AVAYA

communication

Java™ Telephony API (JTAPI)
Programmer’s Reference

(JTAPI v1.2 Specification)

Copyright 2001 Avaya, Inc.

All Rights Reserved

Printed in U.SA.

Notice

Every effort was made to ensure that the information in this book was complete and accurate at the time of printing. However, information is subject to change.
Your Responsibility for Your System’s Security

Toll fraud is the unauthorized use of your telecommunications system by an unauthorized party, for example, persons other than your company’ s employees,
agents, subcontractors, or persons working on your company’s behalf. Note that there may be arisk of toll fraud associated with your telecommunications system
and, if toll fraud occurs, it can result in substantial additional charges for your telecommunications services. Y ou and your system manager are responsible for the
security of your system, such as programming and configuring your equipment to prevent unauthorized use. The system manager is also responsible for reading all
installation, instruction, and system administration documents provided with this product in order to fully understand the features that can introduce risk of toll
fraud and the steps that can be taken to reduce that risk. Avaya does not warrant that this product isimmune from or will prevent unauthorized use of
common-carrier telecommunication services or facilities accessed through or connected to it. Avaya Technologies will not be responsible for any charges that result
from such unauthorized use.

Avaya Fraud I ntervention

If you suspect that you are being victimized by toll fraud and you need technical support or assistance, call Technical Service Center

Toll Fraud Intervention Hotline at 1 800 643 2353.

Trademarks

Adobe, Acrobat, and the Acrobat logo are trademarks of Adobe Systems Incorporated, which may be registered in certain jurisdictions.

Javaand all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc. in the United Statesand other countries.
CentreVu and the Avaya logotype are registered trademarks of Avaya, Inc..

Windows NT is aregistered trademark of Microsoft Corp.

The API User’s Guide contained herein isthe property of Sun Microsystems, Inc.

All products and company names are trademarks or registered trademarks of their respective holders.

Acknowledgment

This document was prepared by Avaya University Information Development, Holmdel, NJ 07733-3030.

About This Document

This document consists of Sun Microsystem’s Java Telephony API specification files that have been downloaded from Sun Microsystem’s Java Telephony API
web site (this document isthe JTAPI v1.2 specification). As of thiswriting, Avayais providing the latest available version. To obtain the very latest version of the
JTAPI specification files, go directly to the web site at:

http://java.sun.com/products/jtapi

What is JTAPI?

The Java Telephony API (JTAPI) specifies the standard telephony application programming interface for computer-telephony applications under Java. It isthe
definition for areusable set of call control objects that bring cross-platform and cross-implementation portability to telephony applications. It isasimple,
extensible, object-oriented model that addresses a broad range of computer-telephony tasks. The Java Telephony API represents the combined efforts of design
teams from Sun, Avaya, Nortel, Novell, Intel, and IBM, all operating under the direction of JavaSoft.

Purpose of this Document

AsaJTAPI Specification, this document provides code-level descriptions of JTAPI libraries and classes . Useit as areference to the telephony services oriented
libraries and classes that you use to develop JTAPI applications. This document assumes that you have an implementation of the defined interfaces in the form of
Javaclassesin order to produce a working product.

Intended Audience

This document is for application developers who are programming applications that use JTAPI. This document assumes a familiarity with the Java programming
language.

Related Documents

Use this document along with the Centre Vu Computer-Telephony Java Telephony API (JTAPI) Client Programmer’s Guide (also referred to as the

JTAPI Programmer's Guide) to develop Java based telephony applications. Refer to the Related Documents section of the JTAPI Programmer's Guide for amore
extensive list of Computer- Telephony Integration (CT1) documents.

