a) then routingCrosRefIDis no
longer valid and route is completed
as specified in(2),
(4b) If (3b) then send a second
cstaRouteSelectInv()with a different(4b)(5) the switch attempts to route the

queued call to selected dest.
(5a) If destination address o.k. a
CSTARouteUsedEventand
CSTARouteEndEventis sent
(5b) If destination is invalid, then a
CSTAReRouteEventis sent

or
(5a)

(5b)

(6a) If (5a) then routingCrosRefIDis no
longer valid and route is completed
as specified in(4b),
(6b) If (5b) then send a second
cstaRouteSelectInv()with a different

•
•
•

•
•
•

•
•
•

(= off)

destination (Route Used = on).

destination (Route Used = on).

sent
Issue 1 — December 2001

TSAPI.PDF R10.1 V18-4

CSTA Computing Function Services
Syntax

#include <acs.h>

#include <csta.h>

RetCode_t cstaRouteRegisterReq (

ACSHandle_t acsHandle,

InvokeID_t invokeID,

DeviceID_t *routingDevice,

PrivateData_t *privateData);

Parameters

acsHandle

This is the handle to an active ACS Stream over which the routing dialog
will take place.

invokeID

This is an application provided handle that the application uses to match a
specific instance of cstaRouteRegisterReq() request with its
CSTARouteRegisterReqConfEvent confirmation event. The application
supplies this parameter only when the Invoke ID mechanism is set for
Application-generated IDs in acsOpenStream(). The ACS Library ignores
this parameter when the Stream is set for Library-generated invoke IDs.

routingDevice

This is a pointer to a device id for the routing device for which the
application requests to be the routing server. The routing device can be any
device type which the switch implementation supports as a routing device.
A NULL value indicates that the requesting application will be the default
routing server for the ServerID associated with the acsHandle in the
cstaRouteRegisterReq(). The default routing server will receive switch
routing requests for any routing devices making routing requests on that
advertised service that do not have registered routing servers. Thus, the
default routing server will receive route requests when a routing device
sends a route request and there is no corresponding registered routing
server for that routing device.

privateData

This is an optional pointer to CSTA private data.

Return Values

cstaRouteRegisterReq() returns the following values depending on
whether the application is using library or application-generated invoke
identifiers: Library-generated Identifiers - if the function call completes
successfully it will return a positive value, the invoke identifier. If the call
fails it will return a negative error (<0). For library-generated identifiers the
return will never be zero (0).
Issue 1 — December 2001

8-5TSAPI.PDF R10.1 V1

CSTA Computing Function Services
Application-generated Identifiers - if the function call completes
successfully it will return a zero (0) value. If the call fails it will return a
negative error (<0). For application-generated identifiers the return is never
positive (>0).

An application should always check the
CSTARouteRegisterReqConfEvent message to ensure to ensure that
the Telephony Server and switch have acknowledged the
cstaRouteRegisterReq().

The following are possible negative error conditions for this function:

ACSERR_BADHDL

The application provided a bad or unknown acsHandle.

ACSERR_STREAM_FAILED

A previously active ACS Stream has been abnormally aborted.

Comments

In order for an application to route calls the application must successfully
call cstaRouteRegisterReq(). An application can register as:

■ a routing server for the specified routing device, or

■ as the default routing server for all routing devices making requests
of a specific Telephony Server.

To register as a default routing server, an application sets the
routingDevice parameter to NULL. One, and only one, application is
allowed to register as the routing server for a routingDevice, or as the
default routing Server for an advertised service. Applications may register
for routing services for a specific device even when a default routing server
has registered. A default routing server will not receive any routing
requests from any routing device for which there is a registered routing
server. Once a routing server is registered, CSTARouteRequestEvents
convey the route requests to the routing server.

CSTARouteRegisterReqConfEvent

The RouteRegisterReqConfEvent indicates successful registration to an
application. That application is now the call routing server for the requested
routing device (or is the default routing server for the advertised service).

Syntax

The following structure shows only the relevant portions of the unions for
this message. See ACS Data Types and CSTA Data Types in section 4
for a complete description of the event structure.
Issue 1 — December 2001

TSAPI.PDF R10.1 V18-6

CSTA Computing Function Services
typedef struct

{

ACSHandle_t acsHandle;

EventClass_t eventClass;

EventType_t eventType;

} ACSEventHeader_t;

typedef struct

{

ACSEventHeader_teventHeader;

union

{

struct

{

InvokeID_tinvokeID;

union

{

CSTARouteRegisterReqConfEvent_t routeRegister;

} u;

} cstaConfirmation;

} event;

} CSTAEvent_t;

typedef struct {

RouteRegisterReqID_t routeRegisterReqID;

} CSTARouteRegisterReqConfEvent_t;

typedef long RouteRegisterReqID_t;

Parameters

acsHandle

This is the handle for the ACS Stream over which the
RouteRegisterReqConfEvent confirmation arrived. This is the same as
the ACS Stream over which the application made the corresponding
cstaRouteRegisterReq() request.

eventClass

This is a tag with the value CSTACONFIRMATION, which identifies this
message as an CSTA confirmation event.

eventType

This is a tag with the value CSTA_ROUTE_REGISTERREQ_CONF, which
identifies this message as an CSTARouteRegisterReqConfEvent.

invokeID

This parameter specifies the service request instance for the
cstaRouteRegisterReq(). The application uses this parameter to
correlate RouteRegisterReqConfEvent responses with requests.
Issue 1 — December 2001

8-7TSAPI.PDF R10.1 V1

CSTA Computing Function Services
routeRegisterReqID

This parameter contains a handle to the routing registration session for a
specific routing device (or for the default routing server depending on the
registration request). All routing dialogs (routingCrossRefIDs) for a
routing device occur over this routing registration session. The PBX Driver
selects routeRegisterReqIDs so that they will be unique within the
acsHandle.

privateData

If private data accompanies this event, then the private data would be
stored in the location that the application specified as the privateData
parameter in the acsGetEventBlock() or acsGetEventPoll() request. If
the privateData pointer is set to NULL in these requests, then
CSTARouteRegisterReqConfEvent does not deliver private data to the
application.

Comments

This event provides the application with a positive confirmation to a request for
routing registration.

cstaRouteRegisterCancel()

Applications (routing servers) use cstaRouteRegisterCancel() to cancel a
previously registered routing server session. This request terminates the routing
session and the application receives no further routing messages for that session
once it receives the confirmation to the cancel request.

Syntax

#include <acs.h>

#include <csta.h>

RetCode_t cstaRouteRegisterCancel (

ACSHandle_t acsHandle,

InvokeID_t invokeID,

RouteRegisterReqID_t routeRegisterReqID,

PrivateData_t *privateData);

Parameters

acsHandle

This is the handle to an active ACS Stream over which the
cstaRouteRegisterCancel() request will be made.

invokeID

This is an application provided handle that the application uses to match a
specific instance of a cstaRouteRegisterCancel() request with its
confirmation event. The application supplies this parameter only when the
Issue 1 — December 2001

TSAPI.PDF R10.1 V18-8

CSTA Computing Function Services
Invoke ID mechanism is set for Application-generated IDs in
acsOpenStream(). The ACS Library ignores this parameter when the
Stream is set for Library-generated invoke IDs.

routeRegisterReqID

This parameter is the handle to the routing registration session which the
application is canceling. The application received this handle in the
confirmation event for the route register service request, a
CSTARouteRegisterReqConfEvent.

privateData

This is an optional pointer to CSTA private data.

Return Values

cstaRouteRegisterCancel() returns the following values depending on
whether the application is using library or application-generated invoke
identifiers:

Library-generated Identifiers - if the function call completes
successfully it will return a positive value, the invoke identifier. If the
call fails it will return a negative error (<0). For library-generated
identifiers the return will never be zero (0).

Application-generated Identifiers - if the function call completes
successfully it will return a zero (0) value. If the call fails it will return
a negative error (<0). For application-generated identifiers the return
is never positive (>0).

The application should always check the
CSTARouteRegisterCancelConfEvent message to ensure that the
Telephony Server and switch have acknowledged and processed the
cstaRouteRegisterCancel() request.

The following are possible negative error conditions for this function:

ACSERR_BADHDL

The application provided a bad or unknown acsHandle.

ACSERR_STREAM_FAILED

A previously active ACS Stream has been abnormally aborted.

Comments

The application must continue to process outstanding routing requests
from the routing device until it receives
CSTARouteRegisterCancelConfEvent. The Telephony Server will not
send any further requests once it has sent this confirmation event.
Issue 1 — December 2001

8-9TSAPI.PDF R10.1 V1

CSTA Computing Function Services
CSTARouteRegisterCancelConfEvent

CSTARouteRegisterCancelConfEvent confirms a previously issued
cstaRouteRegisterCancel() request for a routing registration. Once tan
application receives this event, it invalidates the routing registration session.

Syntax

The following structure shows only the relevant portions of the unions for
this message. See ACS Data Types and CSTA Data Types in section 4
for a complete description of the event structure.

typedef struct

{

ACSHandle_t acsHandle;

EventClass_t eventClass;

EventType_t eventType;

} ACSEventHeader_t;

typedef struct

{

ACSEventHeader_t eventHeader;

union

{

struct

{

InvokeID_t invokeID;

union

{

CSTARouteRegisterCancelConfEvent_t routeCancel;

} u;

} cstaConfirmation;

} event;

} CSTAEvent_t;

typedef struct {

RouteRegisterReqID_t routeRegisterReqID;

} CSTARouteRegisterCancelConfEvent_t;

typedef long RouteRegisterReqID_t;

Parameters

acsHandle

This is the handle for the ACS Stream over which the
CSTARouteRegisterCancelConfEvent confirmation arrived. This is the
same as the ACS Stream over which the cstaRouteRegisterCancel()
request was made.

eventClass

This is a tag with the value CSTACONFIRMATION, which identifies this
message as an CSTA confirmation event.
Issue 1 — December 2001

TSAPI.PDF R10.1 V18-10

CSTA Computing Function Services
eventType

This is a tag with the value CSTA_ROUTE_REGISTER_CANCEL_CONF,
which identifies this message as an
CSTARouteRegisterCancelConfEvent.

invokeID

This parameter specifies the service request instance for the
cstaRouteRegisterCancel(). The application uses this parameter to
correlate the CSTARouteRegisterCancelConfEvent responses with
requests.

routeRegisterReqID

This parameter contains the handle to a routing registration for which the
application is providing routing services. The application obtained this
handle from a CSTARouteRegisterReqConfEvent. This
routeRegisterReqID handle is no longer valid once the Telephony Server
sends CSTARouteRegisterCancelConfEvent.

privateData

If private data accompanies this event, then the private data would be
stored in the location that the application specified as the privateData
parameter in the acsGetEventBlock() or acsGetEventPoll() request. If
the privateData pointer is set to NULL in these requests, then
CSTASnapshotCallConfEvent does not deliver private data to the
application.

Comments

CSTARouteRegisterCancelConfEvent confirms an application's
cstaRouteRegisterCancel() service request, which cancels a routing
registration session. The Telephony Server will send any further requests
from the routing device to the default routing server.

CSTARouteRegisterAbortEvent

The Telephony Server sends an application an unsolicited
CSTARouteRegisterAbortEvent to cancel an active routing dialog. This event
invalidates a routing registration session.

Syntax

The following structure shows only the relevant portions of the unions for
this message. See ACS Data Types and CSTA Data Types in section 4
for a complete description of the event structure.

typedef struct

{

ACSHandle_t acsHandle;

EventClass_t eventClass;

EventType_t eventType;
Issue 1 — December 2001

8-11TSAPI.PDF R10.1 V1

CSTA Computing Function Services
} ACSEventHeader_t;
Issue 1 — December 2001

TSAPI.PDF R10.1 V18-12

CSTA Computing Function Services
typedef struct

{

ACSEventHeader_t eventHeader;

union

{

struct

{

union

{

CSTARouteRegisterAbortEvent_t registerAbort;

} u;

} cstaEventReport;

} event;

} CSTAEvent_t;

typedef struct {

RouteRegisterReqID_t routeRegisterReqID;

} CSTARouteRegisterAbortEvent_t;

typedef long RouteRegisterReqID_t;

Parameters

acsHandle

This is the handle for the opened ACS Stream. The routing dialog being
canceled is occurring on this ACS Stream.

eventClass

This is a tag with the value CSTAEVENTREPORT, which identifies this
message as an CSTA event report.

eventType

This is a tag with the value CSTA_ROUTE_REGISTER_ABORT, which
identifies this message as an CSTARouteRegisterAbortEvent.

routeRegisterReqID

This parameter is the handle to a routing registration for which the
application is providing routing services. The application received this
handle in a CSTARouteRegisterReqConfEvent. The
CSTARouteRegisterAbortEvent invalidates this handle.

privateData

If private data accompanies CSTARouteRegisterAbortEvent, then the
private data would be stored in the location that the application specified as
the privateData parameter in the acsGetEventBlock() or
acsGetEventPoll() request. If the privateData pointer is set to NULL in
these requests, then CSTARouteRegisterAbortEvent does not deliver
private data to the application.
Issue 1 — December 2001

8-13TSAPI.PDF R10.1 V1

CSTA Computing Function Services
Comments

CSTARouteRegisterAbortEvent notifies the application that the PBX
driver or switch aborted a routing registration session.

Routing Functions and Events

This section defines the CSTA call routing services for application call routing. The
switch queues calls at the routing device until the application provides a
destination for the call or a time-out condition occurs within the switching domain.
Figure 8-17 shows the Application-based call routing dialog between a switch and
the routing server (the application).

Once an application registers as a routing server, the application uses the
services in this section to route calls. The application receives a
CSTARouteRequestEvent for each call which requires a routing destination. The
application sends the switch a destination in cstaRouteSelectInv(). The switch
then attempts to route the call to that application-provided destination. The switch
will respond with a CSTARouteEndEvent and/or a CSTARouteUsedEvent. If the
application-provided destination is invalid, the switch may send a
CSTAReRouteRequestEvent to request an additional destination. See Figure
8-17 for a typical sequence of these events and service requests.

Register Request ID and the Routing
Cross-Reference ID

The routing services use two handles (identifiers) to refer to different software
objects in the Telephony Server. The register request identifier
(routeRegisterReqID) identifies a routing session over which an application will
receive routing requests. This handle is tied to a routing device on the switch, or it
may indicate that the application is the default routing server for an advertised
service. When the application uses cstaRouteRegisterReq() to register for
routing services, it receives a routeRegisterReqID in the confirmation. The
routeRegisterReqID is valid until the registration is canceled or aborted.

Within a routing session (routeRegisterReqID) the switch may initiate many
routing dialogs (shown in Figure 8-17) to route multiple calls. An application uses
a routing cross reference-identifier (routingCrossRefID) to refer to each routing
dialog. The application receives a routingCrossRefID in each
CSTARouteRequestEvent. The CSTARouteRequestEvent initiates a routing
dialog. The routingCrossRefID is valid for the duration of the call routing dialog.

The routing cross-reference identifier (routingCrossRefID) is unique within the
routing session (routeRegisterReqID). Some switch implementations may
provide the additional benefit of a unique routing cross reference-identifier across
the entire switching domain. Routing session identifiers (routeRegisterReqIDs)
are unique within an ACS Stream (acsHandle).
Issue 1 — December 2001

TSAPI.PDF R10.1 V18-14

CSTA Computing Function Services
NOTE:
If a call is not successfully routed by the routing server this does not
necessarily mean that the call is cleared or not answered. Most switch
implementations will have a default mechanism for handling a call at a
routing device when the routing server has failed to provide a valid
destination for the call.

CSTARouteRequestEvent

A routing server application receives a CSTARouteRequestEvent when the
switch requests a route for a call. The application may have registered as the
routing server for the routing device on the switch that is making the request, or it
may have registered as the default routing server for the advertised service. The
CSTARouteRequestEvent event includes call related information (such as the
called and calling number, when available). A routing server application typically
combines the call related information with an application database to determine a
destination for the call. A routing server application receives a
CSTARouteRequestEvent for every call queued at the routing device.

TSAPI Version

Applications using TSAPI Version 1 must use the
CSTARouteRequestEvent_t structure; applications using any other
version must use the CSTARouteRequestExtEvent_t structure.

Syntax

The following structure shows only the relevant portions of the unions for
this message. See ACS Data Types and CSTA Data Types in section 4
for a complete description of the event structure.

typedef struct {

ACSHandle_t acsHandle;

EventClass_t eventClass;

EventType_t eventType;

} ACSEventHeader_t;

typedef struct {

ACSEventHeader_teventHeader;

union

{

struct

{

InvokeID_tinvokeID;

union

{

CSTARouteRequestEvent_t routeRequest;

/* version 2 union only */

CSTARouteRequestExtEvent_t routeRequestExt
Issue 1 — December 2001

8-15TSAPI.PDF R10.1 V1

CSTA Computing Function Services
} u;

} cstaRequest;

} event;

CSTAEvent_t;

TSAPI Version 1:

typedef struct {

RouteRegisterReqID_t routeRegisterReqID;

RoutingCrossRefID_t routingCrossRefID;

DeviceID_t currentRoute;

DeviceID_t callingDevice;

ConnectionID_t routedCall;

SelectValue_t routedSelAlgorithm;

Boolean priority;

SetUpValues_t setupInformation;

} CSTARouteRequestEvent_t;

TSAPI Version 2:

typedef struct {

RouteRegisterReqID_t routeRegisterReqID;

RoutingCrossRefID_t routingCrossRefID;

CalledDeviceID_t currentRoute; /* V2 */

CallingDeviceID_t callingDevice; /* V2 */

ConnectionID_t routedCall;

SelectValue_t routedSelAlgorithm;

Boolean priority;

SetUpValues_t setupInformation;

} CSTARouteRequestExtEvent_t; /* V2 */

typedef enum SelectValue_t {

SV_NORMAL = 0,

SV_LEAST_COST = 1,

SV_EMERGENCY = 2,

SV_ACD = 3,

SV_USER_DEFINED = 4

} SelectValue_t;

typedef struct SetUpValues_t {

int length;

unsigned char *value;

} SetUpValues_t;

Parameters

acsHandle

This is the handle for the opened ACS Stream on which the route request
event arrives.

eventClass

This is a tag with the value CSTAREQUEST, which identifies this message
as an CSTA request message.
Issue 1 — December 2001

TSAPI.PDF R10.1 V18-16

CSTA Computing Function Services
eventType

This is a tag with the value CSTA_ROUTE_REQUEST (version 1) or
CSTA_ROUTE_REQUEST_EXT (version 2), which identifies this message
as an CSTARouteRequestEvent.

routeRegisterReqID

This parameter contains the handle to the routing registration session for
which the application is providing routing services. The application
received this handle in a CSTARouteRegisterReqConfEvent confirmation
to a route register service request.

routingCrossRefID

The application receives this new handle for the routing dialog for this call.
This identifier has a new, unique value within the scope of the routing
session (routeRegisterReqID).

currentRoute

This parameter indicates the originally requested destination for the call
being application routed. Often, this is the DNIS, or dialed number.

callingDevice

This is the originating device of the call, i.e., the calling party number (when
available. If not available, it may be trunk information).

routedCall

This parameter is a CSTA Connection ID that identifies the call being
routed.

routedSelAlgorithm

This parameter identifies the routing algorithm being used.

priority

This parameter indicates the priority of the call.

setupInformation

This parameter includes an ISDN call setup message, if available.

privateData

If private data accompanies CSTARouteRequestEvent, then the private
data would be stored in the location that the application specified as the
privateData parameter in the acsGetEventBlock() or acsGetEventPoll()
request. If the privateData pointer is set to NULL in these requests, then
CSTARouteRequestEvent does not deliver private data to the application.
Issue 1 — December 2001

8-17TSAPI.PDF R10.1 V1

CSTA Computing Function Services
Comments

CSTARouteRequestEvent informs the routing server (application) that the
switch is requesting a destination for a call queued at the routing device.
The application uses cstaRouteSelectInv() or cstaRouteSelect() to
respond with a destination.

NOTE:
CSTA requires that all events contain an invoke ID. During routing, the
RouteRegisterReqID and the RoutingCrossRefID identify the routing
dialogue. The invokeID is not used.

CSTAReRouteRequestEvent

The switch sends an unsolicited CSTAReRouteRequestEvent to request an
another destination for a call. Typically, the destination that the application
previously sent was invalid or busy. The switch previously sent call related
information (such as the called and calling numbers) in the
CSTARouteRequestEvent; Call related information is not re-sent in the
CSTAReRouteRequestEvent. The routing server application responds using the
cstaRouteSelectInv() or cstaRouteSelect() service.

Syntax

typedef struct

{

ACSHandle_t acsHandle;

EventClass_t eventClass;

EventType_t eventType;

} ACSEventHeader_t;

typedef struct

{

ACSEventHeader_t eventHeader;

union

{

struct

{

InvokeID_tinvokeID;

union

{

CSTAReRouteRequest_t reRouteRequest;

} u;

} cstaRequestEvent;

} event;

} CSTAEvent_t;

typedef struct

{

RouteRegisterReqID_trouteRegisterReqID;

RoutingCrossRefID_troutingCrossRefID;

} CSTAReRouteRequest_t;
Issue 1 — December 2001

TSAPI.PDF R10.1 V18-18

CSTA Computing Function Services
Parameters

acsHandle

This is the handle for the opened ACS Stream on which the re-route
request arrives.

eventClass

This is a tag with the value CSTAREQUEST, which identifies this message
as a CSTA request message.

eventType

This is a tag with the value CSTA_RE_ROUTE_REQUEST, which
identifies this message as a CSTAReRouteRequestEvent.

routeRegisterReqID

This parameter contains the handle to the routing registration session for
which the application is providing routing services. The application
received this handle in a CSTARouteRegisterReqConfEvent confirmation
to a route register service request.

routingCrossRefID

This parameter contains the handle to the CSTA call routing dialog for this
call. The application previously received this handle in a
CSTARouteRequestEvent for the call.

privateData

If private data accompanies CSTAReRouteRequestEvent, then the
private data would be stored in the location that the application specified as
the privateData parameter in the acsGetEventBlock() or
acsGetEventPoll() request. If the privateData pointer is set to NULL in
these requests, then CSTAReRouteRequestEvent does not deliver
private data to the application.

Comments

The switch can send CSTAReRouteRequestEvent to the routing server
application when the application previously sent a destination that was is invalid or
other circumstances exist where routing of the call to the destination is not
possible (e.g. the destination is busy). The switch uses
CSTAReRouteRequestEvent to request another destination for the call queued
at the routing device. The application uses cstaRouteSelect() to provide the new
destination.