APl User's Quide

Package [ndex

Other Packages

« package javax.telephony
« package javax.telephony.callcenter

« package javax.telephony.callcenter.capabilities

« package javax.telephony.callcenter.events

« package javax.telephony.callcontrol

« package javax.telephony.callcontrol.capabilities

« package javax.telephony.callcontrol.events

« package javax.telephony.capabilities

« package javax.telephony.events

« package javax.telephony.media

« package javax.telephony.media.capabilities

« package javax.telephony.media.events

« package javax.telephony.phone

« package javax.telephony.phone.capabilities

« package javax.telephony.phone.events

« package javax.telephony.privatedata

« package javax.telephony.privatedata.capabilities

« package javax.telephony.privatedata.events

Al l Packages

package javax.telephony

Interface [ndex

+ Address

« AddressObserver
. Cal

« CallObserver

« Connection

« JapiPeer

« Provider

« ProviderObserver
o Terminal

o TerminalConnection

o TerminalObserver

Clasg ndex

« JapiPeerFactory

Exception Index

« |InvalidArgumentException

« InvalidPartyException
« InvalidStateException
« JtapiPeerUnavailableException
» MethodNotSupportedException

« PlatformException

« PrivilegeViolationException

« ProviderUnavailableException

« ResourceUnavailableException

Al l Packages Thi s Package Previous Next

Interface javax.telephony.Address

public interface Address
Introduction

An Address object represents what we commonly think of as a"telephone number." In implementations where the underlying network is not a
telephone network, this address may represent something else. For example, if the underlying network is I P, this address might represent an |P
address (e.g. 18.203.0.49). An Address object has a string name which corresponds to this telephone address. The Address object does not attempt
to interpret this string in any way. This name s first assigned when the Address object is created and does not change throughout the lifetime of the
object. The method Addr ess. get Name() returnsthe name of the Address object.

Address objects may be classified into two categories: local and remote. Local Address objects are those addresses which are part of the Provider's
local domain. These Address objects are created by the implementation of the Provider object when it isfirst instantiated. All of the Provider's local
addresses are reported viathe Pr ovi der . get Addr esses() method. Remote Address objects are those outside of the Provider's domain which
the Provider learns about during its lifetime through various happenings (e.g. an incoming call from a currently unknown address). Remote
Addresses are not reported viathe Pr ovi der . get Addr esses() method. Note that applications never explicitly create new Address objects.

Address and Terminal Objects

Address and Terminal objects exist in a many-to-many relationship. An Address object may have zero or more Terminals associated with it. Each
Terminal associated with an Address must reflect its association with the Address. Since the implementation creates Address (and Terminal)
objects, it is responsible for insuring the correctness of these relationships. The Terminals associated with an Addressis given by the

Addr ess. get Ter m nal s() method.

An association between an Address and Terminal indicates that the Terminal is addressable viathat Address. In many instances, a telephone set
(represented by a Terminal object) has only one tel ephone number (represented by an Address object) associated with it. In more complex
configurations, telephone sets may have several telephone numbers associated with them. Likewise, atelephone number may appear on more than
one telephone set. For example, feature phones in PBX environments may exhibit this configuration.

Address and Call Objects

Address objects represent the logical endpoints of atelephone call. A logical view of atelephone call viewsthe call as originating from one
Address endpoint and terminates at another Address endpoint.

Address objects are related to Call objects via the Connection object. The Connection object has a state which describes the current relationship
between the Call and the Address. Each Address object may be part of more than one telephone call, and in each case, is represented by a separate
Connection object. The Addr ess. get Connect i ons() method returns all Connection objects currently associated with the Call.

An Addressis associated with a Call until the Connection movesinto the Connect i on. DI SCONNECTED state. At that time, the Connection is
no longer reported viathe Addr ess. get Connecti ons() method. Therefore, the Addr ess. get Connecti ons() method will never
report a Connection inthe Connect i on. DI SCONNECTED state.

Existing Telephone Calls

The Java Telephony API specification states that the implementation is responsible for reporting all existing telephone calls when a Provider isfirst
created. Thisimpliesthat an Address object must report information regarding existing telephone calls to that Address. In other words, Address
objects must reports al Connection objects which represent existing telephone calls.

Address Observers and Events

All changesin an Address object are reported via the AddressObserver interface. Applications instantiate an object which implements thisinterface
and begins this delivery of eventsto this object using the Addr ess. addObser ver () method. All Address-related events extend the Addr Ev
interface provided in the core package. Applications receive events on an observer until the observer is removed viathe

Addr ess. renmoveCbser ver () method or until the Addressis no longer observable. In these instances, each AddressObserver receives a
AddrObservationEndedEv asitsfinal event.