The number of re-route requests that a switch may send depends on the
implementation or administration within the switch. The application should be
prepared to respond to all re-route requests or terminate the routing dialog by
using the cstaRouteEnd() service request when it cannot provide additional
destinations.
Issue 1 — December 2001

8-19TSAPI.PDF R10.1 V1

CSTA Computing Function Services
NOTE:
CSTA requires that all events contain an invoke ID. During routing, the
RouteRegisterReqID and the RoutingCrossRefID identify the routing
dialogue. The invokeID is not used.

cstaRouteSelect() TSAPI Version 1 Only

The routing server application uses cstaRouteSelect to send a routing
destination to the switch in response to a CSTARouteRequestEvent for a call.

TSAPI Version

Applications using TSAPI Version 1 must use the CSTARouteSelect()
function; applications using any other version must use the
CSTARouteSelectInv() function.

Syntax

#include <csta.h>

#include <acs.h>

RetCode_t cstaRouteSelect (

ACSHandle_t acsHandle,

RouteRegisterReqID_t routeRegisterReqID,

RoutingCrossRefID_t routingCrossRefID,

DeviceID_t *routeSelected,

RetryValue_t remainRetry,

SetUpValues_t *setupInformation,

Boolean routeUsedReq,

PrivateData_t *privateData);

Parameters

acsHandle

This is the handle to the ACS Stream on which the routing dialog for the
call is taking place.

routeRegisterReqID

This parameter contains the active handle to the routing registration
session for which the application is providing routing services. The
application received this handle in the confirmation event for the route
register service request,CSTARouteRegisterReqConfEvent, for the call.

routingCrossRefID

This parameter contains the handle to the CSTA call routing dialog for this
call. The application previously received this handle in the
CSTARouteRequestEvent for the call.

routeSelected
Issue 1 — December 2001

TSAPI.PDF R10.1 V18-20

CSTA Computing Function Services
The application provides this parameter containing a Device ID that
specifies the destination for the call.
Issue 1 — December 2001

8-21TSAPI.PDF R10.1 V1

CSTA Computing Function Services
remainRetry

The application indicates the number of times it is willing to receive a
CSTAReRouteRequestEvent for this call in the case that the switch needs
to request an alternate route. TSAPI provides #define values that an
application may use to indicate that it does not keep count, or that there is
no limit.

setupInformation

The application provides this optional parameter that contains information
for the ISDN call setup message that the switch will use to route the call.
Some switches may not support this option.

routeUsedReq

The routing application uses this parameter to request a
CSTARouteUsedEvent for the call. The route used event informs the
application of the final destination of the call once it has been routed.

privateData

This is an optional pointer to CSTA private data.

Return Values

cstaRouteSelect() returns a non-zero value if it completes successfully.

The following are possible negative error conditions for this function:

ACSERR_BADHDL

The application provided a bad or unknown acsHandle.

ACSERR_STREAM_FAILED

A previously active ACS Stream has been abnormally aborted.

NOTE:
There is no confirmation event for this service request, however this service
request can generate a universal failure event.

Comments

An application should call cstaRouteSelect only in response to a
CSTARouteRequestEvent or CSTAReRouteRequestEvent. The
cstaRouteSelect service request will fail if the application does not provide
valid identifiers from a previous CSTARouteRequestEvent, (acsHandle,
routeRegisterReqID, and routingCrossRefID). The application should
check the return value for this function and any resulting universal failure
event for errors.
Issue 1 — December 2001

TSAPI.PDF R10.1 V18-22

CSTA Computing Function Services
cstaRouteSelectInv()

The routing server application uses cstaRouteSelectInv to send a routing
destination to the switch in response to a CSTARouteRequestEvent for a call.

The invoke identifier parameter lets the application correlate the route selection
with a CSTAUniversalFailureConfEvent in the case of a failure.

TSAPI Version

Applications using TSAPI Version 1 must use the CSTARouteSelect()
function; applications using any other version must use the
CSTARouteSelectInv() function.

Syntax

#include <acs.h>

#include <csta.h>

RetCode_t cstaRouteSelectInv (

ACSHandle_t acsHandle,

InvokeID_tinvokeID, /* Version 2 */

RouteRegisterReqID_t routeRegisterReqID,

RoutingCrossRefID_t routingCrossRefID,

DeviceID_t *routeSelected,

RetryValue_t remainRetry,

SetUpValues_t *setupInformation,

Boolean routeUsedReq,

PrivateData_t *privateData);

Parameters

acsHandle

This is the handle to the ACS Stream on which the routing dialog for the
call is taking place.

invokeID

A handle provided by the application to be used for matching a specific
instance of a function service request with any resulting
CSTAUniversalFailureConfEvent. This parameter is only used when the
Invoke ID mechanism is set for Application-generated IDs in the
acsOpenStream(). The parameter is ignored by the ACS Library when the
Stream is set for Library-generated invoke IDs.

routeRegisterReqID

This parameter contains the active handle to the routing registration
session for which the application is providing routing services. The
application received this handle in the confirmation event for the route
register service request,CSTARouteRegisterReqConfEvent, for the call.
Issue 1 — December 2001

8-23TSAPI.PDF R10.1 V1

CSTA Computing Function Services
routingCrossRefID

This parameter contains the handle to the CSTA call routing dialog for this
call. The application previously received this handle in the
CSTARouteRequestEvent for the call.

routeSelected

The application provides this parameter containing a Device ID that
specifies the destination for the call.

remainRetry

The application indicates the number of times it is willing to receive a
CSTAReRouteRequestEvent for this call in the case that the switch needs
to request an alternate route. TSAPI provides #define values that an
application may use to indicate that it does not keep count, or that there is
no limit.

setupInformation

The application provides this optional parameter that contains information
for the ISDN call setup message that the switch will use to route the call.
Some switches may not support this option.

routeUsedReq

The routing application uses this parameter to request a
CSTARouteUsedEvent for the call. The route used event informs the
application of the final destination of the call once it has been routed.

privateData

This is an optional pointer to CSTA private data.

Return Values

cstaRouteSelectInv() returns the following values depending on whether
the application is using library or application-generated invoke identifiers:

Library-generated invokeIDs - if the function call completes
successfully it will return a positive value, i.e. the invoke identifier. If
the call fails a negative error (<0) condition will be returned. For
library-generated identifiers the return will never be zero (0).

Application-generated invokeIDs - if the function call completes
successfully it will return a zero (0) value. If the call fails a negative
error (<0) condition will be returned. For application-generated
identifiers the return will never be positive (>0).

The following are possible negative error conditions for this function:

ACSERR_BADHDL

The application provided a bad or unknown acsHandle.

ACSERR_STREAM_FAILED

A previously active ACS Stream has been abnormally aborted.
Issue 1 — December 2001

TSAPI.PDF R10.1 V18-24

CSTA Computing Function Services
NOTE:
There is no confirmation event for this service request, however this service
request can generate a universal failure event.

Comments

An application should call cstaRouteSelectInv only in response to a
CSTARouteRequestEvent or CSTAReRouteRequestEvent. The
cstaRouteSelectInv service request will fail if the application does not
provide valid identifiers from a previous CSTARouteRequestEvent or
CSTAReRouteRequestEvent (acsHandle, routeRegisterReqID, and
routingCrossRefID). The application should check the return value for this
function and any resulting universal failure event for errors.

CSTARouteUsedEvent

The CSTARouteUsed event provides a routing server application with the actual
destination of a call for which the application previously sent a cstaRouteSelect()
or cstaRouteSelectInv(). To receive a CSTARouteUsed, the application must
set the cstaRouteSelect() or cstaRouteSelectInv() parameter routeUsedReq
to TRUE.

TSAPI Version

Applications using TSAPI Version 1 must use the CSTARouteUsedEvent_
t structure; applications using any other version must use the
CSTARouteUsedExtEvent_t structure.

Syntax

The following structure shows only the relevant portions of the unions for
this message. See ACS Data Types and CSTA Data Types in section 4
for a complete description of the event structure.

typedef struct

{

ACSHandle_t acsHandle;

EventClass_t eventClass;

EventType_t eventType;

} ACSEventHeader_t;

typedef struct

{

ACSEventHeader_t eventHeader;

union

{

struct

{

union

{

CSTARouteUsedEvent_trouteUsed;
Issue 1 — December 2001

8-25TSAPI.PDF R10.1 V1

CSTA Computing Function Services
/* version 2 only */

CSTARouteUsedExtEvent_t routeUsedExt

} u;

} cstaEventReport;

} event;

} CSTAEvent_t;

TSAPI Version 1:

typedef struct

{

RouteRegisterReqID_t routeRegisterReqID;

RoutingCrossRefID_t routingCrossRefID;

DeviceID_t routeUsed;

DeviceID_t callingDevice;

Boolean domain;

} CSTARouteUsedEvent_t;

TSAPI Version 2:

typedef struct

{

RouteRegisterReqID_t routeRegisterReqID;

RoutingCrossRefID_t routingCrossRefID;

CalledDeviceID_t routeUsed;/* Version 2 */

CallingDeviceID_t callingDevice;/* Version 2 */

Boolean domain;

} CSTARouteUsedExtEvent_t;

Parameters

acsHandle

This is the handle to the ACS Stream on which the routing dialog for the
call is taking place.

eventClass

This is a tag with the value CSTAEVENTREPORT, which identifies this
message as an CSTA unsolicited event.

eventType

This is a tag with the value CSTA_ROUTE_USED (version 1) or CSTA_
ROUTE_USED_EXT (version 2), which identifies this message as an
CSTARouteUsedEvent.

routeRegisterReqID

This parameter contains the active handle to the routing registration
session for which the application is providing routing services. The
application received this handle in the confirmation event for the route
register service request,CSTARouteRegisterReqConfEvent, for the call.
Issue 1 — December 2001

TSAPI.PDF R10.1 V18-26

CSTA Computing Function Services
routingCrossRefID

This parameter contains the handle to the CSTA call routing dialog for this
call. The application previously received this handle in the
CSTARouteRequestEvent for the call.routeUsed. This parameter
identifies the selected and final destination for the call.

callingDevice

This parameter contains the originating device of the call, i.e. the calling
party number (when available).

domain

This parameter will indicate whether the call has left the switching domain
accessible to the Telephony Server (the ServerID defined in the active
acsHandle). Typically, a call leaves a switching domain when it is routed to
a trunk connected to another switch or to the public switched network.

privateData

If private data accompanies CSTARouteUsedEvent, then the private data
would be stored in the location that the application specified as the
privateData parameter in the acsGetEventBlock() or acsGetEventPoll()
request. If the privateData pointer is set to NULL in these requests, then
CSTARouteUsedEvent does not deliver private data to the application.

Comments

An application uses CSTARouteUsedEvent to determine the final
destination of a call that it routed using the cstaRouteSelect() or
cstaRouteSelectInv(). Switch features such as forwarding or routing
tables may direct the call to a device other than the application supplied
destination. The CSTARouteUsedEvent indicates the final destination for
the call.

CSTARouteEndEvent

The switch sends CSTARouteEndEvent to terminate a routing dialog. The event
includes a cause value giving the reason for the dialog termination.

Note that when an application wishes to terminate a routing interaction, it should
use CSTARouteEnd() (version 1) or CSTARouteEndInv() (version 2).

Syntax

The following structure shows only the relevant portions of the unions for
this message. See ACS Data Types and CSTA Data Types in section 4
for a complete description of the event structure.
Issue 1 — December 2001

8-27TSAPI.PDF R10.1 V1

CSTA Computing Function Services
typedef struct

{

ACSHandle_tacsHandle;

EventClass_teventClass;

EventType_teventType;

} ACSEventHeader_t;

typedef struct

{

ACSEventHeader_t eventHeader;

union

{

struct

{

union

{

CSTARouteEndEvent_t routeEnd,

} u;

} cstaEventReport;

} event;

} CSTAEvent_t;

typedef struct

{

RouteRegisterReqID_t routeRegisterReqID;

RoutingCrossRefID_t routingCrossRefID;

CSTAUniversalFailure_t errorValue;

} CSTARouteEndEvent_t;

Parameters

acsHandle

This is the handle for the opened ACS Stream on which routing dialog is
ending.

eventClass

This is a tag with the value CSTAEVENTREPORT, which identifies this
message as a CSTA unsolicited event.

eventType

This is a tag with the value CSTA_ROUTE_END, which identifies this
message as a CSTARouteEndEvent.

routeRegisterReqID

This parameter contains the handle to the routing registration session for
which the application is providing routing services. The application
received this handle in a CSTARouteRegisterReqConfEvent confirmation
to a route register service request.

routingCrossRefID
Issue 1 — December 2001

TSAPI.PDF R10.1 V18-28

CSTA Computing Function Services
This parameter contains the handle to the CSTA call routing dialog for this
call. The application previously received this handle in the
CSTARouteRequestEvent for the call.

errorValue

This parameter contains a cause code which giving the reason why the
routing dialog ended.

privateData

If private data accompanies CSTARouteEndEvent, then the private data
would be stored in the location that the application specified as the
privateData parameter in the acsGetEventBlock() or acsGetEventPoll()
request. If the privateData pointer is set to NULL in these requests, then
CSTARouteEndEvent does not deliver private data to the application.

Comments

The switch sends CSTARouteEndEvent when a call has been
successfully routed, cleared, or when the routing server has failed to
provide a route select within the switch's time limit. This event is unsolicited
and can occur at any time.

cstaRouteEnd() TSAPI Version 1 Only

A routing application uses cstaRouteEnd() to cancel an active routing
dialog for a call. The service request includes a cause value giving the
reason for the routing dialog termination. Note that when the switch
terminates an active routing dialog, it uses cstaRouteEndEvent.

TSAPI Version

Applications using TSAPI Version 1 must use the CSTARouteEnd()
function; applications using any other version must use the
CSTARouteEndInv() function.

Syntax

#include <acs.h>

#include <csta.h>

RetCode_t cstaRouteEnd (

ACSHandle_t acsHandle,

RouteRegisterReqID_t routeRegisterReqID,

RoutingCrossRefID_t routingCrossRefID,

CSTAUniversalFailure_t errorValue;

PrivateData_t *privateData);

Parameters

acsHandle
Issue 1 — December 2001

8-29TSAPI.PDF R10.1 V1

CSTA Computing Function Services
This is the handle for the opened ACS Stream on which the application is
terminating a routing dialog for a call.
Issue 1 — December 2001

TSAPI.PDF R10.1 V18-30

CSTA Computing Function Services
routeRegisterReqID

This parameter contains the handle to the routing registration session for
which the application is providing routing services. The application
received this handle in a CSTARouteRegisterReqConfEvent confirmation
to a route register service request.

routingCrossRefID

This parameter contains the handle to the CSTA call routing dialog for a
call. The application previously received this handle in the
CSTARouteRequestEvent for the call. This is the routing dialog that the
application is ending.

errorValue

The application supplies this cause code giving the reason why it is ending
the routing dialog.

privateData

This is an optional pointer to CSTA private data.

Return Values

cstaRouteEnd() returns a non-negative value when successful.

The following are possible negative error conditions for this function:

ACSERR_BADHDL

The application provided a bad or unknown acsHandle.

ACSERR_STREAM_FAILED

A previously active ACS Stream has been abnormally aborted.

Comments

A routing application can use cstaRouteEnd() when it cannot route a call.
This can occur if:

■ the application receives a routing request for a call without sufficient
call information and it cannot determine a routing destination.

■ the application has already routed calls to all available destinations
and those calls remain active at those destinations.

■ the application does not have access to a database necessary to
route the call

In these cases, the application uses cstaRouteEnd() to inform the switch
that it will not route the call in question. cstaRouteEnd() will terminate the
CSTA routing dialog (routingCrossRefID) for the call. cstaRouteEnd()
does not clear the call. The switch will continue to process the call using
whatever default routing algorithm is available (implementation specific).

Note that when the switch terminates an active routing dialog, it uses
cstaRouteEndEvent.
Issue 1 — December 2001

8-31TSAPI.PDF R10.1 V1

CSTA Computing Function Services
cstaRouteEndInv()

The routing server (application) uses cstaRouteEnd() to cancel an active routing
dialog for a call. The service request includes a cause value giving the reason for
the routing dialog termination. Note that when the switch terminates an active
routing dialog, it uses cstaRouteEndEvent.

TSAPI Version

Applications using TSAPI Version 1 must use the CSTARouteEnd()
function; applications using any other version must use the
CSTARouteEndInv() function.

Syntax

#include <acs.h>

#include <csta.h>

RetCode_t cstaRouteEnd (

ACSHandle_t acsHandle,

InvokeID_invokeID; /* Version 2 */

RouteRegisterReqID_t routeRegisterReqID,

RoutingCrossRefID_t routingCrossRefID,

CSTAUniversalFailure_t errorValue;

PrivateData_t *privateData);

Parameters

acsHandle

This is the handle for the opened ACS Stream on which the application is
terminating a routing dialog for a call.

invokeID

A handle provided by the application to be used for matching a specific
instance of a function service request with any resulting
CSTAUniversalFailureConfEvent. This parameter is only used when the
Invoke ID mechanism is set for Application-generated IDs in the
acsOpenStream(). The parameter is ignored by the ACS Library when the
Stream is set for Library-generated invoke IDs.

routeRegisterReqID

This parameter contains the handle to the routing registration session for
which the application is providing routing services. The application
received this handle in a CSTARouteRegisterReqConfEvent confirmation
to a route register service request.

routingCrossRefID

This parameter contains the handle to the CSTA call routing dialog for a
call. The application previously received this handle in the
CSTARouteRequestEvent for the call. This is the routing dialog that the
application is ending.
Issue 1 — December 2001

TSAPI.PDF R10.1 V18-32

CSTA Computing Function Services
errorValue

The application supplies this cause code giving the reason why it is ending
the routing dialog.

privateData

This is an optional pointer to CSTA private data.

Return Values

cstaRouteEndInv() returns the following values depending on whether
the application is using library or application-generated invoke identifiers:

Library-generated invokeIDs - if the function call completes
successfully it will return a positive value, i.e. the invoke identifier. If
the call fails a negative error (<0) condition will be returned. For
library-generated identifiers the return will never be zero (0).

Application-generated invokeIDs - if the function call completes
successfully it will return a zero (0) value. If the call fails a negative
error (<0) condition will be returned. For application-generated
identifiers the return will never be positive (>0).

The following are possible negative error conditions for this function:

ACSERR_BADHDL

The application provided a bad or unknown acsHandle.

ACSERR_STREAM_FAILED

A previously active ACS Stream has been abnormally aborted.

Comments

A routing server application can use cstaRouteEndInv() when it cannot
route a call. This can occur if:

■ the application receives a routing request for a call without sufficient
call information and it cannot determine a routing destination.

■ the application has already routed calls to all available destinations
and those calls remain active at those destinations.

■ the application does not have access to a database necessary to
route the call

In these cases, the application uses cstaRouteEnd() to inform the switch
that it will not route the call in question. cstaRouteEnd() will terminate the
CSTA routing dialog (routingCrossRefID) for the call. cstaRouteEnd()
does not clear the call. The switch will continue to process the call using
whatever default routing algorithm is available (implementation specific).

An application can use this function to respond to either a route request or
a re-route request.

Note that when the switch terminates an active routing dialog, it uses
cstaRouteEndEvent.
Issue 1 — December 2001

8-33TSAPI.PDF R10.1 V1

CSTA Computing Function Services
Issue 1 — December 2001

TSAPI.PDF R10.1 V18-34

Issue 1 — December 2001

TSAPI.PDF R10.1 V1
9

Escape and Maintenance Services
This chapter describes the CSTA Escape and Maintenance Services.

Escape Services

Switching domains use Escape Services to enhance TSAPI functions with
"private" services which are specific to the switch or PBX Driver implementation
(see Section 2.3). Each switch vendor may define functions within the CSTA
private services framework, even though CSTA does not incorporate these
services. Although the functions defined within escape services can vary from one
implementation to the next, the way the application accesses these functions is
consistent. Escape Services use the same programming model as all other CSTA
services. Figure 9-18 illustrates this model.

When an application requests an escape service from a server it receives a
confirmation event or a Universal Failure in the same fashion as for other TSAPI
services. The Escape Service request parameters are an acsHandle (to the open
stream), an invokeID and a private data parameter. The confirmation event
includes the acsHandle, the invokeID, and the private data response.

Escape Services also includes an unsolicited private event which a server can
send to an application at any time a CSTA monitor association exists on a CSTA
call or device object (see Section 6 - cstaMonitorStart()).
9-1

Escape and Maintenance Services
Figure 9-1. Escape Services Model

Applications can also send Escape Services requests to a switch. For most CSTA
services the application is always a client in the computing domain. However, an
escape service could operate in the opposite direction (such as routing does).
Although the client/server role may change, services are always uni-directional
where either the switch or application is always the requester for a service.

TSAPI includes escape service definitions for both the "Application as the Client"
and the "Switch as the Client".

NOTE:
See vendor specific documentation for more information on what, if any,
Escape Services are supported by a specific vendor. Escape Service
Functions are generally not portable across different vendor
implementations. Some implementations may support Escape Services
either bi-directionally or uni-directionally (one-way only) depending on the
needs and capabilities of the switch driver

Escape Service
Request

Escape Service
Response

Escape Service
Unsolicited Event

Application
(client)

PBX Driver
Switching Domain

Implementation
(server)
Issue 1 — December 2001

TSAPI.PDF R10.1 V19-2

Escape and Maintenance Services
Maintenance Services

There are two different types of CSTA maintenance services:

■ device status maintenance events which provide status information for
device objects, and

■ bi-directional system status maintenance services which provide
information on the overall status of the system.

The device status events inform the application when the switch places a
monitored device in or out of service. When a device object is removed from
service, the application may monitor the device (e.g. cstaMonitorStart() or
cstaDevSnapshotReq()) but may not request services for that device. For
example, an application request for a cstaMakeCall() returns an error when the
device is out of service.

System Status services inform applications or switches about the status of the
switching or computing domains, respectively. Table 9-3 shows the System Status
Services’ system status information (cause codes).

System Status Cause Codes

System Status
Cause Code

Cause Code Definitions

Initializing the system is re-initializing or restarting. This status indicates that the
system is temporarily unable to respond to any requests. If provided,
this status message shall be followed by an Enable status message
that indicates that the initialization process is completed.

Enabled request and responses are enabled, usually after a disruption or
restart. This status indication shall be sent after an initializing status
indicator has been sent and my be sent under other conditions. This
status indicates that there are no outstanding monitor requests.

Normal a System Status Event with this cause value can be sent at any time

to indicate that the status is normal. This status has no effect on other
services.

Message Lost this status indicates that a request, response, or event report may
have been lost.

Disabled this cause value indicates that active cstaMonitorStart() monitor
requests via have been disabled. Other requests and responses may
also be disabled, but, unlike monitors, reject responses are provided
for those.