Currently in the core package, the only Address-related event is AddrObservationEndedEv.
Call Observers

At times, applications may want to monitor a particular Address for all Calls which come to that Address. For example, a customer service agent
application is only interested in telephone calls associated with a particular agent address. To achieve this sort of Address-based Call monitoring
applications may add CallObserversto an Address viathe Addr ess. addCal | Cbser ver () method.

When a CallObserver is added to an Address, this observer instance isimmediately added to all Calls at this Address and is added to all Calls
which come to this Address in the future. These observers remain on the telephone call aslong as the Address is associated with the telephone call.
The specification of Addr ess. addCal | Cbser ver () contains more precise semantics.
See Also:

AddressObserver, CallObserver

Method [ndex

addCallObser ver (CallObserver)

Adds an observer to a Call object when this Address object first becomes part of that Call.
@ addObser ver (AddressObserver)

Adds an observer to the Address.
@ getAddressCapabilities(Terminal)

Gets the AddressCapabilities object with respect to a Terminal If null is passed as a Terminal parameter, the general/provider-wide
Address capabilities are returned. Depr ecated.

= getCallObservers()

Returns alist of all CallObservers associated with this Address object.
@ getCapabilities()

Returns the dynamic capabilities for this instance of the Address object.

@ getConnections()

Returns an array of Connection objects currently associated with this Address object at the instant the get Connect i ons() method is
called.

@ getName()

Returns the name of the Address.
@ getObservers()

Returns alist of all AddressObservers associated with this Address object.
@ getProvider()

Returns the Provider associated with this Address.

@ getTerminals()
Returns an array of Terminals associated with this Address object.

@ removeCallObser ver (CallObserver)

Removes the given CallObserver from the Address.
@ removeObser ver (AddressObserver)

Removes the given observer from the Address.

Mefhods

- getName

public abstract String getNane()

Returns the name of the Address. Each Address possesses a unique name. This name isaway of referencing an endpoint in a telephone
call.

Returns:
The name of this Address.

@ getProvider

public abstract Provider getProvider()

Returns the Provider associated with this Address. This Provider object isvalid throughout the lifetime of the Address and does not
change once the Addressis created.

Returns:
The Provider associated with this Address.

@ getTerminals

public abstract Terminal[] getTerm nal s()

Returns an array of Terminals associated with this Address object. If no Terminals are associated with this Address, this method returns
null. Thislist does not change throughout the lifetime of the Address object.

Returns:
An array of Terminal objects associated with this Address.

@ getConnections

public abstract Connection[] getConnections()

Returns an array of Connection objects currently associated with this Address object at the instant the get Connect i ons() methodis
called. When a Connection movesinto the Connect i on. DI SCONNECTED state, the Address object |oses the reference to the
Connection and the Connection no longer returned by this method. Therefore, all Connections returned by this method will never bein the
Connect i on. DI SCONNECTED state. If the Address has no Connections associated with it, this method returns null.

Post-conditions:

1. Let Connection c[] = this.getConnections()

2. c==null or clength>=1

3. For all i, c[i].getState() != Connection.DISCONNECTED
Returns:

An array of Connection objects associated with this Address.

o addObserver

public abstract void addObserver (AddressObserver observer) throws
Resour ceUnavai | abl eExcepti on, Met hodNot Support edExcepti on

Adds an observer to the Address. The AddressObserver reports all Address- related state changes as events. The Address object will report
events to this AddressObserver object for the lifetime of the Address object or until the observer is removed with the

Addr ess. removeObser ver () method or until the Addressis no longer observable. In these instances, a AddrObservationEndedEv
is delivered to the observer asitsfinal event. The observer will receive no events after AddrObservationEndedEv unless the observer is
explicitly re-added viathe Addr ess. addCbser ver () method. Also, once an observer receives an AddrObservationEndedEv, it will
no longer be reported viathe Addr ess. get Cbservers().

If an application attempts to add an instance of an observer aready present on this Address, this attempt will silently fail, i.e. multiple

instances of an observer are not added and no exception will be thrown.

Currently, only the AddrObservationEndedEv event is defined by the core package and delivered to the AddressObserver.

Post-conditions:
1. observer isan element of this.getObservers()
Parameters:
observer - The observer being added.
Throws: MethodNotSupportedException

The observer cannot be added at thistime
Throws. ResourceUnavailableException

The resource limit for the number of observers has been exceeded.