Overload
Imminent

the system (driver, switch, or application) is about to reach an over-
load condition. The "client" should shed load to remedy the situation.
Issue 1 — December 2001

9-3TSAPI.PDF R10.1 V1

Escape and Maintenance Services
The System Status services are bi-directional and thus can originate at the
application domain or at the driver/switch domain. Figure 9-19 shows System
Status Maintenance Services.

Figure 9-2. System Status Maintenance Services

An application can obtain System Status information in one of two different ways :

■ the client can ask for the information using a request to the "server" and
obtain the information in a confirmation event, or

■ the client can register for System Status messages and receive unsolicited
events containing system status changes.

Overload
Reached

the system (driver, switch, or application) has reached an overload
condition and may take action to shed load. The server (the applica-
tion, driver, or switch) may then take action to decrease message traf-
fic. This may include stopping existing monitors or rejecting any new
requests sent by the client.

Overload
Relieved

the system (driver, switch, or application) has determined that the
overload condition has passed and normal application operation may
resume.
Issue 1 — December 2001

TSAPI.PDF R10.1 V19-4

Escape and Maintenance Services
A switch or application may issue the System Status request (cstaSysStatReq())
to obtain status information from the "server" (the application or switch,
respectively, depending on the direction of the request). A System Status
response (CSTASysStatReqConfEvent) provides the "client" with the current
system status information for the "server". The "server" may send unsolicited
events the client if the client used the cstaSysStatStart() service to register for
System Status events. The System Status unsolicited event (CSTASysStatEvent)
is the same in structure as the confirmation event (CSTASysStatReqConfEvent)
except that the "server" sends it to the "client" automatically.

Escape Services : Application as Client

This section defines escape services for situation where the application is the
service requester in the client/server relationship (see Figure 9-18). The services
include an escape service request, a confirmation event to the request, and an
unsolicited escape service event that originates at the driver or switching domain.

cstaEscapeService()

This service allows the application to request a service which is not defined by the
CSTA Standard but rather by a switch vendor. A service request made by this
function will be specific to an implementation.

Syntax

#include <csta.h>

#include <acs.h>

RetCode_t cstaEscapeService (

ACSHandle_t acsHandle,

InvokeID_t invokeID,

PrivateData_t *privateData);

Parameters

acsHandle

This is the handle to an active ACS Stream.

invokeID

A handle provided by the application to be used for matching a specific
instance of a function service request with its associated confirmation
event. This parameter is only valid when the Invoke ID mechanism is set
for Application-generated IDs in the acsOpenStream(). The parameter is
ignored by the ACS Library when the Stream is set for Library-generated
invoke IDs.
Issue 1 — December 2001

9-5TSAPI.PDF R10.1 V1

Escape and Maintenance Services
privateData

This is a pointer to the CSTA private data extension mechanism. This
parameter in NOT optional for this function and must be passed by the
application. If the parameter is NULL an error will be returned to the
application and the API Client Library Driver will reject the service request.

Return Values

This function returns the following values depending on whether the
application is using library or application-generated invoke identifiers:

Library-generated Identifiers - if the function call completes
successfully it will return a positive value, i.e. the invoke identifier. If
the call fails a negative error (<0) condition will be returned. For
library-generated identifiers the return will never be zero (0).

Application-generated Identifiers - if the function call completes
successfully it will return a zero (0) value. If the call fails a negative
error (<0) condition will be returned. For application-generated
identifiers the return will never be positive (>0).

The application should always check the CSTAEscapeServiceConfEvent
message to insure that the service request has been acknowledged and
processed by the Telephony Server and the switch.

The following are possible negative error conditions for this function:

ACSERR_BADHDL

This return value indicates that a bad or unknown acsHandle was
provided by the application.

ACSERR_NOCONN

This return value indicates that a previously active ACS Stream has
been abnormally aborted.

ACSERR_REQDENIED

This return value indicates that a ACS Stream is established but a
requested capability has been denied by the Client Library Software
Driver.

ACSERR_NULLPARAMETER

This error indicates that the pointer to the CSTA Private Data
information is NULL and thus no private data is available to send to
the driver/switch. No action is taken by the API Client Library Driver.

Comments

This function is used to send private data information to the driver/switch.
Issue 1 — December 2001

TSAPI.PDF R10.1 V19-6

Escape and Maintenance Services
CSTAEscapeServiceConfEvent

This confirmation event is sent in response to the cstaEscapeService() service
and provides the positive acknowledgment to the request. The event includes any
private information that is to be provided as part of a confirmation event to the
service request.

Syntax

The following structure shows only the relevant portions of the unions for
this message. See ACS Data Types and CSTA Data Types in section 4
for a complete description of the event structure.

typedef struct

{

ACSHandle_t acsHandle;

EventClass_t eventClass;

EventType_t eventType;

} ACSEventHeader_t;

typedef struct

{

ACSEventHeader_t eventHeader;

union

{

struct

{

InvokeID_tinvokeID;

} cstaConfirmation;

} event;

} CSTAEvent_t;

Parameters

acsHandle

This is the handle for the opened ACS Stream.

eventClass

This is a tag with the value CSTACONFIRMATION, which identifies this
message as an CSTA confirmation event.

eventType

This is a tag with the value CSTA_ESCAPE_SERVICE_CONF which
identifies this message as an CSTAEscapeServiceConfEvent.

invokeID

This parameter specifies the function service request instance for the
service which was processed at the Telephony Server or at the switch. This
identifier is provided to the application when a service request is made.
Issue 1 — December 2001

9-7TSAPI.PDF R10.1 V1

Escape and Maintenance Services
privateData

If private data accompanied this event, then the private data would be
copied to the location pointed to by the privateData pointer in the
acsGetEventBlock() or acsGetEventPoll() function. If the privateData
pointer is set to NULL in these functions, then no private data will be
delivered to the application.

Comments

This event always occurs as a result of a normal (positive) service request
made through the cstaEscapeService() service. The information
contained in the privateData parameter is implementation specific.

CSTAPrivateEvent

This event report allows for unsolicited, implementation specific event reporting.
The informational contents of this event will be defined by a specific
implementation.

Syntax

The following structure shows only the relevant portions of the unions for
this message. See ACS Data Types and CSTA Data Types in section 4
for a complete description of the event structure.

typedef struct

{

ACSHandle_t acsHandle;

EventClass_t eventClass;

EventType_t eventType;

} ACSEventHeader_t;

typedef struct

{

ACSEventHeader_teventHeader;

union

{

struct

{

union

{

CSTAPrivateEvent_t privateData;

} u;

} cstaEventReport;

} event;

} CSTAEvent_t;
Issue 1 — December 2001

TSAPI.PDF R10.1 V19-8

Escape and Maintenance Services
Parameters

acsHandle

This is the handle for the opened ACS Stream.

eventClass

This is a tag with the value CSTAEVENTREPORT, which identifies this
message as an CSTA unsolicited event.

eventType

This is a tag with the value CSTA_PRIVATE, which identifies this
message as an CSTAPrivateEvent.

monitorCrossRefID

Does not apply to this event.

privateData

If private data accompanied this event, then the private data would be
copied to the location pointed to by the privateData pointer in the
acsGetEventBlock() or acsGetEventPoll() function. If the privateData
pointer is set to NULL in these functions, then no private data will be
delivered to the application.

Comments

This event is typically used for providing unsolicited, implementation
specific event information. This event can occur at any time and does not
have be specific to a monitored object. The event can be sent by the
driver/switch even though the application does not have a monitored
object. When a monitor exists, the PrivateStatusEvent is used by the
driver/switch to send private status information pertaining to a monitored
object. The PrivateEvent is used for all other cases of unsolicited private
events and is not associated with a monitoring association.

CSTAPrivateStatusEvent

This event report allows for unsolicited, implementation specific event reporting
for a monitored object. The informational contents of this event will be defined by
a specific implementation.

Syntax

The following structure shows only the relevant portions of the unions for
this message. See ACS Data Types and CSTA Data Types in section 4
for a complete description of the event structure.

typedef struct

{

ACSHandle_tacsHandle;

EventClass_teventClass;

EventType_teventType;
Issue 1 — December 2001

9-9TSAPI.PDF R10.1 V1

Escape and Maintenance Services
} ACSEventHeader_t;

typedef struct

{

ACSEventHeader_teventHeader;

union

{

struct

{

CSTAMonitorCrossRefID_tmonitorCrossRefID;

} cstaUnsolicited;

} event;

} CSTAEvent_t;

Parameters

acsHandle

This is the handle for the opened ACS Stream.

eventClass

This is a tag with the value CSTAUNSOLICITED, which identifies this
message as an CSTA unsolicited event.

eventType

This is a tag with the value CSTA_PRIVATE_STATUS, which identifies
this message as an CSTAPrivateStatusEvent.

monitorCrossRefID

This parameter contains the handle to the CSTA association for which this
event is associated. This handle is typically chosen by the switch and
should be used by the application as a reference to a specific established
association.

privateData

If private data accompanied this event, then the private data would be
copied to the location pointed to by the privateData pointer in the
acsGetEventBlock() or acsGetEventPoll() function. If the privateData
pointer is set to NULL in these functions, then no private data will be
delivered to the application.

Comments

This event is typically used for providing implementation specific event
information which is not defined in any other event in the API. The event is
always used for private information on a monitoring association. A monitor
must be active [cstaMonitorDevice(), cstaMonitorCall(),
cstaMonitorCallsViaDevice()] before this event can be sent to the
application by the driver/switch. This event is always sent from the
driver/switch to the application and it is not bi-directional.
Issue 1 — December 2001

TSAPI.PDF R10.1 V19-10

Escape and Maintenance Services
Escape Service : Driver/Switch as the
Client

This section defines escape services for cases where the Driver/Switch is the
service requester in the client/server relationship (see Figure 9-1). The services
include an escape service request event, a confirmation function for the request,
and an unsolicited escape service event that originates at the application domain.

CSTAEscapeServiceReq

This unsolicited event is sent by the driver/switch to request a private service from
the application. The event includes the service request as private information for
which the application must provide a positive or negative acknowledgment.

Syntax

The following structure shows only the relevant portions of the unions for
this message. See 4.3 ACS Data Types and CSTA Data Types in section
4 for a complete description of the event structure.

typedef struct

{

ACSHandle_t acsHandle;

EventClass_t eventClass;

EventType_t eventType;

} ACSEventHeader_t;

typedef struct

{

ACSEventHeader_teventHeader;

union

{

struct

{

InvokeID_tinvokeID;

union

{

CSTAEscapeSvcReqEvent_tescapeSvcReqeust;

} u;

} cstaRequestEvent;

} event;

} CSTAEvent_t;
Issue 1 — December 2001

9-11TSAPI.PDF R10.1 V1

Escape and Maintenance Services
Parameters

acsHandle

This is the handle for the opened ACS Stream.

eventClass

This is a tag with the value CSTAREQUEST, which identifies this
message as an CSTA unsolicited event.

eventType

This is a tag with the value CSTA_ESCAPE_SVC_REQ, which identifies
this message as an CSTAEscapeServiceReq

invokeID

This parameter defines the invoke identifier selected by the driver/switch
for the specific private request. This parameter must be returned,
unchanged, in the response to this request in order for the driver/switch to
match a service request with a service response.

privateData

If private data accompanied this event, then the private data would be
copied to the location pointed to by the privateData pointer in the
acsGetEventBlock() or acsGetEventPoll() function. If the privateData
pointer is set to NULL in these functions, then no private data will be
delivered to the application.

Comments

This event is sent by the driver/switch to request an escape or private
service when the application is providing the "server" function in the
client/server relationship. The response to this event will be accomplished
via the cstaEscapeServiceConf() service.

cstaEscapeServiceConf()

This service allows the application to respond to a CSTAEscapeServiceEvent
which originated at the driver/switch. A service response made by this function will
be specific to an implementation.

Syntax

#include <csta.h>

#include <acs.h>

RetCode_t cstaEscapeServiceConf (

ACSHandle_t acsHandle,

InvokeID_t invokeID,

CSTAUniversalFailure_t error, /* negative ACK */

PrivateData_t *privateData), /* positive ACK */
Issue 1 — December 2001

TSAPI.PDF R10.1 V19-12

Escape and Maintenance Services
Parameters

acsHandle

This is the handle to an active ACS Stream.

invokeID

The invoke identifier used in this function must be the same value
(unchanged) as that provided in the CSTAEscapeServiceReq for which
this services request is being called. The same invokeID value must be
used in order for the driver/switch to match the instances of a previous
service event and the service confirmation to that event provided by this
function call.

error

This parameter is used to provide a negative acknowledgment to the
CSTAEscapeServiceReq. See CSTAUniversalFailureConfEvent for a
definition of the possible error values for this parameter. If the error pointer
is NULL this will indicates that the event contains a positive
acknowledgment.

privateData

This is a pointer to the CSTA private data extension mechanism which
contains the positive acknowledgment to the CSTAEscapeServiceEvent. If
the private pointer is NULL this will indicate that the event contains a
negative acknowledgment.

Return Values

This function never returns an invoke identifier since there is no
confirmation event for this service. The function does return errors
conditions during the processing of the request by the API Client Library. A
return value of zero (0) indicates that the request has been accepted by the
Library. This function never returns a positive value.

Possible local error returns are (negative returns):

ACSERR_BADHDL

This return value indicates that a bad or unknown acsHandle was
provided by the application.

ACSERR_NOCONN

This return value indicates that a previously active ACS Stream has
been abnormally aborted.

ACSERR_REQDENIED

This return value indicates that a ACS Stream is established but a
requested capability has been denied by the Client Library Software
Driver.

ACSERR_NONULL
Issue 1 — December 2001

9-13TSAPI.PDF R10.1 V1

Escape and Maintenance Services
This error indicates that neither the error or privateData pointers
are NULL. One of these pointers must be NULL to indicate either a
positive or negative acknowledgment to the request. No action is
taken by the API Client Library.

ACSERR_NORESPONSE

This error indicates that both the error or the privateData pointer
are NULL. In this case the API Client Library has nothing to send to
the driver/switch and rejects the response. The request associated
with the invoke identifier from the driver/server will still be
outstanding and the application must respond by calling this function
with acceptable parameters.

ACSERR_BADINVOKEID

This error indicates that the invoke identifier being returned by the
application is not one that is outstanding from the driver/switch. The
API Client Library will keep track of the driver/switch-based invoke
id's until the application responds to the specific request from the
driver/switch.

Comments

This function is used to send a response to a private request from the
driver/switch. The event supports both a positive and negative
acknowledgment to the request. One of the two pointers (error or
privateData) must be NULL in order for the request to be successfully
processed by the API Client Library. This would indicate a positive or
negative acknowledgment to the request made by the driver/switch.

cstaSendPrivateEvent()

This service allows the application to send an unsolicited private event to the
driver/switch. An event sent by this function will be specific to an implementation.

Syntax

#include <csta.h>

#include <acs.h>

RetCode_t cstaSendPrivateEvent (

ACSHandle_t acsHandle,

PrivateData_t *privateData),

Parameters

acsHandle

This is the handle to an active ACS Stream.

privateData
Issue 1 — December 2001

TSAPI.PDF R10.1 V19-14

Escape and Maintenance Services
This is a pointer to the CSTA private data extension mechanism. This
parameter in NOT optional for this function and must be passed by the
application. If the parameter is NULL an error will be returned to the
application and the API Client Library Driver will reject the service request.
Issue 1 — December 2001

9-15TSAPI.PDF R10.1 V1

Escape and Maintenance Services
Return Values

This function never returns an invoke identifier since there is no
confirmation event for this service. The function does return errors
conditions during the processing of the request by the API Client Library. A
return value of zero (0) indicates that the request has been accepted by the
Library. This function never returns a positive value.

Possible local error returns are (negative returns):

ACSERR_BADHDL

This return value indicates that a bad or unknown acsHandle was
provided by the application.

ACSERR_NOCONN

This return value indicates that a previously active ACS Stream has
been abnormally aborted.

ACSERR_REQDENIED

This return value indicates that a ACS Stream is established but a
requested capability has been denied by the Client Library Software
Driver.

ACSERR_NULLPARAMETER

This error indicates that the pointer to the CSTA Private Data
information is NULL and thus no private data is available to send to
the driver/switch. No action is taken by the API Client Library Driver.

Comments

This function is used to send unsolicited, private data information to the
driver/switch when the application is supporting the "server" role in the
client/server relationship.

Maintenance Services: Device Status

This section describes the CSTA Maintenance Services which provide device
status information. To receive device status information, an application must
monitor the device(e.g. the application must have an active monitorCrossRefID
for the device). These events are unidirectional and always originate in the switch
domain.
Issue 1 — December 2001

TSAPI.PDF R10.1 V19-16

Escape and Maintenance Services
CSTABackInServiceEvent

This event report indicates that a monitored device object has returned to services
and operates normally.

Syntax

The following structure shows only the relevant portions of the unions for
this message. See ACS Data Types and CSTA Data Types in section 4
for a complete description of the event structure.

typedef struct

{

ACSHandle_t acsHandle;

EventClass_t eventClass;

EventType_t eventType;

} ACSEventHeader_t;

typedef struct

{

ACSEventHeader_teventHeader;

union

{

struct

{

CSTAMonitorCrossRefID_t monitorCrossRefID;

union

{

CSTABackInServiceEvent_t backInService;

} u;

} cstaUnsolicited;

} event;

} CSTAEvent_t;

typedef struct

{

DeviceID_t device;

CSTAEventCause_t cause;

} CSTABackInServiceEvent_t;

Parameters

acsHandle

This is the handle for the opened ACS Stream.

eventClass

This is a tag with the value CSTAUNSOLICITED, which identifies this
message as an CSTA unsolicited event.

eventType

This is a tag with the value CSTA_BACK_IN_SERVICE , which identifies
this message as an CSTABackInServiceEvent.
Issue 1 — December 2001

9-17TSAPI.PDF R10.1 V1

Escape and Maintenance Services
monitorCrossRefID

This parameter contains the handle to the CSTA association for which this
event is associated. This handle is typically chosen by the switch and
should be used by the application as a reference to a specific established
association.

device

Specifies the device which is back in service. If the device is not specified,
then the parameter will indicate that the device was not known or that it
was not required.

cause

This parameter indicates the reason or explanation for the occurrence of
this event. See Section 6 for more information.

privateData

If private data accompanied this event, then the private data would be
copied to the location pointed to by the privateData pointer in the
acsGetEventBlock() or acsGetEventPoll() function. If the privateData
pointer is set to NULL in these functions, then no private data will be
delivered to the application.

Comments

This event indicates that a previously inactive device (a device which is out
service) has resumed normal operation. Once this event has occurred the
application can then initiate an active service request (e.g.
cstaMakeCall()) for that specific device. A passive service request can be
done while a device is out of service, i.e. monitoring or Snapshot Services.

CSTAOutOfServiceEvent

This event report indicates that a monitored device object has entered a
maintenance state and can no longer accept calls or be actively manipulated by
the application.

Syntax

The following structure shows only the relevant portions of the unions for
this message. See ACS Data Types and CSTA Data Types in section 4
for a complete description of the event structure.

typedef struct

{

ACSHandle_t acsHandle;

EventClass_t eventClass;

EventType_t eventType;

} ACSEventHeader_t;
Issue 1 — December 2001

TSAPI.PDF R10.1 V19-18

Escape and Maintenance Services
typedef struct

{

ACSEventHeader_teventHeader;

union

{

struct

{

CSTAMonitorCrossRefID_tmonitorCrossRefID;

union

{

CSTAOutOfServiceEvent_t outOfService;

} u;

} cstaUnsolicited;

} event;

} CSTAEvent_t;

typedef struct

{

DeviceID_t device;

CSTAEventCause_t cause;

} CSTAOutOfServiceEvent_t;

Parameters

acsHandle

This is the handle for the opened ACS Stream.

eventClass

This is a tag with the value CSTAUNSOLICITED, which identifies this
message as an CSTA unsolicited event.

eventType

This is a tag with the value CSTA_OUT_OF_SERVICE , which identifies
this message as an CSTAOutOfServiceEvent.

monitorCrossRefID

This parameter contains the handle to the CSTA association for which this
event is associated. This handle is typically chosen by the switch and
should be used by the application as a reference to a specific established
association.

device

This parameter indicates the device which has been taken out of service. If
the device is not specified, then the parameter will indicate that the device
was not known or that it was not required.

cause

This parameter indicates the reason or explanation for the occurrence of
this event. See Section 6 for more information.
Issue 1 — December 2001

9-19TSAPI.PDF R10.1 V1

Escape and Maintenance Services
privateData

If private data accompanied this event, then the private data would be
copied to the location pointed to by the privateData pointer in the
acsGetEventBlock() or acsGetEventPoll() function. If the privateData
pointer is set to NULL in these functions, then no private data will be
delivered to the application.

Comments

This event indicates that a previously active device (a device which is in
service) has entered into a maintenance state, i.e. the device has been
taken out of service. Once this event has occurred the application can not
initiate any new active service request (e.g. cstaMakeCall()) for that
specific device. A passive service request (e.g. monitoring or Snapshot
Services) can be done while a device is out of service.

System Status - Application as the
Client

This section defines the services which provide system level status information to
the application or the driver/switch. The System Status service is bi-directional
and thus the client/server relationship (see Figure 9-2) can be reversed.

cstaSysStatReq()

This service allows the application to request system status information from the
driver/switch domain.

Syntax

#include <csta.h>

#include <acs.h>

RetCode_t cstaSysStatReq (

ACSHandle_tacsHandle,

InvokeID_tinvokeID,

PrivateData_t*privateData);

Parameters

acsHandle

This is the handle to an active ACS Stream.

invokeID

A handle provided by the application to be used for matching a specific
instance of a function service request with its associated confirmation
event. This parameter is only valid when the Invoke ID mechanism is set
Issue 1 — December 2001

TSAPI.PDF R10.1 V19-20

Escape and Maintenance Services
for Application-generated IDs in the acsOpenStream(). The parameter is
ignored by the ACS Library when the Stream is set for Library-generated
invoke IDs.
Issue 1 — December 2001

9-21TSAPI.PDF R10.1 V1

Escape and Maintenance Services
privateData

This is a pointer to the CSTA private data extension mechanism. This is
optional.

Return Values

This function returns the following values depending on whether the
application is using library or application-generated invoke identifiers:

Library-generated Identifiers - if the function call completes
successfully it will return a positive value, i.e. the invoke identifier. If
the call fails a negative error (<0) condition will be returned. For
library-generated identifiers the return will never be zero (0).

Application-generated Identifiers - if the function call completes
successfully it will return a zero (0) value. If the call fails a negative
error (<0) condition will be returned. For application-generated
identifiers the return will never be positive (>0).

The application should always check the CSTASysStatReqConfEvent
message to insure that the service request has been acknowledged and
processed by the Telephony Server and the switch.

The following are possible negative error conditions for this function:

ACSERR_BADHDL

This return value indicates that a bad or unknown acsHandle was
provided by the application.

ACSERR_NOCONN

This return value indicates that a previously active ACS Stream has
been abnormally aborted.

ACSERR_REQDENIED

This return value indicates that a ACS Stream is established but a
requested capability has been denied by the Client Library Software
Driver.

Comments

This function is used to request the current overall system status for the
driver/switch.

CSTASysStatReqConfEvent

This event is in response to the cstaSysStatReq() service and informs the application of the overall
system status of the driver/switch.
Issue 1 — December 2001

TSAPI.PDF R10.1 V19-22

Escape and Maintenance Services
Syntax

The following structure shows only the relevant portions of the unions for
this message. See ACS Data Types and CSTA Data Types in section 4
for a complete description of the event structure.
Issue 1 — December 2001

9-23TSAPI.PDF R10.1 V1

Escape and Maintenance Services
typedef struct

{

ACSHandle_t acsHandle;

EventClass_t eventClass;

EventType_t eventType;

} ACSEventHeader_t;

typedef struct

{

ACSEventHeader_teventHeader;

union

{

struct

{

InvokeID_tinvokeID;

union

{

CSTASysStatReqConfEvent_t sysStatReq;

} u;

} cstaConfirmation;

} event;

} CSTAEvent_t;

typedef struct CSTASysStatReqConfEvent_t (

SystemStatus_tsystemStatus;

) CSTASysStatStatReqConfEvent_t;

typedef enum SystemStatus_t {

SS_INITIALIZING = 0,

SS_ENABLED = 1,

SS_NORMAL = 2,

SS_MESSAGES_LOST = 3,

SS_DISABLED = 4,

SS_OVERLOAD_IMMINENT = 5,

SS_OVERLOAD_REACHED = 6,

SS_OVERLOAD_RELIEVED = 7

} SystemStatus_t;

Parameters

acsHandle

This is the handle for the opened ACS Stream.

eventClass

This is a tag with the value CSTACONFIRMATION, which identifies this
message as an CSTA unsolicited event.
Issue 1 — December 2001

TSAPI.PDF R10.1 V19-24

Escape and Maintenance Services
eventType

This is a tag with the value CSTA_SYS_STAT_REQ_CONF, which
identifies this message as an CSTASysStatReqConfEvent.invokeID

This parameter specifies the requested instance of the function or event. It
is used to match a specific function call request with its confirmation
events.

privateData

If private data accompanied this event, then the private data would be
copied to the location pointed to by the privateData pointer in the
acsGetEventBlock() or acsGetEventPoll() function. If the privateData
pointer is set to NULL in these functions, then no private data will be
delivered to the application.

systemStatus

This parameter provides the application with a cause code defining the
overall system status as fin Table 9-4.

Overall System Status Codes

Cause Code Definition

Initializing the driver/switch is re-initializing or restarting. This status
indicates that the driver/switch is temporarily unable to
respond to any requests. If provided, this status message
shall be followed by an Enable status message to indicate
that the initialization process is completed.

Enabled request and responses are re-enabled, usually after a dis-
ruption or restart. This status indication shall be sent after
an initializing status indicator has been sent and may be
sent under other conditions. This status indicates that
there are no outstanding monitor request.

Normal this cause value can be sent at any time by the
driver/switch to indicate that the status is normal. This sta-
tus has no effect on other services.

Message Lost this status indicates that a request and/or responses may
have been lost, including Event Reports.

Disabled this cause value indicates that existing monitor requests
via cstaMonitorStart() have been disabled. Other
requests and responses may also be disabled, but reject
responses should be provided.

Overload
Imminent

the driver/switch is about to reach a overload condition
and the application should shed load to better the situa-
tion.
Issue 1 — December 2001

9-25TSAPI.PDF R10.1 V1

Escape and Maintenance Services
Comments

This confirmation event provides the application with certain information
regarding the state of the overall driver/switch system. This event is
important for proper application operation and should be processed
accordingly. This is especially important for cause values for the overload
condition. If the driver/switch has informed the application that an overload
condition is imminent all applications should attempt to decrease the
overall traffic to the driver/switch. This can be accomplished, for example,
by stopping all non-essential monitors on call or device objects on the
switch thus reducing the traffic between the server and the switch.
Frequent occurrence of the Overload Imminent cause value can be a
symptoms of a poorly engineered system which should reviewed for proper
loading.

cstaSysStatStart()

This services allows the application to register for System Status event reporting.
It can be used by an application to automatically receive a CSTASysStatEvent
each time the status of the driver/switch changes.

Syntax

#include <csta.h>

#include <acs.h>

RetCode_tcstaSysStatStart (

ACSHandle_t acsHandle,

InvokeID_t invokeID,

SystemStatusFilter_t statusFilter,

PrivateData_t *privateData),

typedef unsigned char SystemStatusFilter_t;

#define SF_INITIALIZING 0x80

#define SF_ENABLED 0x40

#define SF_NORMAL 0x20

#define SF_MESSAGES_LOST 0x10

#define SF_DISABLED 0x08

#define SF_OVERLOAD_IMMINENT 0x04

#define SF_OVERLOAD_REACHED 0x02

#define SF_OVERLOAD_RELIEVED 0x01

Overload
Reached

the driver/switch has reach overload and may take initia-
tive to shed load. This cause may be followed by action on
the part of the driver/switch to decrease message traffic.
This may include stopping existing or rejecting any new
monitor requests sent by the client, and rejections to addi-
tional new service requests.

Overload
Relieved

the driver/switch has determined that the overload condi-
tion has passed and normal application operation may
continue.
Issue 1 — December 2001

TSAPI.PDF R10.1 V19-26

Escape and Maintenance Services
Parameters

acsHandle

This is the handle to an active ACS Stream.

invokeID

A handle provided by the application to be used for matching a specific
instance of a function service request with its associated confirmation
event. This parameter is only valid when the Invoke ID mechanism is set
for Application-generated IDs in the acsOpenStream(). The parameter is
ignored by the ACS Library when the Stream is set for Library-generated
invoke IDs.

statusFilter

This parameter is used to specify a filter for specific cause values in which
the application is not interested. The parameter can be used by the
application to filter out unwanted status information (e.g. the Normal status)

privateData

Private data extension mechanism. This is optional.

Return Values

This function returns the following values depending on whether the
application is using library or application-generated invoke identifiers:

Library-generated Identifiers - if the function call completes
successfully it will return a positive value, i.e. the invoke identifier. If
the call fails a negative error (<0) condition will be returned. For
library-generated identifiers the return will never be zero (0).

Application-generated Identifiers - if the function call completes
successfully it will return a zero (0) value. If the call fails a negative
error (<0) condition will be returned. For application-generated
identifiers the return will never be positive (>0).

The application should always check the CSTASysStatStartConfEvent
message to insure that the service request has been acknowledged and
processed by the Telephony Server and the switch.

The following are possible negative error conditions for this function:

ACSERR_BADHDL

This return value indicates that a bad or unknown acsHandle was
provided by the application.

ACSERR_NOCONN

This return value indicates that a previously active ACS Stream has
been abnormally aborted.

ACSERR_REQDENIED
Issue 1 — December 2001

9-27TSAPI.PDF R10.1 V1

Escape and Maintenance Services
This return value indicates that a ACS Stream is established but a
requested capability has been denied by the Client Library Software
Driver.

Comments

This function is used to start a monitor for system status information. The
system status information is provided via the CSTASysStatEvent. Only
one System Status register is allowed per opened ACS Stream.

CSTASysStatStartConfEvent

This event is in response to the cstaSysStatStart() function and confirms an
active System Status monitor. Once this event is issued the application will start to
automatically receive unsolicited System Status events.

Syntax

The following structure shows only the relevant portions of the unions for
this message. See ACS Data Types and CSTA Data Types in section 4
for a complete description of the event structure.

typedef struct

{

ACSHandle_t acsHandle;

EventClass_t eventClass;

EventType_t eventType;

} ACSEventHeader_t;

typedef struct

{

ACSEventHeader_teventHeader;

union

{

struct

{

InvokeID_tinvokeID_t;

union

{

CSTASysStatStartConfEvent_t sysStatStart;

} u;

} cstaConfirmation;

} event;

} CSTAEvent_t;

typedef struct CSTASysStatStartConfEvent_t (

SystemStatusFilter_tstatusFilter;

) CSTASysStatStatStartConfEvent_t;

Parameters

acsHandle
Issue 1 — December 2001

TSAPI.PDF R10.1 V19-28

Escape and Maintenance Services
This is the handle for the opened ACS Stream.
Issue 1 — December 2001

9-29TSAPI.PDF R10.1 V1

Escape and Maintenance Services
eventClass

This is a tag with the value CSTACONFIRMATION, which identifies this
message as an CSTA unsolicited event.

eventType

This is a tag with the value CSTA_SYS_STAT_START_CONF, which
identifies this message as an CSTASysStatStartConfEvent.

invokeID

This parameter specifies the requested instance of the function or event. It
is used to match a specific functions call request with its confirmation
events.

statusFilter

This parameter is used to specify the filter type which is active on the
System Status monitor requested by the application. The parameter
identifies which filter was accepted by the driver/switch. Note that the filter
returned by this function may be different than the filter requested in the
cstaSysStatStart() service request. This can occur when the
driver/switch rejected the request filter and selected a default filter.

privateData

If private data accompanied this event, then the private data would be
copied to the location pointed to by the privateData pointer in the
acsGetEventBlock() or acsGetEventPoll() function. If the privateData
pointer is set to NULL in these functions, then no private data will be
delivered to the application.

Comments

This confirmation event should be checked by the application to insure that
the System Status monitor has been activated and that the requested filter
is active.

cstaSysStatStop()

This service is used to cancel a previously registered monitor for System Status
information.

Syntax

#include <csta.h>

#include <acs.h>

RetCode_t cstaSysStatStop (

ACSHandle_tacsHandle,

InvokeID_tinvokeID,

PrivateData_t*privateData),
Issue 1 — December 2001

TSAPI.PDF R10.1 V19-30

Escape and Maintenance Services
Parameters

acsHandle

This is the handle to an active ACS Stream.

invokeID

A handle provided by the application to be used for matching a specific
instance of a function service request with its associated confirmation
event. This parameter is only valid when the Invoke ID mechanism is set
for Application-generated IDs in the acsOpenStream(). The parameter is
ignored by the ACS Library when the Stream is set for Library-generated
invoke IDs.

privateData

Private data extension mechanism. This is optional.

Return Values

This function returns the following values depending on whether the
application is using library or application-generated invoke identifiers:

Library-generated Identifiers - if the function call completes
successfully it will return a positive value, i.e. the invoke identifier. If
the call fails a negative error (<0) condition will be returned. For
library-generated identifiers the return will never be zero (0).

Application-generated Identifiers - if the function call completes
successfully it will return a zero (0) value. If the call fails a negative
error (<0) condition will be returned. For application-generated
identifiers the return will never be positive (>0).

The application should always check the CSTASysStatStopConfEvent
message to insure that the service request has been acknowledged and
processed by the Telephony Server and the switch.

The following are possible negative error conditions for this function:

ACSERR_BADHDL

This return value indicates that a bad or unknown acsHandle was
provided by the application.

ACSERR_NOCONN

This return value indicates that a previously active ACS Stream has
been abnormally aborted.

ACSERR_REQDENIED

This return value indicates that a ACS Stream is established but a
requested capability has been denied by the Client Library Software
Driver.
Issue 1 — December 2001

9-31TSAPI.PDF R10.1 V1

Escape and Maintenance Services
Comments

This function is used to cancel a previously registered System Status
monitor. Once a confirmation event is issued for this function, i.e. a
CSTASysStatStopConfEvent, the driver/switch will terminate automatic
System Status event notification. If required, the application can still
continue to poll for system status information using the cstaSysStatReq()
service, even after a System Status register is closed.

CSTASysStatStopConfEvent

This event is in response to the cstaSysStatStop() function and confirms a
cancellation of the active System Status monitor. Once this event is issued the
application will not continue to receive unsolicited System Status events.

Syntax

The following structure shows only the relevant portions of the unions for
this message. See ACS Data Types and CSTA Data Types in section 4
for a complete description of the event structure.

typedef struct

{

ACSHandle_t acsHandle;

EventClass_t eventClass;

EventType_t eventType;

} ACSEventHeader_t;

typedef struct

{

ACSEventHeader_t eventHeader;

union

{

struct

{

InvokeID_tinvokeID_t;

} cstaConfirmation;

} event;

} CSTAEvent_t;

Parameters

acsHandle

This is the handle for the opened ACS Stream.

eventClass

This is a tag with the value CSTACONFIRMATION, which identifies this
message as an CSTA unsolicited event.

eventType

This is a tag with the value CSTA_SYS_STAT_STOP_CONF, which
identifies this message as an CSTASysStatStopConfEvent.
Issue 1 — December 2001

TSAPI.PDF R10.1 V19-32

Escape and Maintenance Services
invokeID

This parameter specifies the requested instance of the function or event. It
is used to match a specific functions call request with its confirmation
events.

privateData

If private data accompanied this event, then the private data would be
copied to the location pointed to by the privateData pointer in the
acsGetEventBlock() or acsGetEventPoll() function. If the privateData
pointer is set to NULL in these functions, then no private data will be
delivered to the application.

Comments

This confirmation event should be checked by the application to insure that
the System Status monitor has been deactivated. Once this event is sent,
automatic notification of System Status events will be discontinued. The
application must poll using the cstaSysStatReq() service in order to
obtain any System Status information.

cstaChangeSysStatFilter()

This function is used to request a change in the filter options for automatic System
Status event reporting for a specific ACS Stream. It allows the application to
specify which System Status events it requires.

Syntax

#include <csta.h>

#include <acs.h>

RetCode_tcstaChangeSysStatFilter (

ACSHandle_t acsHandle,

InvokeID_t *invokeID,

SystemStatusFilter_t statusFilter,

PrivateData_t *privateData),

Parameters

acsHandle

This is the handle to an active ACS Stream.

invokeID

A handle provided by the application to be used for matching a specific
instance of a function service request with its associated confirmation
event. This parameter is only valid when the Invoke ID mechanism is set
for Application-generated IDs in the acsOpenStream(). The parameter is
ignored by the ACS Library when the Stream is set for Library-generated
invoke IDs.
Issue 1 — December 2001

9-33TSAPI.PDF R10.1 V1

Escape and Maintenance Services
statusFilter

This parameter identifies the new filter mask to be applied to the existing
active System Status monitor. The new mask will replace the existing
mask.

privateData

Private data extension mechanism. This is optional.

Return Values

This function returns the following values depending on whether the
application is using library or application-generated invoke identifiers:

Library-generated Identifiers - if the function call completes
successfully it will return a positive value, i.e. the invoke identifier. If
the call fails a negative error (<0) condition will be returned. For
library-generated identifiers the return will never be zero (0).

Application-generated Identifiers - if the function call completes
successfully it will return a zero (0) value. If the call fails a negative
error (<0) condition will be returned. For application-generated
identifiers the return will never be positive (>0).

The application should always check the
CSTAChangeSysStatFilterConfEvent message to insure that the service
request has been acknowledged and processed by the Telephony Server
and the switch.

The following are possible negative error conditions for this function:

ACSERR_BADHDL

This return value indicates that a bad or unknown acsHandle was
provided by the application.

ACSERR_NOCONN

This return value indicates that a previously active ACS Stream has
been abnormally aborted.

ACSERR_REQDENIED

This return value indicates that a ACS Stream is established but a
requested capability has been denied by the Client Library Software
Driver.

Comments

This service is used whenever the application wishes to change a
previously defined System Status event filter. Note that application will not
receive any System Status message which has its bit mask turned off.
Issue 1 — December 2001

TSAPI.PDF R10.1 V19-34

Escape and Maintenance Services
CSTAChangeSysStatFilterConfEvent

This event occurs as a result of the cstaChangeSysStatFilter() service and
informs the application which event filter was set by the server.

Syntax

The following structure shows only the relevant portions of the unions for
this message. See ACS Data Types and CSTA Data Types in section 4
for a complete description of the event structure.

typedef struct

{

ACSHandle_t acsHandle;

EventClass_t eventClass;

EventType_t eventType;

} ACSEventHeader_t;

typedef struct

{

ACSEventHeader_t eventHeader;

union

{

struct

{

InvokeID_tinvokeID_t;

union

{

CSTAChangeSysStatFilterConfEvent_t changeSysStatFilter;

} u;

} cstaConfirmation;

} event;

} CSTAEvent_t;

typedef struct CSTAChangeSysStatFilterConfEvent_t (

SystemStatusFilter_tstatusFilterSelected;

SystemStatusFilter_tstatusFilterActive;

} CSTAChangeSysStatFilterConfEvent_t;

Parameters

acsHandle

This is the handle for the opened ACS Stream.

eventClass

This is a tag with the value CSTACONFIRMATION, which identifies this
message as an CSTA unsolicited event.

eventType

This is a tag with the value CSTA_CHANGE_SYS_STAT_FILTER_CONF ,
which identifies this message as an CSTAChangeSysStatFilterConfEvent.

invokeID
Issue 1 — December 2001

9-35TSAPI.PDF R10.1 V1

Escape and Maintenance Services
This parameter specifies the requested instance of the function or event. It
is used to match a specific functions call request with its confirmation
events.

statusFilterSelected

This parameter specifies the System Status event filters which are active
as a result of the cstaChangeSysStatFilter() service request. This filter
may be different than the one requested by the application. This can occur
if the implementation rejects a particular filter request.
Issue 1 — December 2001

TSAPI.PDF R10.1 V19-36

Escape and Maintenance Services
eventFilterActive

This parameter indicates the filters which are already active on the given
CSTA association.

privateData

If private data accompanied this event, then the private data would be
copied to the location pointed to by the privateData pointer in the
acsGetEventBlock() or acsGetEventPoll() function. If the privateData
pointer is set to NULL in these functions, then no private data will be
delivered to the application.

Comments

This confirmation event should be check by the application to insure that
the event filter requested has been activated and which filters are already
active on the given System Status monitor.

CSTASysStatEvent

This unsolicited event informs the application of the overall system status of the
driver/switch. The application must register for System Status events before this
event is sent to the application.

Syntax

The following structure shows only the relevant portions of the unions for
this message. See ACS Data Types and CSTA Data Types in section 4
for a complete description of the event structure.

typedef struct

{

ACSHandle_t acsHandle;

EventClass_t eventClass;

EventType_t eventType;

} ACSEventHeader_t;

typedef struct

{

ACSEventHeader_teventHeader;

union

{

struct

{

union

{

CSTASysStatEvent_t sysStat;

} u;

} cstaEventReport;

} event;

} CSTAEvent_t;
Issue 1 — December 2001

9-37TSAPI.PDF R10.1 V1

Escape and Maintenance Services
typedef struct

{

SystemStatus_tsystemStatus;

} CSTASysStatEvent_t;

typedef enum SystemStatus_t {

SS_INITIALIZING = 0,

SS_ENABLED = 1,

SS_NORMAL = 2,

SS_MESSAGES_LOST = 3,

SS_DISABLED = 4,

SS_OVERLOAD_IMMINENT = 5,

SS_OVERLOAD_REACHED = 6,

SS_OVERLOAD_RELIEVED = 7

} SystemStatus_t;

Parameters

acsHandle

This is the handle for the opened ACS Stream.

eventClass

This is a tag with the value CSTAEVENTREPORT, which identifies this
message as an CSTA unsolicited event.

eventType

This is a tag with the value CSTA_SYS_STAT, which identifies this
message as an CSTASysStatEvent.

privateData

If private data accompanied this event, then the private data would be
copied to the location pointed to by the privateData pointer in the
acsGetEventBlock() or acsGetEventPoll() function. If the privateData
pointer is set to NULL in these functions, then no private data will be
delivered to the application.

systemStatus

This parameter provides the application with a cause code defining the
overall system status. See Table 9-4 for the possible values of this
parameter.

Comments

This event provides the application with certain information regarding the
state of the overall driver/switch system. This event is important for proper
application operation and should be processed accordingly. This is
especially important for cause values for the overload condition. If the
driver/switch has informed the application that an overload condition is
imminent all applications should attempt to decrease the overall traffic to
the driver/switch. This can be accomplished, for example, by stopping all
non-essential monitors on call or device objects on the switch thus
Issue 1 — December 2001

TSAPI.PDF R10.1 V19-38

Escape and Maintenance Services
reducing the traffic between the server and the switch. Frequent
occurrence of the Overload Imminent event can be a symptoms of a poorly
engineered system which should reviewed for proper loading.

PBX drivers that follow driver programming recommendations will send
CSTASysStatEvent when a CTI link goes up or down. When a link that is
in service goes down, the systemStatus will be “Initializing”. When a link
enters service, the systemStatus will be “Enabled”. If a driver uses
multiple CTI links to provide service, then the driver may only send the
“Initializing” message when there are no CTI links in service and may send
the “Enabled” when at least one link is in service.

Certain, non-essential cause values can be sent at any time or depending
on the driver/switch implementation even at regular intervals (e.g. the
Normal cause value) to indicate that the system status is O.K. and
operating normally. This can be turned off by the application to avoid the
overhead associated with processing these normal messages. This is
accomplished by changing the event filter type by using the
cstaChangeSysStatFilter() service. This service can be used to
discontinue the delivery of "non-essential" system status events to the
application.

CSTASysStatEndedEvent

The driver uses this event to cancel a previously registered monitor for System
Status information.

Syntax

The following structure shows only the relevant portions of the unions for
this message. See ACS Data Types and CSTA Data Types in section 4
for a complete description of the event structure.

typedef struct

{

ACSHandle_t acsHandle;

EventClass_t eventClass;

EventType_t eventType;

} ACSEventHeader_t;

typedef struct

{

ACSEventHeader_t eventHeader;

union

{

struct

{

union

{

CSTASysStatEndedEvent_t sysStatEnded;

} u;

} cstaEventReport;
Issue 1 — December 2001

9-39TSAPI.PDF R10.1 V1

Escape and Maintenance Services
} event;

} CSTAEvent_t;

typedef struct CSTASysStatEndedEvent_t {

Nulltype null;

} CSTASysStatEndedEvent_t;

Parameters

acsHandle

This is the handle for the opened ACS Stream.

eventClass

This is a tag with the value CSTAEVENTREPORT, which identifies this
message as an CSTA unsolicited event.

eventType

This is a tag with the value CSTA_SYS_STAT_ENDED, which identifies
this message as a CSTASysStatStopEvent.

monitorCrossRefID

This parameter is unused in this message.

privateData

If private data accompanied this event, then the private data would be
copied to the location pointed to by the privateData pointer in the
acsGetEventBlock() or acsGetEventPoll() function. If the privateData
pointer is set to NULL in these functions, then no private data will be
delivered to the application.