- getObservers

public abstract AddressObserver[] get Cbservers()

Returns alist of all AddressObservers associated with this Address object. If there are no observers associated with this Address object,
this method returns null.

Post-conditions:
1. Let AddressObserver[] obs = this.getObservers()
2. obs==null or obs.length >=1
Returns:
An array of AddressObserver objects associated with this Address.

o removeObser ver

public abstract void renoveCbserver (AddressCbserver observer)

Removes the given observer from the Address. If successful, the observer will no longer receive events generated by this Address object.
Asitsfinal event, the AddressObserver receivesis an AddrObservationEndedEv event.

If an observer is not part of the Address, then this method fails silently, i.e. no observer is removed and no exception is thrown.

Post-conditions:
1. An AddrObservationEndedEv event is reported to the observer asits final event.
2. observer is not an element of this.getObservers()
Parameters:
observer - The observer which is being removed.

@ addcallObserver

public abstract void addCal | Cbserver (Call Cbserver observer) throws
Resour ceUnavai | abl eExcepti on, Met hodNot Support edExcepti on

Adds an observer to a Call object when this Address object first becomes part of that Call. This method permits applications to select an
Address object in which they are interested and automatically have the implementation attach an observer to al present and future Calls
which cometo this Address.

JTAPI v1.0 Semantics

In version 1.0 of the Java Telephony API specification, the application monitored the Address abject for the AddrCall AtAddrEv event.
This event indicated that a Call has come to this Address. Then, applications would manually add an observer to the Call. With this
architecture, potentially dangerous race conditions existed while an application was adding an observer to the Call. As aresult, this
mechanism has been replaced in version 1.1.

JTAPI v1.1 Semantics

In version 1.1 of the specification, the AddrCall AtAddrEv event does not exist and this method replaces the functionality described above.
Instead of monitoring for a AddrCall AtAddrEv event, this application smply usesthe Addr ess. addCal | Gbser ver () method, and
observer will be added to new telephone calls at this Address automatically.

If an application attempts to add an instance of a call observer already present on this Address, these repeated attempts will silently fail,
i.e. multiple instances of a call observer are not added and no exception will be thrown.
When acall observer is added to an Address with this method, the following behavior is exhibited by the implementation.

1. Itisimmediately associated with any existing calls at the Address and a snapshot of those calls are reported to the call observer.
For each of these calls, the observer isreported viaCal | . get Qbservers().

2. Itisassociated with all future calls which comes to this Address. For each new call, the observer is reported via
Cal | . get Qhservers().

Note that the definition of the term ".. when acall is at an Address" means that the Call contains one Connection which has this Address as
its Address.

Call Observer Lifetime

For all call observerswhich are present on Calls because of this method, the following behavior is exhibited with respect to the lifetime of
the call.

1. The call observer receives events until the Call isno longer at this Address. In this case, the call observer will be re-applied to the
Call if the Call returnsto this Address at some point in the future.

2. Thecall observer isremoved with Cal | . r enbveCbser ver () . Notethat this only affects the instance of the call observer for
that particular call. If the Call subsequently leaves and returns to the Address, the observer will be re-applied.

3. The Call can no longer be monitored by the implementation.
4. The Call movesintotheCal | . | NVALI D state.

When the CallObserver |eaves the Call because of one of the reasons above, it receives a CallObservationEndedEv asits fina event.
Call Observer on Multiple Addresses and Terminals

It is possible for an application to add CallObservers at more than one Address and Terminal (using Addr ess. addCal | Cbser ver ()
and Ter mi nal . addCal | Cbser ver (), respectively). The rules outlined above still apply, with the following additions:

1. A CallObserver is not added to a Call more than once, even if it has been added to more than one Address/Terminal which are
present on the Call.