System Status : Driver/Switch as the
Client

This section defines the services which provide system level status information to
the driver/switch form the application. The System Status service is bi-directional
and thus the client/server relationship (see Figure 9-2) can be reversed.

CSTASysStatReqEvent

This unsolicited event is sent by the driver/switch to request system status
information from the application.

Syntax

The following structure shows only the relevant portions of the unions for
this message. See section 4.3 ACS Data Types and 4.6 CSTA Data
Types for a complete description of the event structure.
Issue 1 — December 2001

TSAPI.PDF R10.1 V19-40

Escape and Maintenance Services
typedef struct

{

ACSHandle_t acsHandle;

EventClass_t eventClass;

EventType_t eventType;

} ACSEventHeader_t;
Issue 1 — December 2001

9-41TSAPI.PDF R10.1 V1

Escape and Maintenance Services
typedef struct

{

ACSEventHeader_t eventHeader;

union

{

struct

{

InvokeID_tinvokeID;

union

{

CSTASysStatReqEvent_tsysStatRequest;

} u;

} cstaRequestEvent;

} event;

} CSTAEvent_t;

typedef struct CSTASysStatReqEvent_t {

Nulltype null;

} CSTASysStatReqEvent_t;

Parameters

acsHandle

This is the handle for the opened ACS Stream.

eventClass

This is a tag with the value CSTAUNSOLICITED, which identifies this
message as an CSTA unsolicited event.

eventType

This is a tag with the value CSTA_SYS_STAT_REQ, which identifies this
message as an CSTASysStatReqEvent.

InvokeID

This parameter identifies the instance of the request generated by the
switch/driver. This same value must be used, unchanged, in the response
to this event (cstaSysStatReqConf()).

privateData

If private data accompanied this event, then the private data would be
copied to the location pointed to by the privateData pointer in the
acsGetEventBlock() or acsGetEventPoll() function. If the privateData
pointer is set to NULL in these functions, then no private data will be
delivered to the application.

Comments
Issue 1 — December 2001

TSAPI.PDF R10.1 V19-42

Escape and Maintenance Services
This event is sent by the driver/switch to request status information
pertaining to the application. It is the bi-directional equivalent of the
cstaSysStatReq() function which is issued by the application to request
status information from the driver/switch. The application responds to this
unsolicited event request utilizing the cstaSysStatReqConf() function.

cstaSysStatReqConf()

This service is used to respond to a CSTASysStatReqEvent unsolicited event
from the driver/switch. It provides the driver/switch with information regarding the
status of the application.

Syntax

#include <csta.h>

RetCode_t cstaSysStatReqConf (

ACSHandle_tacsHandle,

InvokeID_t*invokeID,

SystemStatus_tsystemStatus,

PrivateData_t*privateData);

typedef enum SystemStatus_t {

SS_INITIALIZING = 0,

SS_ENABLED = 1,

SS_NORMAL = 2,

SS_MESSAGES_LOST = 3,

SS_DISABLED = 4,

SS_OVERLOAD_IMMINENT = 5,

SS_OVERLOAD_REACHED = 6,

SS_OVERLOAD_RELIEVED = 7

} SystemStatus_t;

Parameters

acsHandle

This is the handle to an active ACS Stream.

InvokeID

The value of this parameter must be the same (unchanged) as that
provided in the cstaSysStatReqEvent so that the driver/switch can match
an instance of a service request with the response to that request.

systemStatus

This parameter provides the driver/switch with a cause code defining the
overall system status. See Table 9-4 for the possible values of this
parameter.

privateData
Issue 1 — December 2001

9-43TSAPI.PDF R10.1 V1

Escape and Maintenance Services
Private data extension mechanism. This is optional.

Return Values

This function never returns an invoke identifier since there is no
confirmation event for this service. The function does return errors
conditions during the processing of the request by the API Client Library. A
return value of zero (0) indicates that the request has been accepted by the
Library.

Possible local error returns are (negative returns):

ACSERR_BADHDL

This return value indicates that a bad or unknown acsHandle was
provided by the application.

ACSERR_NOCONN

This return value indicates that a previously active ACS Stream has
been abnormally aborted.

ACSERR_REQDENIED

This return value indicates that a ACS Stream is established but a
requested capability has been denied by the Client Library Software
Driver.

Comments

This confirmation response provides the driver/switch with certain
information regarding the state of the overall application. The information
can be used by the driver/switch to determine the overall state of the
application. The driver/switch may act on this information in order to insure
proper end-to-end system operation and performance. Frequent
occurrence of the Overload Imminent cause value can be a symptoms of a
poorly engineered application system which should reviewed for proper
loading.

cstaSysStatEvent()

This service is used to send application system status information in the form of
an unsolicited event to the driver/switch without a formal request for the
information. This status information can be sent at any time.

Syntax

#include <csta.h>

RetCode_t cstaSysStatEvent (

ACSHandle_tacsHandle,

SystemStatus_tsystemStatus,

PrivateData_t*privateData);
Issue 1 — December 2001

TSAPI.PDF R10.1 V19-44

Escape and Maintenance Services
typedef enum SystemStatus_t {

SS_INITIALIZING = 0,

SS_ENABLED = 1,

SS_NORMAL = 2,

SS_MESSAGES_LOST = 3,

SS_DISABLED = 4,

SS_OVERLOAD_IMMINENT = 5,

SS_OVERLOAD_REACHED = 6,

SS_OVERLOAD_RELIEVED = 7

} SystemStatus_t;
Issue 1 — December 2001

9-45TSAPI.PDF R10.1 V1

Escape and Maintenance Services
Parameters

acsHandle

This is the handle to an active ACS Stream.

systemStatus

This parameter provides the driver/switch with a cause code defining the
overall system status. See Table 9-4 for the possible values of this
parameter.

privateData

Private data extension mechanism. This is optional.

Return Values

This function never returns an invoke identifier since there is no
confirmation event for this service. The function does return errors
conditions during the processing of the request by the API Client Library. A
return value of zero (0) indicates that the request has been accepted by the
Library.

Possible local error returns are (negative returns):

ACSERR_BADHDL

This return value indicates that a bad or unknown acsHandle was
provided by the application.

ACSERR_NOCONN

This return value indicates that a previously active ACS Stream has
been abnormally aborted.

ACSERR_REQDENIED

This return value indicates that a ACS Stream is established but a
requested capability has been denied by the Client Library Software
Driver.

Comments

This unsolicited service event is sent to the driver/switch in order to inform
it of the state of the overall application system. The driver/switch may act
on this information in order to insure proper end-to-end system operation
and performance. Frequent occurrence of the Overload Imminent cause
value can be a symptoms of a poorly engineered application system which
should reviewed for proper loading.
Issue 1 — December 2001

TSAPI.PDF R10.1 V19-46

Issue 1 — December 2001

TSAPI.PDF R10.1 V1
10

Programming Notes
Introduction

This chapter provides programming notes for the following clients

■ TSAPI on Win32

■ TSAPI on Unixware

■ TSAPI on HP-UX

TSAPI on Win32 Programming
Overview

Read this section for information on developing TSAPI applications for Windows
NT or Windows 95. You do not need to be familiar with the CSTA call model or API
before reading further, but you should read Chapter 4, ACS Control Services.

Development Platforms

The TSAPI header files and import libraries in this SDK are compatible with the
Microsoft Visual C++ Development System. Using another compiler may require
you to modify the header files, for example, to account for differences in structure
alignment, size of enumerated data types, etc. The Win32 TSAPI library assumes
the default 8-byte structure packing and an enum size of 4 bytes.

Linking to the TSAPI Library

The TSAPI for Win32 is implemented as a dynamic link library, CSTA32.DLL.
Specify the CSTA32.LIB import library when compiling your application.
10-1

Programming Notes
Using Application Control Services

This section discusses how to use application control services (ACS) to retrieve
events on Win32 platforms. If you are porting code that uses Telephony Services,
you should read this section to get an overview of the differences between Win32
and other platforms.

Event Notification

acsEventNotify() enables asynchronous notification of incoming events via
Windows messages.

acsSetESR() enables asynchronous notification of incoming events via an
application-defined callback routine. This routine will be called in the context of a
background thread created by the TSAPI Library, not a thread created by the
application. The callback should not invoke TSAPI Library functions.

Receiving Events

This section discusses event reception using acsGetEventPoll() and
acsGetEventBlock() on Win32.

Blocking Versus Polling

acsGetEventBlock() suspends the calling thread until it receives an event.
acsGetEventPoll() returns control immediately if no event is available, allowing the
application to query other input sources or events.

Calling acsGetEventPoll() repetitively can unduly consume processor time and
resources, to the detriment of other applications. Instead of polling, consider
creating a separate thread which calls acsGetEventBlock(), or use
acsEventNotify() to receive asynchronous notifications.

Receiving Events From Any Stream

An application may specify a NULL stream handle when calling acsGetEventPoll()
or acsGetEventBlock() to request that the Telephony Services library return the
first event available on any of that application's streams.
Issue 1 — December 2001

TSAPI.PDF R10.1 V110-2

Programming Notes
Sharing ACS Streams Between Threads

The ACS handle value is global to all threads in a given application process. This
handle can be accessed in any thread, even threads that did not originally open
the handle. For example, one thread can call the acsOpenStream() function,
which returns an ACS handle. A different thread in the same process can make
other TSAPI calls with the returned ACS handle. No special action is required to
enable the second thread to use the handle; it just needs to obtain the handle
value.

While permitted, it normally does not make sense for more than one thread to
retrieve events from a single stream. The TSAPI Library allows calls from different
threads to be safely interleaved, but coordination of the resulting actions and
events is the responsibility of the application.

Message Trace

The TSSPY32.EXE program may be used to obtain a trace of messages flowing
between applications and the Telephony Server.
Issue 1 — December 2001

10-3TSAPI.PDF R10.1 V1

Programming Notes
TSAPI on UnixWare

Read this section for information on developing TSAPI applications on UnixWare.
You do not need to be familiar with the CSTA call model or API before reading
further, but you should read Chapter 4, ACS Control Services.

Development Platforms

Telephony Services applications must be built with an environment that supports
the Executable and Linking Format (ELF) and dynamic linking. The TSAPI header
files in this SDK are compatible with the C Optimized Compilation System
provided with the UnixWare Software Development Kit. Using another compiler
may require you to modify the header files, for example, to account for differences
in structure alignment, size of enumerated data types, etc.

TSAPI works with both UnixWare 1.x and UnixWare 2.x, and is thread-safe for 2.x
applications.

Linking to the TSAPI Library

The TSAPI for UnixWare is implemented as a shared object library, libcsta.so, and
follows the standard conventions for library path search and dynamic linking. If
libcsta.so is installed in one of the standard directories, it is only necessary to
include "-lcsta " in your link step, for example:

cc -o myprog myprog.c -lcsta

Note that libcsta.so depends upon the Networking Support Library, libnsl.so.

Using Application Control Services

This section discusses how to use application control services (ACS) to retrieve
events on UnixWare. If you are porting code that uses Telephony Services, you
should read this section to get an overview of the differences between UnixWare
and other platforms.

Event Notification

The acsEventNotify() and acsSetESR() functions are not provided on the
UnixWare platform.

Unlike other Telephony Services platforms, UnixWare does not directly promote
an event-driven programming model, but rather a file-oriented one. To work most
effectively in the UnixWare environment, the TSAPI event stream should appear
as a file. The acsGetFile() function returns the STREAMS file descriptor
associated with an ACS stream handle. The returned value may be used like any
Issue 1 — December 2001

TSAPI.PDF R10.1 V110-4

Programming Notes
other file descriptor in an I/O multiplexing call, such as poll() or select(), to
determine the availability of TSAPI events. Alternatively, an application may
register to receive the SIGPOLL signal using the I_SETSIG ioctl() call. Refer to
Programming with UNIX System Calls - STREAMS Polling and Multiplexing in the
UnixWare SDK documentation.

NOTE:
Do not perform other I/O or control operations directly on this file
descriptor. Doing so may lead to unpredictable results from the
TSAPI library.

Receiving Events

This section discusses event reception using acsGetEventPoll() and
acsGetEventBlock() on UnixWare.

Blocking Versus Polling

acsGetEventBlock() suspends the calling application until it receives an event. If
your application has no other work to perform in the meantime, this is the simplest
and most efficient way to receive events from the TSAPI. Typically, however, an
application needs to respond to input from the user or other sources, and cannot
afford to wait exclusively for TSAPI events. acsGetEventPoll() returns control
immediately if no event is available, allowing the application to query other input
sources or events.

Calling acsGetEventPoll() repetitively can unduly consume processor time and
resources, to the detriment of other applications. Instead of polling, consider
multiplexing your input sources via the poll() system call, or installing a SIGPOLL
handler.

Receiving Events From Any Stream

An application may specify a NULL stream handle when calling acsGetEventPoll()
or acsGetEventBlock() to request that the Telephony Services library return the
first event available on any of that application's streams.

Message Trace

To create a log file of TSAPI messages sent to and received from the Telephony
Server, set the shell environment variable CSTATRACE to the pathname of the
desired file, prior to starting your application. The log file will be created if
necessary, or appended to if it already exists.
Issue 1 — December 2001

10-5TSAPI.PDF R10.1 V1

Programming Notes
Sample Code

The following pseudo-code illustrates the use of the acsGetFile() function to set
up an asynchronous event handler.

int EventIsPending = 0;

/* handleEvent() called when SIGPOLL is received */

void
handleEvent (int sig)
{

EventIsPending++;
}

void
main (void)
{

ACSHandle_tacsHandle;
int acs_fd;

.

.

.

/* install the signal handler */
signal (SIGPOLL, handleEvent);

/* open an ACS stream */
acsOpenStream (&acsHandle, ...etc...);

/* get its file descriptor */
acs_fd = acsGetFile (acsHandle);

/* enable SIGPOLL on normal "read" events */
ioctl (acs_fd, I_SETSIG, S_RDNORM);

/* proceed with application processing */
while (notDone)
{

if (EventIsPending > 0)
{

/* retrieve a TSAPI event */
acsGetEventPoll (acsHandle, ...etc...);
EventIsPending = 0;
/* re-enable handler */
signal (SIGPOLL, handleEvent);

}
/* perform other background processing... */

}
}

Issue 1 — December 2001

TSAPI.PDF R10.1 V110-6

Programming Notes
TSAPI on HP-UX

Read this section for information on developing TSAPI applications on HP-UX.
You do not need to be familiar with the CSTA call model or API before reading
further, but you should read Chapter 4, ACS Control Services.

Development Platforms

The TSAPI header files in this SDK are compatible with the HP-UX C Compiler.
Using another compiler may require you to modify the header files, for example, to
account for differences in structure alignment, size of enumerated data types, etc.

Linking to the TSAPI Library

The TSAPI for HP-UX is implemented as a shared object library, libcsta.sl, and
follows the standard conventions for library path search and dynamic linking. If
libcsta.sl is installed in one of the standard directories, it is only necessary to
include "-lcsta" in your link step, for example:

cc Ae -o myprog myprog.c -lcsta

Using Application Control Services

This section discusses how to use application control services (ACS) to retrieve
events on HP-UX. If you are porting code that uses Telephony Services, you
should read this section to get an overview of the differences between HP-UX and
other platforms.

Event Notification

The acsEventNotify() and acsSetESR() functions are not provided on the HP-UX
platform.

Unlike other Telephony Services platforms, HP-UX does not directly promote an
event-driven programming model, but rather a file-oriented one. To work most
effectively in the HP-UX environment, the TSAPI event stream should appear as a
file. The acsGetFile() function returns the file descriptor associated with an ACS
stream handle. The returned value may be used like any other file descriptor in
an I/O multiplexing call, such as poll() or select(), to determine the availability of
TSAPI events.

Do not perform other I/O or control operations directly on this file descriptor. Doing
so may lead to unpredictable results from the TSAPI library.
Issue 1 — December 2001

10-7TSAPI.PDF R10.1 V1

Programming Notes
Receiving Events

This section discusses event reception using acsGetEventPoll() and
acsGetEventBlock() on HP-UX.

Blocking Versus Polling**

acsGetEventBlock() suspends the calling application until it receives an event. If
your application has no other work to perform in the meantime, this is the simplest
and most efficient way to receive events from the TSAPI. Typically, however, an
application needs to respond to input from the user or other sources, and cannot
afford to wait exclusively for TSAPI events. acsGetEventPoll() returns control
immediately if no event is available, allowing the application to query other input
sources or events.

Calling acsGetEventPoll() repetitively can unduly consume processor time and
resources, to the detriment of other applications. Instead of polling, consider
multiplexing your input sources via the poll() or select() system calls.

Receiving Events From Any Stream

An application may specify a NULL stream handle when calling acsGetEventPoll()
or acsGetEventBlock() to request that the Telephony Services library return the
first event available on any of that application's streams.

Message Trace

To create a log file of TSAPI messages sent to and received from the Telephony
Server, set the shell environment variable CSTATRACE to the pathname of the
desired file, prior to starting your application. The log file will be created if
necessary, or appended to if it already exists.
Issue 1 — December 2001

TSAPI.PDF R10.1 V110-8

Programming Notes
Using High Memory on Windows
Clients

Windows client application developers need to be aware of interactions between
the TSAPI DLL and Windows memory allocation.

The CSTA Telephony Server client library, csta.dll, is required to occupy fixed
memory, because it interfaces to NetWare drivers. As a result, when csta.dll
loads into memory, Windows memory allocation attempts to place it in the lowest
possible memory location by moving all movable memory to higher locations. If
the client loads multiple applications with this same behavior, then memory below
one megabyte may become exhausted. A symptom is that when the user
attempts to start an application Windows displays "insufficient memory to start this
application."

Developers can code their programs to force Windows to allocate low memory
before the TSAPI DLL loads, then free up the memory after the DLL loads. The C
code below illustrates how to do this. Note that if any other application has
already loaded csta.dll the following code has no effect, because csta.dll is fixed in
memory.

for (i=0; i<20; ++i)
{ // grab as much base memory as possible

if ((GlobDret=GlobalDosAlloc(50000L)) != NULL)
{
GselectorDos2[i] = LOWORD(GlobDret);
}

else if ((GlobDret=GlobalDosAlloc(10000L)) != NULL)
{
GselectorDos2[i] = LOWORD(GlobDret);
}

else if ((GlobDret=GlobalDosAlloc(5000L)) != NULL)
{
GselectorDos2[i] = LOWORD(GlobDret);
}

else if ((GlobDret=GlobalDosAlloc(1024L)) != NULL)
{
GselectorDos2[i] = LOWORD(GlobDret);
}

else break;
}

for (i = 19; i >= 0; --i)
{ // free some of the grabbed base memory

if (GselectorDos2[i])
{
GlobalDosFree(GselectorDos2[i]);
GselectorDos2[i] = 0;
break;
Issue 1 — December 2001

10-9TSAPI.PDF R10.1 V1

Programming Notes
}
}

// load the .dll or start the application that will load
it.

for (i=0; i<20; ++i)
{ // free all the captured base memory

if (GselectorDos2[i])
{
GlobalDosFree(GselectorDos2[i]);
}

else
{
break;
}

}

Issue 1 — December 2001

TSAPI.PDF R10.1 V110-10

Issue 1 — December 2001

TSAPI.PDF R10.1 V1
11

CSTA Data Types
Introduction

This chapter describes the data types used by the functions and messages
defined for the TSAPI. The data type are divided into two categories: CSTA Data
Type which are associated with telephony functions and Interface Data Types
which are associated with the API itself and the Telephony Services client/server
interface.

Device Identifiers

typedef char Nulltype;

typedef char DeviceID_t[64];

typedef enum ConnectionID_Device_t {
STATIC_ID = 0,
DYNAMIC_ID = 1

} ConnectionID_Device_t;

typedef struct ConnectionID_t {
long callID;
DeviceID_t deviceID;
ConnectionID_Device_t devIDType;

} ConnectionID_t;
11-1

CSTA Data Types
Basic Call Control Confirmation
Events

CSTAAlternateCallConfEvent structures

typedef struct CSTAAlternateCallConfEvent_t {
Nulltype null;

} CSTAAlternateCallConfEvent_t;

CSTAAnswerCallConfEvent structures

typedef struct CSTAAnswerCallConfEvent_t {
Nulltype null;

} CSTAAnswerCallConfEvent_t;

typedef enum Feature_t {
FT_CAMPON = 0,
FT_CALLBACK = 1,
FT_INTRUDE = 2

} Feature_t;

CSTACallCompletionConfEvent structures

typedef struct CSTACallCompletionConfEvent_t {
Nulltype null;

} CSTACallCompletionConfEvent_t;

CSTAClearCallConfEvent structures

typedef struct CSTAClearCallConfEvent_t {
Nulltype null;

} CSTAClearCallConfEvent_t;

CSTAClearConnectionConfEvent structures

typedef struct CSTAClearConnectionConfEvent_t {
Nulltype null;

} CSTAClearConnectionConfEvent_t;
Issue 1 — December 2001

TSAPI.PDF R10.1 V111-2

CSTA Data Types
CSTAConferenceConfEvent structures

typedef struct Connection_t {
ConnectionID_t party;
DeviceID_t staticDevice; /* NULL for not present */

} Connection_t;

typedef struct ConnectionList {
int count;
Connection_t *connection;

} ConnectionList;

typedef struct CSTAConferenceCallConfEvent_t {
ConnectionID_t activeCall;
ConnectionList connList;

} CSTAConferenceCallConfEvent_t;

CSTAConsultationCallConfEvent structures

typedef struct CSTAConsultationCallConfEvent_t {
ConnectionID_t newCall;

} CSTAConsultationCallConfEvent_t;

CSTADeflectCallConfEvent structures

typedef struct CSTADeflectCallConfEvent_t {
Nulltype null;

} CSTADeflectCallConfEvent_t;

CSTAGroupPickupCallConfEvent structures

typedef struct CSTAGroupPickupCallConfEvent_t {
Nulltype null;

} CSTAGroupPickupCallConfEvent_t;

CSTAHoldCallConfEvent structures

typedef struct CSTAHoldCallConfEvent_t {
Nulltype null;

} CSTAHoldCallConfEvent_t;

CSTAMakeCallConfEvent structures

typedef struct CSTAMakeCallConfEvent_t {
ConnectionID_t newCall;

} CSTAMakeCallConfEvent_t;
Issue 1 — December 2001

11-3TSAPI.PDF R10.1 V1

CSTA Data Types
CSTAMakePredicitiveCallConfEvent structures

typedef enum AllocationState_t {
AS_CALL_DELIVERED = 0,
AS_CALL_ESTABLISHED = 1

} AllocationState_t;

typedef struct CSTAMakePredictiveCallConfEvent_t {
ConnectionID_t newCall;

} CSTAMakePredictiveCallConfEvent_t;

CSTAPickupCallConfEvent structures

typedef struct CSTAPickupCallConfEvent_t {
Nulltype null;

} CSTAPickupCallConfEvent_t;
CSTAReconnectCallConfEvent structures
typedef struct CSTAReconnectCallConfEvent_t {
} CSTAReconnectCallConfEvent_t;

CSTARetrieveCallConfEvent structures

typedef struct CSTARetrieveCallConfEvent_t {
Nulltype null;

} CSTARetrieveCallConfEvent_t;
CSTATransferCallConfEvent structures
typedef struct CSTATransferCallConfEvent_t {

ConnectionID_t resultingCall;
ConnectionList connList;

} CSTATransferCallConfEvent_t;
Issue 1 — December 2001

TSAPI.PDF R10.1 V111-4

CSTA Data Types
CSTAUniversalFailureEvent structures

typedef enum CSTAUniversalFailure_t {
GENERIC_UNSPECIFIED = 0,
GENERIC_OPERATION = 1,
REQUEST_INCOMPATIBLE_WITH_OBJECT = 2,
VALUE_OUT_OF_RANGE = 3,
OBJECT_NOT_KNOWN = 4,
INVALID_CALLING_DEVICE = 5,
INVALID_CALLED_DEVICE = 6,
INVALID_FORWARDING_DESTINATION = 7,
PRIVILEGE_VIOLATION_ON_SPECIFIED_DEVICE = 8,
PRIVILEGE_VIOLATION_ON_CALLED_DEVICE = 9,
PRIVILEGE_VIOLATION_ON_CALLING_DEVICE = 10,
INVALID_CSTA_CALL_IDENTIFIER = 11,
INVALID_CSTA_DEVICE_IDENTIFIER = 12,
INVALID_CSTA_CONNECTION_IDENTIFIER = 13,
INVALID_DESTINATION = 14,
INVALID_FEATURE = 15,
INVALID_ALLOCATION_STATE = 16,
INVALID_CROSS_REF_ID = 17,
INVALID_OBJECT_TYPE = 18,
SECURITY_VIOLATION = 19,
GENERIC_STATE_INCOMPATIBILITY = 21,
INVALID_OBJECT_STATE = 22,
INVALID_CONNECTION_ID = 23,
NO_ACTIVE_CALL = 24,
NO_HELD_CALL = 25,
NO_CALL_TO_CLEAR = 26,
NO_CONNECTION_TO_CLEAR = 27,
NO_CALL_TO_ANSWER = 28,
NO_CALL_TO_COMPLETE = 29,
GENERIC_SYSTEM_RESOURCE_AVAILABILITY = 31,
SERVICE_BUSY = 32,
RESOURCE_BUSY = 33,
RESOURCE_OUT_OF_SERVICE = 34,
NETWORK_BUSY = 35,
NETWORK_OUT_OF_SERVICE = 36,
OVERALL_MONITOR_LIMIT_EXCEEDED = 37,
CONFERENCE_MEMBER_LIMIT_EXCEEDED = 38,
GENERIC_SUBSCRIBED_RESOURCE_AVAILABILITY = 41,
OBJECT_MONITOR_LIMIT_EXCEEDED = 42,
EXTERNAL_TRUNK_LIMIT_EXCEEDED = 43,
OUTSTANDING_REQUEST_LIMIT_EXCEEDED = 44,
GENERIC_PERFORMANCE_MANAGEMENT = 51,
PERFORMANCE_LIMIT_EXCEEDED = 52,
SEQUENCE_NUMBER_VIOLATED = 61,
TIME_STAMP_VIOLATED = 62,
PAC_VIOLATED = 63,
SEAL_VIOLATED = 64

} CSTAUniversalFailure_t;

typedef struct CSTAUniversalFailureConfEvent_t {
CSTAUniversalFailure_t error;

} CSTAUniversalFailureConfEvent_t;
Issue 1 — December 2001

11-5TSAPI.PDF R10.1 V1

CSTA Data Types
Telephony Supplementary
Confirmation Events

CSTASetMsgWaitingConfEvent structures

typedef struct CSTASetMwiConfEvent_t {
Nulltype null;

} CSTASetMwiConfEvent_t;

CSTASetDndConfEvent structures

typedef struct CSTASetDndConfEvent_t {
Nulltype null;

} CSTASetDndConfEvent_t;

CSTASetFwdConfEvent structures

typedef enum ForwardingType_t {
FWD_IMMEDIATE = 0,
FWD_BUSY = 1,
FWD_NO_ANS = 2,
FWD_BUSY_INT = 3,
FWD_BUSY_EXT = 4,
FWD_NO_ANS_INT = 5,
FWD_NO_ANS_EXT = 6

} ForwardingType_t;

typedef struct ForwardingInfo_t {
ForwardingType_t forwardingType;
Boolean forwardingOn;
DeviceID_t forwardDN; /* NULL for not present */

} ForwardingInfo_t;

typedef struct CSTASetFwdConfEvent_t {
Nulltype null;

} CSTASetFwdConfEvent_t;
Issue 1 — December 2001

TSAPI.PDF R10.1 V111-6

CSTA Data Types
CSTASetAgentStateConfEvent structures

typedef enum AgentMode_t {
AM_LOG_IN = 0,
AM_LOG_OUT = 1,
AM_NOT_READY = 2,
AM_READY = 3,
AM_WORK_NOT_READY = 4,
AM_WORK_READY = 5

} AgentMode_t;

typedef char AgentID_t[32];

typedef DeviceID_t AgentGroup_t;

typedef char AgentPassword_t[32];

typedef struct CSTASetAgentStateConfEvent_t {
Nulltype null;

} CSTASetAgentStateConfEvent_t;

CSTAQueryMwiConfEvent structures

typedef struct CSTAQueryMwiConfEvent_t {
Boolean messages;

} CSTAQueryMwiConfEvent_t;

CSTAQueryDndConfEvent structures

typedef struct CSTAQueryDndConfEvent_t {
Boolean doNotDisturb;

} CSTAQueryDndConfEvent_t;
Issue 1 — December 2001

11-7TSAPI.PDF R10.1 V1

CSTA Data Types
CSTAQueryFwdConfEvent structures

typedef enum ForwardingType_t {
FWD_IMMEDIATE = 0,
FWD_BUSY = 1,
FWD_NO_ANS = 2,
FWD_BUSY_INT = 3,
FWD_BUSY_EXT = 4,
FWD_NO_ANS_INT = 5,
FWD_NO_ANS_EXT = 6

} ForwardingType_t;

typedef struct ForwardingInfo_t {
ForwardingType_t forwardingType;
Boolean forwardingOn;
DeviceID_t forwardDN;

} ForwardingInfo_t;

typedef struct ListForwardParameters_t {
short count;
ForwardingInfo_t param[7];

} ListForwardParameters_t;

typedef struct CSTAQueryFwdConfEvent_t {
ListForwardParameters_t forward;

} CSTAQueryFwdConfEvent_t;

CSTAQueryAgentStateConfEvent structures

typedef enum AgentState_t {
AG_NOT_READY = 0,
AG_NULL = 1,
AG_READY = 2,
AG_WORK_NOT_READY = 3,
AG_WORK_READY = 4

} AgentState_t;

typedef struct CSTAQueryAgentStateConfEvent_t {
AgentState_t agentState;

} CSTAQueryAgentStateConfEvent_t;
CSTAQueryLastNumberConfEvent structures
typedef struct CSTAQueryLastNumberConfEvent_t {

DeviceID_t lastNumber;
} CSTAQueryLastNumberConfEvent_t;
Issue 1 — December 2001

TSAPI.PDF R10.1 V111-8

CSTA Data Types
CSTAQueryDeviceInfoConfEvent structures

typedef enum DeviceType_t {
DT_STATION = 0,
DT_LINE = 1,
DT_BUTTON = 2,
DT_ACD = 3,
DT_TRUNK = 4,
DT_OPERATOR = 5,
DT_STATION_GROUP = 16,
DT_LINE_GROUP = 17,
DT_BUTTON_GROUP = 18,
DT_ACD_GROUP = 19,
DT_TRUNK_GROUP = 20,
DT_OPERATOR_GROUP = 21,
DT_OTHER = 255

} DeviceType_t;

typedef unsigned char DeviceClass_t;
#define DC_VOICE 0x80
#define DC_DATA 0x40
#define DC_IMAGE 0x20
#define DC_OTHER 0x10

typedef struct CSTAQueryDeviceInfoConfEvent_t {
DeviceID_t device;
DeviceType_t deviceType;
DeviceClass_t deviceClass;

} CSTAQueryDeviceInfoConfEvent_t;
Issue 1 — December 2001

11-9TSAPI.PDF R10.1 V1

CSTA Data Types
Status Reporting Confirmation Events

cstaMonitorDevice structures

typedef long CSTAMonitorCrossRefID_t;

typedef CSTAObject_t CSTAMonitorObject_t;

typedef unsigned short CSTACallFilter_t;
CF_CALL_CLEARED 0x8000
CF_CONFERENCED 0x4000
CF_CONNECTION_CLEARED 0x2000
CF_DELIVERED 0x1000
CF_DIVERTED 0x0800
CF_ESTABLISHED 0x0400
CF_FAILED 0x0200
CF_HELD 0x0100
CF_NETWORK_REACHED 0x0080
CF_ORIGINATED 0x0040
CF_QUEUED 0x0020
CF_RETRIEVED 0x0010
CF_SERVICE_INITIATED 0x0008
CF_TRANSFERRED 0x0004

typedef unsigned char CSTAFeatureFilter_t;
FF_CALL_INFORMATION 0x80
FF_DO_NOT_DISTURB 0x40
FF_FORWARDING 0x20
FF_MESSAGE_WAITING 0x10

typedef unsigned char CSTAAgentFilter_t;
AF_LOGGED_ON 0x80
AF_LOGGED_OFF 0x40
AF_NOT_READY 0x20
AF_READY 0x10
AF_WORK_NOT_READY 0x08
AF_WORK_READY 0x04

typedef unsigned char CSTAMaintenanceFilter_t;
MF_BACK_IN_SERVICE 0x80
MF_OUT_OF_SERVICE 0x40

typedef struct CSTAMonitorFilter_t {
CSTACallFilter_t call;
CSTAFeatureFilter_t feature;
CSTAAgentFilter_t agent;
CSTAMaintenanceFilter_t maintenance;
Boolean private;

} CSTAMonitorFilter_t;

typedef enum CSTAMonitorType_t {
MT_CALL = 0,
MT_DEVICE = 1

} CSTAMonitorType_t;
Issue 1 — December 2001

TSAPI.PDF R10.1 V111-10

CSTA Data Types
cstaMonitorCall structures

See cstaMonitorDevice structures.

cstaMonitorCallsViaDevice structures

See cstaMonitorDevice structures.

CSTAMonitorConfEvent structures

typedef struct CSTAMonitorStartConfEvent_t {
CSTAMonitorCrossRefID_t monitorCrossRefID;
CSTAMonitorFilter_t monitorFilter;

} CSTAMonitorStartConfEvent_t;

CSTAChangeMonitorFilterConfEvent structures

typedef struct CSTAChangeMonitorFilterConfEvent_t {
CSTAMonitorFilter_t filterList;

} CSTAChangeMonitorFilterConfEvent_t;

CSTAMonitorStopConfEvent structures

typedef struct CSTAMonitorStopConfEvent_t {
Nulltype null;

} CSTAMonitorStopConfEvent_t;
CSTAMonitorStopEvent structures
typedef struect CSTAMonitorStopEvent_t {

InvokeID_tinvokeID;
} CSTAMonitorStopEvent_t
Issue 1 — December 2001

11-11TSAPI.PDF R10.1 V1

CSTA Data Types
Call Event Reports

Call Event Report data structures

typedef enum LocalConnectionState_t {
CS_NULL = 0,
CS_INITIATE = 1,
CS_ALERTING = 2,
CS_CONNECT = 3,
CS_HOLD = 4,
CS_QUEUED = 5,
CS_FAIL = 6

} LocalConnectionState_t;

typedef enum CSTAEventCause_t {
ACTIVE_MONITOR = 1,
ALTERNATE = 2,
BUSY = 3,
CALL_BACK = 4,
CALL_CANCELLED = 5,
CALL_FORWARD_ALWAYS = 6,
CALL_FORWARD_BUSY = 7,
CALL_FORWARD_NO_ANSWER = 8,
CALL_FORWARD = 9,
CALL_NOT_ANSWERED = 10,
CALL_PICKUP = 11,
CAMP_ON = 12,
DEST_NOT_OBTAINABLE = 13,
DO_NOT_DISTURB = 14,
INCOMPATIBLE_DESTINATION = 15,
INVALID_ACCOUNT_CODE = 16,
KEY_CONFERENCE = 17,
LOCKOUT = 18,
MAINTENANCE = 19,
NETWORK_CONGESTION = 20,
NETWORK_NOT_OBTAINABLE = 21,
NEW_CALL = 22,
NO_AVAILABLE_AGENTS = 23,
OVERRIDE = 24,
PARK = 25,
OVERFLOW = 26,
RECALL = 27,
REDIRECTED = 28,
REORDER_TONE = 29,
RESOURCES_NOT_AVAILABLE = 30,
SILENT_MONITOR = 31,
TRANSFER = 32,
TRUNKS_BUSY = 33,
VOICE_UNIT_INITIATOR = 34

} CSTAEventCause_t;
Issue 1 — December 2001

TSAPI.PDF R10.1 V111-12

CSTA Data Types
CSTACallClearedEvent structures

typedef struct CSTACallClearedEvent_t {
ConnectionID_t clearedCall;
LocalConnectionState_t localConnectionInfo;
CSTAEventCause_t cause;

} CSTACallClearedEvent_t;

CSTAConferencedEvent structures

typedef enum DeviceIDType_t {
DEVICE_IDENTIFIER = 0,
IMPLICIT_PUBLIC = 20,
EXPLICIT_PUBLIC_UNKNOWN = 30,
EXPLICIT_PUBLIC_INTERNATIONAL = 31,
EXPLICIT_PUBLIC_NATIONAL = 32,
EXPLICIT_PUBLIC_NETWORK_SPECIFIC = 33,
EXPLICIT_PUBLIC_SUBSCRIBER = 34,
EXPLICIT_PUBLIC_ABBREVIATED = 35,
IMPLICIT_PRIVATE = 40,
EXPLICIT_PRIVATE_UNKNOWN = 50,
EXPLICIT_PRIVATE_LEVEL3_REGIONAL_NUMBER = 51,
EXPLICIT_PRIVATE_LEVEL2_REGIONAL_NUMBER = 52,
EXPLICIT_PRIVATE_LEVEL1_REGIONAL_NUMBER = 53,
EXPLICIT_PRIVATE_PTN_SPECIFIC_NUMBER = 54,
EXPLICIT_PRIVATE_LOCAL_NUMBER = 55,
EXPLICIT_PRIVATE_ABBREVIATED = 56,
OTHER_PLAN = 60

} DeviceIDType_t;

typedef enum DeviceIDStatus_t {
PROVIDED = 0,
NOT_KNOWN = 1,
NOT_REQUIRED = 2

} DeviceIDStatus_t;

typedef struct ExtendedDeviceID_t {
DeviceID_t deviceID;
DeviceIDType_t deviceIDType;
DeviceIDStatus_t deviceIDStatus;

} ExtendedDeviceID_t;

typedef ExtendedDeviceID_t SubjectDeviceID_t;

typedef struct CSTAConferencedEvent_t {
ConnectionID_t primaryOldCall;
ConnectionID_t secondaryOldCall;
SubjectDeviceID_t confController;
SubjectDeviceID_t addedParty;
ConnectionList conferenceConnections;
LocalConnectionState_t localConnectionInfo;
CSTAEventCause_t cause;

} CSTAConferencedEvent_t;
Issue 1 — December 2001

11-13TSAPI.PDF R10.1 V1

CSTA Data Types
CSTAConnectionClearedEvent structures

typedef struct CSTAConnectionClearedEvent_t {
ConnectionID_t droppedConnection;
SubjectDeviceID_t releasingDevice;
LocalConnectionState_t localConnectionInfo;
CSTAEventCause_t cause;

} CSTAConnectionClearedEvent_t;
CSTADeliveredEvent structures
typedef ExtendedDeviceID_t CallingDeviceID_t;

typedef ExtendedDeviceID_t CalledDeviceID_t;

typedef ExtendedDeviceID_t RedirectionDeviceID_t;

typedef struct CSTADeliveredEvent_t {
ConnectionID_t connection;
SubjectDeviceID_t alertingDevice;
CallingDeviceID_t callingDevice;
CalledDeviceID_t calledDevice;
RedirectionDeviceID_t lastRedirectionDevice;
LocalConnectionState_t localConnectionInfo;
CSTAEventCause_t cause;

} CSTADeliveredEvent_t;

CSTADivertedEvent structures

typedef struct CSTADivertedEvent_t {
ConnectionID_t connection;
SubjectDeviceID_t divertingDevice;
CalledDeviceID_t newDestination;
LocalConnectionState_t localConnectionInfo;
CSTAEventCause_t cause;

} CSTADivertedEvent_t;

CSTAEstablishedEvent structures

typedef struct CSTAEstablishedEvent_t {
ConnectionID_t establishedConnection;
SubjectDeviceID_t answeringDevice;
CallingDeviceID_t callingDevice;
CalledDeviceID_t calledDevice;
RedirectionDeviceID_t lastRedirectionDevice;
LocalConnectionState_t localConnectionInfo;
CSTAEventCause_t cause;

} CSTAEstablishedEvent_t;
Issue 1 — December 2001

TSAPI.PDF R10.1 V111-14

CSTA Data Types
CSTAFailedEvent structures

typedef struct CSTAFailedEvent_t {
ConnectionID_t failedConnection;
SubjectDeviceID_t failingDevice;
CalledDeviceID_t calledDevice;
LocalConnectionState_t localConnectionInfo;
CSTAEventCause_t cause;

} CSTAFailedEvent_t;

CSTAHeldEvent structures

typedef struct CSTAHeldEvent_t {
ConnectionID_t heldConnection;
SubjectDeviceID_t holdingDevice;
LocalConnectionState_t localConnectionInfo;
CSTAEventCause_t cause;

} CSTAHeldEvent_t;

CSTANetworkReachedEvent structures

typedef struct CSTANetworkReachedEvent_t {
ConnectionID_t connection;
SubjectDeviceID_t trunkUsed;
CalledDeviceID_t calledDevice;
LocalConnectionState_t localConnectionInfo;
CSTAEventCause_t cause;

} CSTANetworkReachedEvent_t;

CSTAOrginatedEvent structures

typedef struct CSTAOriginatedEvent_t {
ConnectionID_t originatedConnection;
SubjectDeviceID_t callingDevice;
CalledDeviceID_t calledDevice;
LocalConnectionState_t localConnectionInfo;
CSTAEventCause_t cause;

} CSTAOriginatedEvent_t;

CSTAQueuedEvent structures

typedef struct CSTAQueuedEvent_t {
ConnectionID_t queuedConnection;
SubjectDeviceID_t queue;
CallingDeviceID_t callingDevice;
CalledDeviceID_t calledDevice;
RedirectionDeviceID_t lastRedirectionDevice;
int numberQueued;
LocalConnectionState_t localConnectionInfo;
CSTAEventCause_t cause;

} CSTAQueuedEvent_t;
Issue 1 — December 2001

11-15TSAPI.PDF R10.1 V1

CSTA Data Types
CSTARetrievedEvent structures

typedef struct CSTARetrievedEvent_t {
ConnectionID_t retrievedConnection;
SubjectDeviceID_t retrievingDevice;
LocalConnectionState_t localConnectionInfo;
CSTAEventCause_t cause;

} CSTARetrievedEvent_t;

CSTAServiceInitiatedEvent structures

typedef struct CSTAServiceInitiatedEvent_t {
ConnectionID_t initiatedConnection;
LocalConnectionState_t localConnectionInfo;
CSTAEventCause_t cause;

} CSTAServiceInitiatedEvent_t;

CSTATransferredEvent structures

typedef struct CSTATransferredEvent_t {
ConnectionID_t primaryOldCall;
ConnectionID_t secondaryOldCall;
SubjectDeviceID_t transferringDevice;
SubjectDeviceID_t transferredDevice;
ConnectionList transferredConnections;
LocalConnectionState_t localConnectionInfo;
CSTAEventCause_t cause;

} CSTATransferredEvent_t;

Feature Event Reports

CSTACallInformationEvent structures

typedef char AccountInfo_t[32];

typedef char AuthCode_t[32];

typedef struct CSTACallInformationEvent_t {
ConnectionID_t connection;
SubjectDeviceID_t device;
AccountInfo_t accountInfo;
AuthCode_t authorisationCode;

} CSTACallInformationEvent_t;

CSTADoNotDisturbEvent structures

typedef struct CSTADoNotDisturbEvent_t {
SubjectDeviceID_t device;
Boolean doNotDisturbOn;

} CSTADoNotDisturbEvent_t;
Issue 1 — December 2001

TSAPI.PDF R10.1 V111-16

CSTA Data Types
CSTAForwardingEvent structures

typedef struct CSTAForwardingEvent_t {
SubjectDeviceID_t device;
ForwardingInfo_t forwardingInformation;

} CSTAForwardingEvent_t;

typedef struct CSTAMessageWaitingEvent_t {
CalledDeviceID_t deviceForMessage;
SubjectDeviceID_t invokingDevice;
Boolean messageWaitingOn;

} CSTAMessageWaitingEvent_t;
Issue 1 — December 2001

11-17TSAPI.PDF R10.1 V1

CSTA Data Types
Agent Status Report Events

CSTALoggedOnEvent structures

typedef struct CSTALoggedOnEvent_t {
SubjectDeviceID_t agentDevice;
AgentID_t agentID;
AgentGroup_t agentGroup;
AgentPassword_t password;

} CSTALoggedOnEvent_t;

CSTALoggedOffEvent structures

typedef struct CSTALoggedOffEvent_t {
SubjectDeviceID_t agentDevice;
AgentID_t agentID;
AgentGroup_t agentGroup;

} CSTALoggedOffEvent_t;

CSTANotReadyEvent structures

typedef struct CSTANotReadyEvent_t {
SubjectDeviceID_t agentDevice;
AgentID_t agentID;

} CSTANotReadyEvent_t;

CSTAReadyEvent structures

typedef struct CSTAReadyEvent_t {
SubjectDeviceID_t agentDevice;
AgentID_t agentID;

} CSTAReadyEvent_t;

CSTAWorkNotReadyEvent structures

typedef struct CSTAWorkNotReadyEvent_t {
SubjectDeviceID_t agentDevice;
AgentID_t agentID;

} CSTAWorkNotReadyEvent_t;