2. The CallObserver leaves the call only if all of the Addresses and Terminals on which the Call Observer was added |eave the Call.
If one of those Addresses/Terminals becomes part of the Call again, the call observer is re-applied to the Call.
Post-Conditions:
1. observer isan element of this.getCallObservers()
2. observer is an element of Call.getObservers() for each Call associated with the Connections from this.getConnections().
3. An array of snapshot events are reported to the observer for existing calls associated with this Address.
Parameters:
observer - The observer being added.
Throws: MethodNotSupportedException

The observer cannot be added at thistime.
Throws. ResourceUnavailableException

The resource limit for the numbers of observers has been exceeded.
See Also:
Cal

@ getCallObservers

public abstract Call Gbserver[] getCall Cbservers()

Returnsalist of all CallObservers associated with this Address object. That is, it returns alist of CallObserver object which have been
added viathe Addr ess. addCal | Cbser ver () method. If there are no CallObservers associated with this Address object, this method
returns null.
Post-conditions:

1. Let CallObserver[] obs = this.getCallObservers()

2. obs==null or obs.length >=1
Returns:

An array of CallObserver objects associated with this Address.

o removeCallObser ver

public abstract void renoveCal | Observer (Call Observer observer)

Removes the given CallObserver from the Address. In other words, it removes a Call Observer which was added via the
Addr ess. addCal | Qbser ver () method. If successful, the observer will no longer be added to new Calls which are presented to this
Address, however it does not affect CallObservers which have aready been added at a Call.

Also, if the CallObserver is not part of the Address, then this method fails silently, i.e. no observer is removed and no exception is thrown.

Post-conditions:
1. observer isnot an element of this.getCallObservers()
Parameters:
observer - The CallObserver which is being removed.

@ getCapailities

public abstract AddressCapabilities getCapabilities()

Returns the dynamic capabilities for this instance of the Address object. Dynamic capabilities tell the application which actions are
possible at the time this method is invoked based upon the implementations knowledge of its ability to successfully perform the action.
This determination may be based upon argument passed to this method, the current state of the call model, or some
implementation-specific knowledge. These indications do not guarantee that a particular method will succeed when invoked, however.
The dynamic Address capabilities require no additional arguments.

Returns:

The dynamic Address capabilities.
@ getAddressCapabilities

public abstract AddressCapabilities get AddressCapabilities(Term nal termnal)
throws lnvali dArgunent Exception, PlatformException

Note: getAddressCapabilities() is deprecated. Snce JTAPI v1.2. This method has been replaced by the Address.getCapabilities()
method.

Gets the AddressCapabilities object with respect to a Terminal If null is passed as a Terminal parameter, the general/provider-wide
Address capahilities are returned.

Note: This method has been replaced in JTAPI v1.2. The Addr ess. get Capabi | i ti es() method returns the dynamic Address
capabilities. This method now should simply invoke the Addr ess. get Capabi | i ti es() method.

Parameters:
terminal - Thisargument isignored in JTAPI v1.2 and later.
Throws: InvalidArgumentException

This exception is never thrown in JTAPI v1.2 and later.
Throws: PlatformException

A platform-specific exception occurred.

Al |l Packages This Package Previous Next

Al l Packages Thi s Package Previous Next

Interface javax.telephony.AddressObserver

public interface Addr essObser ver
Introduction

The Addr essQhser ver interface reports all changes which happen to the Address object. These changes are reported as events to the
Addr essCbser ver. addr essChangedEvent () method. Applications must instantiate an object which implements this interface and then
usethe Addr ess. addCbser ver ()) method to register the object to receive all future events associated with the Address object.

The Addr essChser ver. addr essChangedEvent () method receives an array of events which all must extend the Addr Ev interface. Since
several changes may happen to asingle JTAPI object at once, alist of eventsis needed to convey those changes which happen at the same time.
Applications iterate through the array of events provided.

Address Observation Ending

At various times, the underlying implementation may not be able to observe the Address. In these instances, the AddressObserver is sent an
AddrObservationEndedEv event. This indicates that the application will not receive further events associated with the Address object. The observer
isno longer reported viathe Addr ess. get Cbser ver s() method.

See Also:
AddrEv, AddrObservationEndedEv

Method Index

addr essChangedEvent(AddrEv[])

Reports all events associated with the Address object.

Mefhods

- addressChangedEvent

public abstract void addressChangedEvent (AddrEv eventList[])

Reports all events associated with the Address object. This method passes an array of AddrEv objects as its arguments which correspond
tothelist of events representing the changes to the Address object.

Parameters:
eventList - Thelist of Address events.

Al |l Packages Thi s Package Previous Next

Al l Packages Thi s Package Previous Next

Interface javax.telephony.Call

public interface Call
Introduction

A Call object models atelephone call. A Call can have zero or more Connections. A two-party call has two Connections, and a conference call has
three or more Connections. Each Connection models the rel ationship between a Call and an Address, where an Address identifies a particular party
or set of partieson a Cal.