CSTAWorkReadyEvent structures

typedef struct CSTAWorkReadyEvent_t {
SubjectDeviceID_t agentDevice;
AgentID_t agentID;

} CSTAWorkReadyEvent_t;
Issue 1 — December 2001

TSAPI.PDF R10.1 V111-18

CSTA Data Types
Snapshot Services

CSTASnapshotDeviceConfEvent structures

typedef struct CSTASnapshotDeviceData_t {
int count;
struct CSTASnapshotDeviceResponseInfo_t *info;

} CSTASnapshotDeviceData_t;

typedef struct CSTASnapshotDeviceConfEvent_t {
CSTASnapshotDeviceData_t snapshotData;

} CSTASnapshotDeviceConfEvent_t;

CSTASnapshotCallConfEvent structures

typedef struct CSTASnapshotCallData_t {
int count;
struct CSTASnapshotCallResponseInfo_t *info;

} CSTASnapshotCallData_t;

typedef struct CSTASnapshotCallConfEvent_t {
CSTASnapshotCallData_t snapshotData;

} CSTASnapshotCallConfEvent_t;
Issue 1 — December 2001

11-19TSAPI.PDF R10.1 V1

CSTA Data Types
CSTASnapshotDeviceConfEvent structures

typedef enum CSTASimpleCallState_t {
CALL_NULL = 0,
CALL_PENDING = 1,
CALL_ORIGINATED = 3,
CALL_DELIVERED = 35,
CALL_DELIVERED_HELD = 36,
CALL_RECEIVED = 50,
CALL_ESTABLISHED = 51,
CALL_ESTABLISHED_HELD = 52,
CALL_RECEIVED_ON_HOLD = 66,
CALL_ESTABLISHED_ON_HOLD = 67,
CALL_QUEUED = 83,
CALL_QUEUED_HELD = 84,
CALL_FAILED = 99,
CALL_FAILED_HELD = 100

} CSTASimpleCallState_t;

typedef struct CSTACallState_t {
int count;
LocalConnectionState_t *state;

} CSTACallState_t;

/* Used to take a CSTACallState_t which contains only two
* LocalConnectionState_t and match them to the set of
* CSTASimpleCallState_t above.
*/

#define SIMPLE_CALL_STATE(ccs)(ccs.stat[0] + (ccs.state[1] << 4))

typedef struct CSTASnapshotDeviceResponseInfo_t {
ConnectionID_t callIdentifier;
CSTACallState_t callState;

} CSTASnapshotDeviceResponseInfo_t;

typedef struct CSTASnapshotCallResponseInfo_t {
SubjectDeviceID_t deviceOnCall;
ConnectionID_t callIdentifier;
LocalConnectionState_t localConnectionState;

} CSTASnapshotResponseInfoEvent_t;
Issue 1 — December 2001

TSAPI.PDF R10.1 V111-20

CSTA Data Types
Computing Function Services

cstaRouteRegisterReq structures

typdef struct CSTARouteRegisterReq_t {
DeviceID_troutingDevice;
} CSTARouteRegisterReq_t;

cstaRouteRegisterReqConfEvent structures

typedef long RegisterReqID_t;

typedef struct {
RegisterReqID_tregisterReqID;
} CSTARouteRegisterReqConfEvent_t;

cstaRouteRegisterCancel structures

typdef struct CSTARouteRegisterCancel_t {
RegisterRegID_troutingRegID;
} CSTARouteRegisterCancel_t;

cstaRouteRegisterCancelConfEvent structures

typedef struct {
RegisterRegID_troutingRegID;
} CSTARouteRegisterCancelConfEvent_t;
Issue 1 — December 2001

11-21TSAPI.PDF R10.1 V1

CSTA Data Types
cstaRouteRequestEvent structures

typedef enum SelectValue_t {
SV_NORMAL = 0,
SV_LEAST_COST = 1,
SV_EMERGENCY = 2,
SV_ACD = 3,
SV_USER_DEFINED = 4

} SelectValue_t;

typedef struct SetUpValues_t {
int length;
unsigned char *value;

} SetUpValues_t;

typedef struct CSTARouteRequestEvent_t {
RegisterReqID_t registerReqID;
RoutingCrossRefID_t routingCrossRefID;
DeviceID_t currentRoute;
DeviceID_t callingDevice;
ConnectionID_t routedCall;
SelectValue_t routeSelAlgorithm;
Boolean priority;
SetUpValues_t setupInformation;

} CSTARouteRequestEvent_t;

cstaRouteSelect structures

typedef int RetryValue_t;
#define noListAvailable -1
#define noCountAvailable -2

typedef struct CSTARouteSelect_t {
RegisterReqID_tregisterReqID;
RoutingCrossRefID_t routingCrossRefID;
DeviceID_t routeSelected;
RetryValue_t remainRetry;
SetUpValues_t setupInformation;
Boolean routeUsedReq;

} CSTARouteSelect_t;
Issue 1 — December 2001

TSAPI.PDF R10.1 V111-22

CSTA Data Types
CSTAReRouteRequestEvent structures

typedef struct CSTAReRouteEvent_t {
RegisterReqID_tregisterReqID;
RoutingCrossRefID_t routingCrossRefID;

} CSTAReRouteEvent_t;

cstaRouteUsedEvent structures

typedef struct CSTARouteUsedEvent_t {
RegisterReqID_tregisterReqID;
RoutingCrossRefID_t routingCrossRefID;
DeviceID_t routeUsed;
DeviceID_t callingDevice;
Boolean domain;

} CSTARouteUsedEvent_t;

cstaRouteEndEvent structures

typedef struct CSTARouteEndEvent_t {
RegisterReqID_tregisterReqID;
RoutingCrossRefID_t routingCrossRefID;
CSTAUniversalFailure_t errorValue;

} CSTARouteEndEvent_t;

cstaRouteEnd structures

typedef struct CSTARouteEnd_t {
RegisterReqID_tregisterReqID;
RoutingCrossRefID_t routingCrossRefID;
CSTAUniversalFailure_t errorValue;

} CSTARouteEnd_t;
Issue 1 — December 2001

11-23TSAPI.PDF R10.1 V1

CSTA Data Types
Escape Services

cstaEscapeService structures

typedef struct CSTAEscapeService_t {
Nulltype null;

} CSTAEscapeService_t;

CSTAEscapeServiceConfEvent structures

typedef struct CSTAEscapeServiceConfEvent_t {
Nulltype null;

} CSTAEscapeServiceConfEvent_t;
PrivateEvent structures
typedef struct CSTAPrivateEvent_t {

int length;
unsigned char *data;

} CSTAPrivateEvent_t;

PrivateStatusEvent structures

typedef struct CSTAPrivateStatusEvent_t {
Nulltypenull;
}

cstaPrivateStatusEvent structures

typedef struct CSTAEscapeServiceEventConf_t
{
UniversalFailure_terror;
};

CSTAEscapeServiceEvent structures

typedef struct CSTAEscapeServiceEvent_t {
Nulltype null;
};

cstaEscapeServiceConf structures

typedef struct cstaEscapeServiceConf_t {
CSTAUniversalFailure_terror;
};

cstaSendPrivateEvent structures

typedef struct cstaSendPrivateEvent_t {
Nulltype null;
};
Issue 1 — December 2001

TSAPI.PDF R10.1 V111-24

CSTA Data Types
Maintenance Services

CSTABackInServiceEvent structures

typedef struct CSTABackInServiceEvent_t {
DeviceID_t device;
CSTAEventCause_t cause;

} CSTABackInServiceEvent_t;

CSTAOutOfServiceEvent structures

typedef struct CSTAOutOfServiceEvent_t {
DeviceID_t device;
CSTAEventCause_t cause;

} CSTAOutOfServiceEvent_t;

cstaSysStatReq structures

typedef struct CSTASysStatReq_t (
Nulltype null;
) CSTASysStatReq_t

CSTASysStatReqConfEvent structures

typedef enum SystemStatus_t {
SS_INITIALIZING = 0,
SS_ENABLED = 1,
SS_NORMAL = 2,
SS_MESSAGES_LOST = 3,
SS_DISABLED = 4,
SS_OVERLOAD_IMMINENT = 5,
SS_OVERLOAD_REACHED = 6,
SS_OVERLOAD_RELIEVED = 7

} SystemStatus_t;

typedef struct CSTASysStatReqConfEvent_t (
SystemStatus_tsystemStatus;
) CSTASysStatReqConfEvent_t
Issue 1 — December 2001

11-25TSAPI.PDF R10.1 V1

CSTA Data Types
cstaSysStatStart structures

typedef unsigned char SystemStatusFilter_t;
#define SS_Initializing 0x800
#define SS_Enabled 0x400
#define SS_Normal 0x200
#define SS_MessageLost0x100
#define SS_Disbaled 0x080
#define SS_OverloadImminent0x040
#define SS_OverloadReached0x020
#define SS_OverloadRelieved0x010

typedef struct CSTASysStatStart_t (
SystemStatusFilter_tstatusFilter;
} CSTASysStatStart_t;

CSTASysStatStartConfEvent structures

typedef struct CSTASysStatStartConfEvent_t (
SystemStatusFilter_tsystemFilter;
) CSTASysStatStartConfEvent_t

cstaSysStatStop structures

typedef struct CSTASysStatStop_t (
Nulltype null;
} CSTASysStatStop_t;

CSTASysStatStopConfEvent structures

typedef struct CSTASysStatStopConfEvent_t (
Nulltype null;
) CSTASysStatStopConfEvent_t

cstaChangeSysStatFilter structures

typedef struct CSTAChangeSysStatFilter_t (
SystemStatusFilter_tstatusFilter;
} CSTAChangeSysStatFilter_t;

CSTAChangeSysStatFilterConfEvent structures

typedef struct CSTAChangeSysStatFilerConfEvent_t
{
SystemStatusFilter_tstatusFilterSelected;
SystemStatusFilter_tstatusFilterActive;
} CSTAChangeSysStatFilterConfEvent_t;
CSTASysStatEvent structures
typedef struct CSTASysStatEvent_t {
{
SystemStatus_tsystemStatus;
};
Issue 1 — December 2001

TSAPI.PDF R10.1 V111-26

CSTA Data Types
CSTASysStatReqEvent structures

typedef struct CSTASysStatReqEvent_t {
Nulltype null;
} CSTASysStatReqEvent_t;

cstaSysStatReqConf structures

typedef struct CSTASysStatReqConf_t {
SystemStatus_tsystemStatus;
} CSTASysStatReqConf_t;

cstaSysStatEventSend structures

typedef struct CSTASysStatEventSend_t {
SystemStatus_tsystemStatus;
} CSTASysStatEventSend_t;
Issue 1 — December 2001

11-27TSAPI.PDF R10.1 V1

CSTA Data Types
CSTA Control Services

cstaGetAPICaps structures

typedef structCSTAGetAPICaps_t {
Nulltype null;

) CSTAGetAPICaps_t;

CSTAGetAPICapsConfEvent structures

typedef struct CSTAGetAPICapsConfEvent_t {
int alternateCall;
int answerCall;
int callCompletion;
int clearCall;
int clearConnection;
int conferenceCall;
int consultationCall;
int deflectCall;
int pickupCall;
int groupPickupCall;
int holdCall;
int makeCall;
int makePredictiveCall;
int queryMwi;
int queryDnd;
int queryFwd;
int queryAgentState;
int queryLastNumber;
int queryDeviceInfo;
int reconnectCall;
int retrieveCall;
int setMwi;
int setDnd;
int setFwd;
int setAgentState;
int transferCall;
int eventReport;
int callClearedEvent;
int conferencedEvent;
int connectionClearedEvent;
int deliveredEvent;
int divertedEvent;
int establishedEvent;
int failedEvent;
int heldEvent;
int networkReachedEvent;
int originatedEvent;
int queuedEvent;
int retrievedEvent;
int serviceInitiatedEvent;
int transferredEvent;
int callInformationEvent;
int doNotDisturbEvent;
int forwardingEvent;
int messageWaitingEvent;
Issue 1 — December 2001

TSAPI.PDF R10.1 V111-28

CSTA Data Types
int loggedOnEvent;
int loggedOffEvent;
int notReadyEvent;
int readyEvent;
int workNotReadyEvent;
int workReadyEvent;
int backInServiceEvent;
int outOfServiceEvent;
int privateEvent;
int routeRequestEvent;
int reRoute;
int routeSelect;
int routeUsedEvent;
int routeEndEvent;
int monitorDevice;
int monitorCall;
int monitorCallsViaDevice;
int changeMonitorFilter;
int monitorStop;
int monitorEnded;
int snapshotDeviceReq;
int snapshotCallReq;
int escapeService;
int privateStatusEvent;
int escapeServiceEvent;
int escapeServiceConf;
int sendPrivateEvent;
int sysStatReq;
int sysStatStart;
int sysStatStop;
int changeSysStatFilter;
int sysStatReqEvent;
int sysStatReqConf;
int sysStatEvent;

} CSTAGetAPICapsConfEvent_t;

cstaGetDeviceList structures

typedef enum CSTALevel_t {
CSTA_LEVEL1 = 1,
CSTA_LEVEL2 = 2,
CSTA_LEVEL3 = 3,
CSTA_LEVEL4 = 4,
CSTA_LEVEL5 = 5,
CSTA_LEVEL6 = 6

} CSTALevel_t;
Issue 1 — December 2001

11-29TSAPI.PDF R10.1 V1

CSTA Data Types
CSTAGetDeviceListConfEvent structures

typedef struct CSTAGetDeviceListConfEvent_t
{
Level_t acsLevelReq;
int totalDevices;
DeviceID_t*deviceIDs;
} CSTAGetDeviceListConfEvent_t;

CSTA Event Structures

CSTA event types
#defineCSTAREQUEST 3
#defineCSTAUNSOLICITED4
#defineCSTACONFIRMATION5
#define CSTAEVENTREPORT6

CSTA Request Event structure

typedef struct
{
InvokeID_tinvokeID;
union
{

CSTARouteRequestEvent_trouteRequest;
CSTAReRouteRequest_treRouteRequest;
CSTAEscapeSvcReqEvent_tescapeSvcReqeust;
CSTASysStatReqEvent_tsysStatRequest;

} u;

} CSTARequestEvent;

CSTA Event Report structure

typedef struct
{
union
{

CSTARouteRegisterAbortEvent_t registerAbort;
CSTARouteUsedEvent_trouteUsed;
CSTARouteEndEvent_trouteEnd;
CSTAPrivateEvent_tprivateEvent;
CSTASysStatEvent_tsysStat;
CSTASysStatEndedEvent_tsysStatEnded;

}u;
} CSTAEventReport;
Issue 1 — December 2001

TSAPI.PDF R10.1 V111-30

CSTA Data Types
CSTA Unsolicited Event structure

typedef struct
{
CSTAMonitorCrossRefID_tmonitorCrossRefId;
union
{

CSTACallClearedEvent_tcallCleared;
CSTAConferencedEvent_tconferenced;
CSTAConnectionClearedEvent_tconnectionCleared;
CSTADeliveredEvent_tdelivered;
CSTADivertedEvent_tdiverted;
CSTAEstablishedEvent_testablished;
CSTAFailedEvent_tfailed;
CSTAHeldEvent_theld;
CSTANetworkReachedEvent_tnetworkReached;
CSTAOriginatedEvent_toriginated;
CSTAQueuedEvent_tqueued;
CSTARetrievedEvent_tretrieved;
CSTAServiceInitiatedEvent_tserviceInitiated;
CSTATransferredEvent_ttransferred;
CSTACallInformationEvent_tcallInformation;
CSTADoNotDisturbEvent_tdoNotDisturb;
CSTAForwardingEvent_tforwarding;
CSTAMessageWaitingEvent_tmessageWaiting;
CSTALoggedOnEvent_tloggedOn;
CSTALoggedOffEvent_tloggedOff;
CSTANotReadyEvent_tnotReady;
CSTAReadyEvent_tready;
CSTAWorkNotReadyEvent_tworkNotReady;
CSTAWorkReadyEvent_tworkReady;
CSTABackInServiceEvent_tbackInService;
CSTAOutOfServiceEvent_toutOfService;
CSTAPrivateStatusEvent_tprivateStatus;
CSTAMonitorEndedEvent_t monitorEnded;

} u;

} CSTAUnsolicitedEvent;
Issue 1 — December 2001

11-31TSAPI.PDF R10.1 V1

CSTA Data Types
CSTA Confirmation Event structure

typedef struct {
InvokeID_tinvokeID;
union {

CSTAAlternateCallConfEvent_talternateCall;
CSTAAnswerCallConfEvent_tanswerCall;
CSTACallCompletionConfEvent_tcallCompletion;
CSTAClearCallConfEvent_tclearCall;
CSTAClearConnectionConfEvent_t clearConnection;
CSTAConferenceCallConfEvent_tconferenceCall;
CSTAConsultationCallConfEvent_tconsultationCall;
CSTADeflectCallConfEvent_tdeflectCall;
CSTAPickupCallConfEvent_tpickupCall;
CSTAGroupPickupCallConfEvent_tgroupPickupCall;
CSTAHoldCallConfEvent_tholdCall;
CSTAMakeCallConfEvent_tmakeCall;
CSTAMakePredictiveCallConfEvent_t makePredictiveCall;
CSTAQueryMwiConfEvent_tqueryMwi;
CSTAQueryDndConfEvent_tqueryDnd;
CSTAQueryFwdConfEvent_tqueryFwd;
CSTAQueryAgentStateConfEvent_tqueryAgentState;
CSTAQueryLastNumberConfEvent_tqueryLastNumber;
CSTAQueryDeviceInfoConfEvent_tqueryDeviceInfo;
CSTAReconnectCallConfEvent_treconnectCall;
CSTARetrieveCallConfEvent_tretrieveCall;
CSTASetMwiConfEvent_t setMwi;
CSTASetDndConfEvent_t setDnd;
CSTASetFwdConfEvent_t setFwd;
CSTASetAgentStateConfEvent_tsetAgentState;
CSTATransferCallConfEvent_ttransferCall;
CSTAUniversalFailureConfEvent_tuniversalFailure;
CSTAMonitorConfEvent_t monitorStart;
CSTAChangeMonitorFilterConfEvent_tchangeMonitorFilter;
CSTAMonitorStopConfEvent_tmonitorStop;
CSTASnapshotDeviceConfEvent_tsnapshotDevice;
CSTASnapshotCallConfEvent_tsnapshotCall;
CSTARouteRegisterReqConfEvent_trouteRegister;
CSTARouteRegisterCancelConfEvent_trouteCancel;
CSTAEscapeSvcConfEvent_tescapeService;
CSTASysStatReqConfEvent_tsysStatReq;
CSTASysStatStartConfEvent_tsysStatStart;
CSTASysStatStopConfEvent_tsysStatStop;
CSTAChangeSysStatFilterConfEvent_tchangeSysStatFilter;

} u;
} CSTAConfirmationEvent;
Issue 1 — December 2001

TSAPI.PDF R10.1 V111-32

CSTA Data Types
CSTA Event_t structure

typedef struct
{
ACSEventHeader_teventHeader;
union
{

ACSUnsolicitedEventacsUnsolicited;
ACSConfirmationEventacsConfirmation;
CSTARequestEventcstaRequest;
CSTAUnsolicitedEventcstaUnsolicited;
CSTAConfirmationEventcstaConfirmation;
CSTAEventReportcstaEventReport;

} event;
char heap[CSTA_MAX_HEAP];
} CSTAEvent_t;
Issue 1 — December 2001

11-33TSAPI.PDF R10.1 V1

CSTA Data Types
Issue 1 — December 2001

TSAPI.PDF R10.1 V111-34

Issue 1 — November 2001

TSAPI.PDF R10.1 V1
A

References
[1]
ECMA - Standard ECMA-179, Services for Computer-Supported
Telecommunications Applications (CSTA) - June 1992

[2] ECMA - Standard ECMA-180, Protocol for Computer-Supported
Telecommunications Applications (CSTA) - June 1992
A-1

References
Issue 1 — November 2001

TSAPI.PDF R10.1 V1A-2

Index
Numerics

1, 8-1

A

ACD, 3-1, 3-2, 3-3
Agent, 3-1

ACS, 4-1
Unsolicited Events, 4-43

ACS Data Types, 4-53
Common, 4-54
Event, 4-56

ACS stream
Aborting, 4-2, 4-3
Access, 4-2
Checking establishment of, 4-2
Closing, 4-2, 4-3
CSTA services available on, 4-1
Freeing associated resources, 4-3, 4-4
Multiple, 4-2
Opening, 4-1, 4-2
Per advertised service, 4-2
Receiving events on, 4-3
Releasing, 4-3
Sending requests and responses over, 4-4

acsAbortStream(), 4-22
acsAbortStream(), 4-3, 4-4
acsCloseStream (), 4-17
acsCloseStream(), 4-3, 4-4
ACSCloseStreamConfEvent, 4-3, 4-19
acsEnumServerNames(), 4-38
acsEventNotify()

Windows 3.1, 4-32, 4-35
acsFlushEventQueue(), 4-37
acsGetEventBlock(), 4-5, 4-23
acsGetEventPoll(), 4-5, 4-25
acsGetFile() (UnixWare), 4-27
acsHandle, 4-2, 4-3, 4-4, 4-5

Freeing, 4-3
acsOpenStream(), 4-2, 4-9, 4-41, 4-42, 4-43
ACSOpenStreamConfEvent, 4-2, 4-4, 4-15
acsQueryAuthInfo(), 4-39, 4-40, 4-41, 4-42
acsSetESR(), 4-6

Windows, 4-28, 4-30
ACSUniversalFailureConfEvent, 4-20
ACSUniversalFailureEvent, 4-43

Driver errors, 4-52
Possible values, 4-45
Security database errors, 4-50
Tserver operation errors, 4-47

Administration, 1-2, 2-3, 4-2
advertised service, 8-2
Advertised services

Getting list of available, 4-1
Agent Feature Event Reports

See Feature Event (Agent), 6-63
Agent feature event reports, 6-63
API Control Services

See ACS, 4-1
Application Call Routing, 8-1, 8-2
Application domain, 3-1
Application Programming Interface Control Services

See ACS, 4-1
Applications, 1-1, 1-2, 2-2, 2-4, 3-1, 3-3, 3-4, 3-5, 3-6, 3-7,

3-8, 3-10, 3-11, 3-12, 4-1
Architecture, 1-1, 1-2, 2-1, 2-2, 3-4
Attendant, 3-7
Automatic Call Distribution

See ACD, 3-1

B

Basic Call Control
Services, 5-1

Basic Call Control Services, 5-1

C

Call, 3-2, 3-3, 3-6, 3-10, 3-11
Active, 3-1
Alerting, 3-1
Basic, 3-1
Complex, 3-2
Held, 3-3
Identifier, 3-2, 3-10, 3-11, 3-15