Creating Call Objects

Applications create instances of a Call object with the Pr ovi der . cr eat eCal | () method, which returns a Call object that has zero
Connectionsand isintheCal | . | DLE st at e. The Call maintains areference to its Provider for the life of that Call object. This Provider object
instance does not change throughout the lifetime of the Call object. The Provider associated with a Call is obtained viathe

Cal | . get Provi der () method.

Call States

A Call has astate which isobtained viathe Cal | . get St at e() method. This state describes the current progress of atelephone cal, whereisit
initslife cycle, and how many Connections exist on the Call. The Call state may be one of threevalues: Cal | . | DLE, Cal | . ACTI VE, or
Cal | . I NVALI D. Thefollowing is a description of each state;

Thisistheinitial statefor all Calls. In this state, the Call has zero Connections, that is

Call.1DLE Cal | . get Connecti ons() must return null.
A Call with some current ongoing activity isin this state. Calls with one or more associated Connections must bein
Cal | . ACTI VE this state. If aCall isin this state, the Cal | . get Connect i ons() method must return an array of size at least

one.

Thisisthefinal state for al Calls. Call objects which lose all of their Connections objects (via atransition of the
Connection object into the Connect i on. DI SCONNECTED state) moves into this state. Callsin this state have
zero Connections and these Call objects may not be used for any future action. In this state, the

Cal | . get Connecti ons() must return null.

Cal I . I NVALI D

Call State Transitions

The possible Call state transitions are given in the diagram below:

ITLE 4 CTIVE I-TVATIC:

Calls and Connections

A Call maintain alist of the Connections on that Call. Applications obtain an array of Connections associated with the Call viathe

Cal | . get Connecti ons() method. A Cal retains areference to a Connection only if itisnot inthe Connect i on. DI SCONNECTED state.
Therefore, if aCall has areference to a Connection, then that Connection must not be in the Connect i on. DI SCONNECTED state. When a
Connection moves into the Connect i on. DI SCONNECTED state (e.g. when a party hangs up), the Call loses its reference to that Connection
which isno longer reported viathe Cal | . get Connect i ons() method.

The Cal | . connect () method

The primary method on thisinterfaceisthe Cal | . connect () method. Applications use this method to place atelephone call from an
originating endpoint to a destination address string. The result of this method on the call model is to create an originating and destination
Connection and move the Call into the Cal | . ACTI VE. Asthe new telephone call progresses during its lifetime, the state of various objects
associated with the Call may change and new objects may be created and associated with the Call. See the specification of theCal | . connect ()
method below for more details.

Observers and Events

The Cal | Qoser ver interface reports all events pertaining to the Call object. Events delivered to this interface must extend the Cal | Ev
interface. Applications add observersto a Call object viathe Cal | . addObser ver () method.

Connection-related and Termina Connection-related events are also reported viathe Cal | Cbser ver interface. These eventsinclude the creation
of these objects and their state changes. Events which are reported viathe Cal | Gbser ver interface pertaining to Connections and
Terminal Connections extend the ConnEv interface and the Ter nConnEv interface, respectively.

An event is delivered to the application whenever the state of the Call changes. The event interfaces corresponding to Call state changes are:
Cal | ActiveEv andCal | I nval i dEv.

At times the Call may be unobservable by the implementation. In this case, a CallObservationEndedEv is delivered to the Cal | Cbser ver
interface. Thisisthe final event receives by the observer and is no longer reported viathe Cal | . get Cbser ver s() method.

Applications may observe a Call by adding an observer viathe Address or Terminal objects using the Addr ess. addCal | Gbser ver () and
Term nal . addCal | Cbser ver () methods. These methods provide the ability for an application to receive Call-related events when a Call
contains a particular Address or Terminal. See the specifications for Address and Terminal for more details.

See Also:
CallObserver, Connection, Address, Terminal, Termina Connection, CallEv

Variable [Hdex

ACTIVE
The Cal | . ACTI VE state indicates the Call has one or more Connections, none of which arein the Connect i on. DI SCONNECTED
state.

@IDLE
TheCal | . | DLE state indicates the Call has zero Connections.