Management, 3-15
Uniqueness, 3-10

State, 3-10, 3-13
Common, 3-10
Compound, 3-13, 3-14
Simple, 3-14

Call control service, 1-1
Call monitoring service, 1-1
Call origination, 5-47
Call routing service

See Routing, 1-2
Call Snapshot Services, 7-3
Call status event reports

See Event reports, 3-12
Call-type monitor, 6-2
Cause code definitions, 6-76
Client, 3-4, 3-5

Library, 2-4
Supported, 1-2

Client/server model, 3-4
Communications relationship

See Call, 3-2
Issue 1 — December 2001

TSAPI.PDF R10.1 V1 IN-1

Index
Computer Telephony Integration
See CTI, 1-1

Computer-Supported Telecommunications Applications
See CSTA, 1-1

Computing
Domain, 3-2, 3-3, 3-6
Function, 3-1, 3-2, 3-3, 3-4, 3-6, 3-8
Sub-domain, 3-1, 3-2, 3-3

Computing Function Services, 8-1
Connection, 3-2, 3-3, 3-6, 3-11, 3-12

Attributes, 3-11
Identifier, 3-2, 3-10, 3-11, 3-15

In event report, 3-15
Invalid, 3-15
Reuse, 3-15
Uniqueness, 3-11, 3-15
Update, 3-15

State, 3-2, 3-3, 3-10, 3-11, 3-12, 3-13, 3-14
Alerting, 3-12
Connected, 3-12
Failed, 3-12
Held, 3-12
Initiated, 3-12
Local, 3-14
Null, 3-12
Queued, 3-12

CSTA, 1-1, 2-1, 3-1, 3-3, 3-4, 3-12
Confirmation Events, 4-57
Control Services, 4-1, 4-57
Event Data Types, 4-68
Services, 4-2

Available on ACS Stream, 5-2
Available on ACS stream, 4-1

CSTA Universal Failure
Conference Member Limit Exceeded., 5-9
CSTA Driver Interface Errors, 5-11
Duplicate Invocation, 5-6
External Trunk Limit Exceeded, 5-9
Generic Operation, 5-6
Generic Operation Rejection, 5-6
Generic Performance Management Error, 5-9
Generic State Incompatibility, 5-7
Generic Subscribed Resource Availability Error, 5-9
Generic System Resource Availability Error, 5-8
Incorrect Object State, 5-7
Invalid Allocation State, 5-7
Invalid Called Device, 5-6
Invalid Calling Device, 5-6
Invalid Cross Ref ID, 5-7
Invalid CSTA Call Identifier, 5-6
Invalid CSTA Connection Identifier, 5-7
Invalid CSTA Connection Identifier For Active Call, 5-7
Invalid CSTA Device Identifier, 5-7
Invalid Destination, 5-7
Invalid Feature, 5-7
Invalid Forwarding Destination, 5-6
Invalid Object Type, 5-7

Network Busy, 5-8
Network Out Of Service, 5-8
No Active Call, 5-7
No Call To Answer, 5-8
No Call To Clear, 5-8
No Call To Complete, 5-8
No Connection To Clear, 5-8
No Held Call, 5-8
Object Monitor Limit Exceeded, 5-9
Object not Known, 5-6
Operation errors, 5-6
Overall Monitor Limit Exceeded., 5-8
PAC Violated, 5-10
Performance Limit Exceeded, 5-9
Performance management errors, 5-9
Private Data errors, 5-12
Privilege Violation on Called Device, 5-6
Privilege Violation on Calling Device, 5-6
Privilege Violation on Specified Device, 5-6
Request Incompatible with Object, 5-6
Resource Busy, 5-8
Resource Out Of Service, 5-8
Seal Violated, 5-11
Security errors, 5-9
Security Violation, 5-7
Sequence Number Violated, 5-9
Service Busy, 5-8
State incompatibility errors, 5-7
Subscribed resource availability errors, 5-9
System resource availability errors, 5-8
Time Stamp Error, 5-9
TSAPI errors, 5-12
Unrecognized Operation, 5-6
Unspecified errors, 5-4
Unspecified Security Error, 5-9
Value Out Of Range, 5-6

cstaAlternateCall(), 5-12
CSTAAlternateCallConfEvent, 5-14
cstaAnswerCall(), 5-16
CSTAAnswerCallConfEvent, 5-17
CSTABackInServiceEvent, 9-17
cstaCallClearedEvent, 6-21
cstaCallCompletion(), 5-19
CSTACallCompletionConfEvent, 5-20
CSTACallInfoEvent, 6-55
cstaChangeMonitorFilter(), 6-15
CSTAChangeMonitorFilterConfEvent, 6-18
cstaChangeSysStatFilter(), 9-33
CSTAChangeSysStatFilterConfEvent, 9-35
cstaClearCall(), 5-22
CSTAClearCallConfEvent, 5-23
cstaClearConnection(), 5-26
CSTAClearConnectionConfEvent, 5-28
cstaConferenceCall(), 5-29
CSTAConferenceCallConfEvent, 5-31
cstaConferencedEvent, 6-24
CSTAConnectionClearedEvent, 6-27
cstaConsultationCall(), 5-33
CSTAConsultationCallConfEvent, 5-35
Issue 1 — December 2001

IN-2 TSAPI.PDF R10.1 V1

Index
cstaDeflectCall(), 5-37
CSTADeflectCallConfEvent, 5-38
CSTADeliveredEvent, 6-29
CSTADivertedEvent, 6-32
CSTADoNotDisturbEvent, 6-57
cstaEscapeService(), 9-5
cstaEscapeServiceConf(), 9-12
CSTAEscapeServiceConfEvent, 9-7
CSTAEscapeServiceReq, 9-11
CSTAEstablishedEvent, 6-34
CSTAEventCause_t, 6-75
CSTAFailedEvent, 6-36
CSTAForwardingEvent, 6-58
cstaGetAPICaps, 5-2
cstaGetAPICaps(), 4-57
CSTAGetAPICapsConfEvent, 4-59
cstaGetDeviceList(), 4-61
CSTAGetDeviceListConfEvent, 4-63
cstaGroupPickupCall(), 5-40
CSTAGroupPickupCallConfEvent, 5-42
CSTAHeldEvent, 6-38
cstaHoldCall(), 5-43
CSTAHoldCallConfEvent, 5-45
CSTALoggedOffEvent, 6-65
CSTALoggedOnEvent, 6-63
cstaMakeCall(), 5-47
CSTAMakeCallConfEvent, 5-50
cstaMakePredictiveCall(), 5-51
CSTAMakePredictiveCallConfEvent, 5-54
CSTAMessageWaitingEvent, 6-61
cstaMonitorCall(), 6-6
cstaMonitorCallsViaDevice(), 6-8
CSTAMonitorConfEvent, 6-10
cstaMonitorDevice(, 6-3
CSTAMonitorEndedEvent, 6-19
CSTAMonitorFilter_t, 6-74
cstaMonitorStop(), 6-12
CSTAMonitorStopConfEvent, 6-14
CSTANetworkReachedEvent, 6-41
CSTANotReadyEvent, 6-66
CSTAOriginatedEvent, 6-43
CSTAOutOfServiceEvent, 9-18
cstaPickupCall(), 5-55
CSTAPickupCallConfEvent, 5-57
CSTAPrivateEvent, 9-8
CSTAPrivateStatusEvent, 9-9
cstaQueryAgentState(), 5-93
CSTAQueryAgentStateConfEvent, 5-95
cstaQueryCallMonitor(), 4-66
CSTAQueryCallMonitorConfEvent, 4-67
cstaQueryDeviceInfo(), 5-100
CSTAQueryDeviceInfoConfEvent, 5-102
CSTAQueryDndConfEvent, 5-87
cstaQueryDoNotDisturb(), 5-86
cstaQueryFwd (), 5-89
CSTAQueryFwdConfEvent, 5-90
cstaQueryLastNumber(), 5-97
CSTAQueryLastNumberConfEvent, 5-98

cstaQueryMsgWaitingInd(), 5-83
CSTAQueryMwiConfEvent, 5-85
CSTAQueuedEvent, 6-45
CSTAReadyEvent, 6-68
cstaReconnectCall(), 5-58
CSTAReconnectCallConfEvent, 5-61
CSTAReRouteRequestEvent, 8-18
cstaRetrieveCall(), 5-63
CSTARetrieveCallConfEvent, 5-64
CSTARetrievedEvent, 6-48
cstaRouteEnd(), 8-29
CSTARouteEndEvent, 8-27
cstaRouteEndInv(), 8-32
CSTARouteRegisterAbortEvent, 8-11
cstaRouteRegisterCancel(), 8-8
CSTARouteRegisterCancelConfEvent, 8-10
cstaRouteRegisterReq(), 8-4
CSTARouteRegisterReqConfEvent, 8-6
CSTARouteRequestEvent, 8-15
cstaRouteSelect(), 8-20
cstaRouteSelectInv(), 8-23
CSTARouteUsedEvent, 8-25
cstaSendPrivateEvent(), 9-14
CSTAServiceInitiatedEvent, 6-50
cstaSetAgentState(), 5-80
CSTASetAgentStateConfEvent, 5-82
CSTASetDndConfEvent, 5-75
cstaSetDoNotDisturb (), 5-73
cstaSetForwarding(), 5-76
CSTASetFwdConfEvent, 5-78
cstaSetMsgWaitingInd(), 5-70
CSTASetMwiConfEvent, 5-72
CSTASnapshotCallConfEvent, 7-5
cstaSnapshotCallReq(), 7-4
CSTASnapshotDeviceConfEvent, 7-9
cstaSnapshotDeviceReq(), 7-7
cstaSysStatEndedEvent, 9-39
CSTASysStatEvent, 9-37
cstaSysStatEventSend(), 9-44
cstaSysStatReq(), 9-20
cstaSysStatReqConf(), 9-43
CSTASysStatReqConfEvent, 9-22
CSTASysStatReqEvent, 9-40
cstaSysStatStart(), 9-26
CSTASysStatStartConfEvent, 9-28
cstaSysStatStop(), 9-30
CSTASysStatStopConfEvent, 9-32
cstaTransferCall(), 5-66
CSTATransferCallConfEvent, 5-68
CSTATransferredEvent, 6-52
CSTAUniversalFailureConfEvent, 5-2
CSTAWorkNotReadyEvent, 6-69
CSTAWorkReadyEvent, 6-71
CTI, 1-1

Link, 2-3, 2-4, 3-2, 3-3, 3-5, 4-2
Link hardware, 2-3, 2-4

CTI link, 8-2
Issue 1 — December 2001

TSAPI.PDF R10.1 V1 IN-3

Index
D

Data Types
ACS, 4-53

Default routing server
See Routing (Default Routing Server), 8-14

default routing server, 8-2, 8-3, 8-5
Device, 3-2, 3-3, 3-7, 3-10, 3-11, 3-12, 3-13

Attribute, 3-7
Class, 3-8

Data, 3-8
Image, 3-8
Other, 3-8
Voice, 3-8

Identifier, 3-2, 3-8, 3-10, 3-11, 3-15
Dynamic, 3-8, 3-10, 3-15
Invalid, 3-15
Management, 3-15
Reuse, 3-15
Static, 3-8
Static Short Form, 3-8
Uniqueness, 3-9, 3-15
Update, 3-15

Monitoring service, 1-1
Query

For controllable devices, 4-1
State, 3-10

State change, 3-2
Type, 3-7

ACD, 3-7
ACD group, 3-7
Button, 3-7
Button group, 3-7
Line, 3-7
Line group, 3-7
Operator, 3-7
Operator group, 3-7
Station, 3-7
Station group, 3-8
Trunk, 3-8
Trunk group, 3-8

Device Snapshot Service, 7-7
Device-type monitor, 6-2
Directory number, 3-2
Distribution, 3-4
Domain, 3-2, 3-6
Driver ACS Handle Rejection, 4-53
Driver ACSHandle Termination, 4-53
Driver errors, 4-52

ACS Handle Rejection, 4-53
ACSHandle Termination, 4-53
Duplicate ACSHandle, 4-52
Generic Rejection, 4-53
Invalid ACS Request, 4-52

Invalid Class Rejection, 4-53
Link Unavailable, 4-53
OAM In Use, 4-53
Resource Limitation, 4-53

E

ECMA, 1-1
Address, 2-1

Error
Driver

See Driver Errors, 4-52
Tserver

See TServer Errors, 4-49
Tserver Bad Device Record, 4-52
Tserver Bad Password Or Login, 4-50
Tserver Bad SDB Level, 4-50
Tserver Bad Server ID, 4-50
Tserver Bad Stream Type, 4-50
Tserver Device Not On List, 4-52
Tserver Device Not Supported, 4-52
Tserver Exception List, 4-52
Tserver Insufficient Permission, 4-52
Tserver No Away Permission, 4-52
Tserver No Away Worktop, 4-52
Tserver No Device Record, 4-51
Tserver No Home Permission, 4-52
Tserver No SDB, 4-50
Tserver No SDB Check Needed, 4-50
Tserver No User Record, 4-50
Tserver SDB Check Needed, 4-50
Tserver Users Restricted Home, 4-52

Escape Service
Application as Client, 9-5
Driver/Switch as the Client, 9-11

European Computer Manufacturers Association
See ECMA, 1-1

Event
Cause Relationships, 6-78
Data Types (Unsolicited), 6-74
Service Routine (ESR), 4-6

Also see acsSetESR, 4-1
Initializing, 4-1

Unsolicited, 5-70
Event report, 3-3, 3-5, 3-12
Events, 3-2, 3-3, 4-4, 6-21

Asynchronous, 6-1
Blocking for, 4-1, 4-5
Chronological order, 4-5
Confirmation, 5-1
From all streams, 4-5
Polling for, 4-1, 4-5
Preventing queue overflow, 4-6
Unsolicited, 5-2, 6-1, 6-3
Issue 1 — December 2001

IN-4 TSAPI.PDF R10.1 V1

Index
F

Feature
Event

Agent, 6-63
Unsolicited, 6-55

Feature event, 6-55
Feature state, 6-55

G

Generic State Incompatibility, 5-8

H

Handle
Register Request ID, 8-14
Routing Cross-Reference ID, 8-14

Hold call request, 5-45

I

Identifier
See TSAPI Programming Handle, 3-3

IinvokeID
Correlating responses, 5-1

Integration, 1-1, 1-2
Interconnection Service Boundary, 3-3
InvokeID

Application generated, 4-4, 5-1
Correlating responses, 4-4
In confirmation event, 4-4
In service request, 4-4
Library generated, 4-4, 5-1
Type, 4-4

ISDN, 3-4, 3-12

L

Logical
Association, 1-1
Device, 3-7
Link, 4-2

M

Maintenance Services, 9-3, 9-16

N

NetWare NOS, 2-1

O

Object
See TSAPI programming object, 3-2

Outstanding Requests Limit Exceeded, 5-9

P

Party, 3-3
PBX driver, 8-2
PBX Drivers, 4-2
Permissions

See Administration, 1-2
Programming handle

See TSAPI programming handle, 3-2

Q

Query
Call/Call Monitoring, 4-1

Query service, 1-1

R

Register Request ID, 8-14
Route

Invalid, 8-3
Request, 8-3
Re-route, 8-3, 8-14
successful route, 8-3
Used, 8-14

routeRegisterReqID
Duration, 8-14
Uniqueness, 8-14

Routing
Actual destination, 8-25
Cancel, 8-8, 8-11
Issue 1 — December 2001

TSAPI.PDF R10.1 V1 IN-5

Index
Cross-reference identifier, 8-2
Default routing server, 8-14
Device, 8-2, 8-14
Events, 8-14
Functions, 8-14
Switch default route, 8-3
Terminating, 8-3

Routing Cross-Reference ID, 8-14
Routing device, 8-2
routing device, 8-5
Routing Procedure, 8-2
Routing Registration, 8-2
Routing Registration Functions and Events, 8-4
Routing service, 1-2
routingCrossRefID

Duration, 8-14
Uniqueness, 8-14

S

Security
See Administration, 1-2

Server, 3-4, 3-5
Library, 2-3
Supported, 1-2, 2-1

Service, 3-3, 3-5
Boundary, 3-3
Description, 3-5

Services
Library, 2-4

State
See Call State, 3-3
See Connection State, 3-3
See Device State, 3-3

Status Reporting
Confirmation Events, 6-1
Functions, 6-1

Switch
Driver, 2-3, 2-4

Interface, 2-3, 2-4
Independent, 1-1, 2-3, 2-4, 3-4, 3-11
Specific, 1-1, 2-3, 2-4, 3-5, 3-11, 4-2, 8-14, 8-19, 8-22,

8-24
Switching

Domain, 3-2, 3-3, 3-6
Function, 3-1, 3-2, 3-3, 3-4, 3-5, 3-6, 3-7, 3-8, 3-10, 3-15
Sub-domain, 3-1, 3-3, 3-5, 3-8, 3-10, 3-11, 3-12, 3-15

Model, 3-6
Switching Function Services

Basic Call Control Services, 5-1
SwitchingFunctionServices

TelephonySupplementaryServices, 5-1
System status

Application as the client, 9-20
Cause codes, 9-3
Driver/switch as the client, 9-40

T

Telephony Supplementary Services, 5-1, 5-70
Trunk group, 3-2
TSAPI

Call States
See Call State, 3-13

Programming handle
See Call Identifier, 3-2
See Connection Identifier, 3-2
See Device Identifier, 3-2

Programming object, 3-4, 3-5, 3-6
See Call, 3-2
See Connection, 3-2
See Device, 3-2

Tserver Errors
Bad Connection, 4-48
Bad Device Record, 4-52
Bad Driver ID, 4-47
Bad Driver Protocol, 4-49
Bad Password Encryption, 4-49
Bad Password Or Login, 4-50
Bad PDU, 4-48
Bad Protocol, 4-49
Bad Protocol Format, 4-49
Bad SDB Level, 4-50
Bad Server ID, 4-50
Bad Stream Type, 4-50
Bad Transport Type, 4-49
Dead Driver, 4-48
Decode Failed, 4-48
Device Not On List, 4-52
Device Not Supported, 4-52
ECB Max Exceeded, 4-48
ECB Overdue, 4-49
Encode Failed, 4-48
Exception List, 4-52
Free Buffer Failed, 4-48
Insufficient Permission, 4-52
Invalid Message, 4-49
Message High Water Mark, 4-48
No Away Permission, 4-52
No Away Worktop, 4-52
No Device Record, 4-51
No ECBS, 4-49
No Home Permission, 4-52
No Memory, 4-48
No Resource Tag, 4-49
No SDB, 4-50
No SDB Check Needed, 4-50
No Thread, 4-47
No User Record, 4-50
No Version, 4-48
Old Tslib, 4-49
PDU Version Mismatch, 4-49
Receive From Driver, 4-48
Issue 1 — December 2001

IN-6 TSAPI.PDF R10.1 V1

Index
Registration Failed, 4-48
SDB Check Needed, 4-50
Send To Driver, 4-48
Stream Failed, 4-47
Trace, 4-48
Users Restricted Home, 4-52

U

Unsolicited Events, 4-43
User, 3-3
Issue 1 — December 2001

TSAPI.PDF R10.1 V1 IN-7

Index
Issue 1 — December 2001

IN-8 TSAPI.PDF R10.1 V1

We’d like your opinion.
Avaya welcomes your feedback on this document. Your comments can be of great value in helping us im-
prove our documentation.

1. Please rate the effectiveness of this document in the following areas:

2. Please check the ways you feel we could improve this document:

3. Please add details about your major concerns.___
__

4. What did you like most about this document? __

__

5. What did you like least about this document? __

__

6. Feel free to write any comments below or on an attached sheet. _____________________________

__

If we may contact you concerning your comments, please complete the following:

Name: ________________________________Telephone Number: (____) ______________________
Company/Organization: ___________________________________ Date: ______________________
Address: __
__

Please FAX your response to (732) 817-5305.

Excellent Good Fair Poor

Ease of Finding Information

Clarity

Completeness

Accuracy

Organization

Appearance

Examples

Illustrations

Overall Satisfaction

❑ Improve the overview or introduction ❑ Make it more concise

❑ Improve the table of contents ❑ Add more step-by-step procedures/tutorials

❑ Improve the organization ❑ Add more troubleshooting information

❑ Add more figures ❑ Make it less technical

❑ Add more examples ❑ Add more or better quick reference aids

❑ Add more details ❑ Improve the index

CentreVu® Computer-Telephony®

Release 10.1, Version 1
Telephony Services Application Programming Interface (TSAPI)
Programmer’s Reference
Issue 1, December 2001

	Abstract
	Introduction
	Purpose
	Product Architecture

	TSAPI Call Model
	Terminology
	Architecture
	TSAPI Device
	Call
	TSAPI Connections
	Call Status Event Reports
	TSAPI Call States

	Control Services
	Opening, Closing and Aborting an ACS Stream
	Sending CSTA Requests and Responses
	Receiving Events
	TSAPI Version Control
	Private Data Version Control
	Querying for Available Services
	API Control Services (ACS) Functions and Confirmation Events
	ACS Unsolicited Events
	ACS Data Types
	CSTA Control Services and Confirmation Events
	CSTA Event Data Types

	Switching Function Services
	Basic Call Control Services
	Telephony Supplementary Services

	Status Reporting Services
	Status Reporting Functions and Confirmation Events
	Call Event Reports (Unsolicited)
	Feature Event Reports (Unsolicited)
	Agent Status Event Reports (Unsolicited)
	Event Report Data Types (Unsolicited)

	Snapshot Services
	Call Snapshot Services
	Device Snapshot Service

	CSTA Computing Function Services
	TSAPI Version 2 Routing
	Application Call Routing
	Routing Registration Functions and Events
	Routing Functions and Events

	Escape and Maintenance Services
	Escape Services
	Maintenance Services
	Escape Services : Application as Client
	Escape Service : Driver/Switch as the Client
	Maintenance Services: Device Status
	System Status - Application as the Client
	System Status : Driver/Switch as the Client

	Programming Notes
	Introduction
	TSAPI on Win32 Programming Overview
	Blocking Versus Polling
	Receiving Events From Any Stream
	Message Trace

	TSAPI on UnixWare
	Event Notification
	Blocking Versus Polling
	Receiving Events From Any Stream
	Message Trace
	Sample Code

	TSAPI on HP-UX
	Event Notification
	Blocking Versus Polling**
	Receiving Events From Any Stream

	Using High Memory on Windows Clients

	CSTA Data Types
	Introduction
	Basic Call Control Confirmation Events
	Telephony Supplementary Confirmation Events
	Status Reporting Confirmation Events
	Call Event Reports
	Feature Event Reports
	Agent Status Report Events
	Snapshot Services
	Computing Function Services
	cstaRouteUsedEvent structures

	Escape Services
	Maintenance Services
	CSTA Control Services

	References