& INVALID

TheCal | . | NVALI D state indicates the Call haslost all of its connections, ie.

Method [rndex

@ addObser ver (CallObserver)

Adds an observer to the Call.
@ connect(Terminal, Address, String)

Places atelephone call from an originating endpoint to a destination address string.
= getCallCapabilities(Terminal, Address)

Gets the Call Capabilities object with respect to a Terminal and an Address. Deprecated.
@ getCapabilities(Terminal, Address)

Returns the dynamic capabilities for the instance of the Call object.
@ getConnections()

Returns an array of Connections associated with this call.
@ getObservers()

Returns an array of al Cal | Cbser ver s on this Cal.

@ getProvider()
Returns the Provider associated with the Call.
@ getState()

Returns the current state of the telephone call.
& removeObser ver (CallObserver)

Removes the given observer from the Call.

Variables

@ DLE

public static final int IDLE
TheCal | . | DLE state indicates the Call has zero Connections. It isthe initial state of all Call objects.

@ AcTIVE

public static final int ACTIVE

The Cal | . ACTI VE state indicates the Call has one or more Connections, none of which arein the Connect i on. DI SCONNECTED
state.

@ nVALID

public static final int INVALID

TheCal | . | NVALI D state indicates the Call has lost all of its connections, ie. all of its associated Connection objects have moved into
the Connect i on. DI SCONNECTED state and are no longer associated with the Call. A Call in this state cannot be used for future
actions.

Mefhods

- getConnections

public abstract Connection[] getConnections()

Returns an array of Connections associated with this call. Note that none of the Connections returned will bein the
Connect i on. DI SCONNECTED state. Also, if the Call isinthe Cal | . | DLE state or the Cal | . | NVALI D state, this method returns
null. Otherwise, it returns one or more Connection objects.
Post-conditions:
1. Let Connection[] conn = Call.getConnections()
2. if this.getState() == Call.IDLE then conn = null
3. if this.getState() == Call.INVALID then conn = null
4. if this.getState() == Call.ACTIVE then conn.length >=1
5. For al i, conn[i].getState() '= Connection.DISCONNECTED

Returns
An array of the Connections associated with the call.

@ getProvider

public abstract Provider getProvider()

Returns the Provider associated with the Call. This Provider reference remains valid throughout the lifetime of the Call abject, despite the
state of the Call object. This Provider reference does not change once the Call object has been created.

Returns:
The Provider associated with the call.

@ getState

public abstract int getState()

Returns the current state of the telephone call. The state will be either Cal | . | DLE, Cal | . ACTI VE, or Cal | . | NVALI D.
Returns:
The current state of the call.

' connect

public abstract Connection[] connect(Terminal origterm

Addr ess ori gaddr,
String dialedDigits) throws

Resour ceUnavai | abl eException, Privil egeViol ati onException, |nvalidPartyException,

| nval i dAr gunent Exception, lnvali dStateException, MethodNot SupportedException

Places atelephone call from an originating endpoint to a destination address string.

The Call must beinthe Cal | . | DLE state (and therefore have no existing associated Connections and the Provider must be in the
Provi der. | N_SERVI CE state. The successful effect of this method is to place the telephone call and create and return two
Connections associated with this Call.

Method Arguments

This method has three arguments. The first argument is the originating Terminal for the telephone call. The second argument is the
originating Address for the telephone Call. This Terminal/Address pair must reference one another. That is, the originating Address must
appear on the Terminal (viaAddr ess. get Ter m nal s() Termina.getAddress()). If not, an InvalidArgumentException is thrown.

The third argument is a destination string whose val ue represents the address to which the telephone call is placed. This destination
address must be valid and compl ete.

Method Post-conditions

This method returns successfully when the Provider can successfully initiate the placing of the telephone call. As aresult, when the
Cal | . connect () method returns, the Call will beinthe Cal | . ACTI VE state and exactly two Connections will be created and
returned. The Connection associated with the originating endpoint is the first Connection in the returned array, and the Connection
associated with the destination endpoint is the second Connection in the returned array. These two Connections must at least be in the
Connecti on. | DLE state. That is, if one of the Connections progresses beyond the Connect i on. | DLE state while this method is
completing, this Connection may be in a state other than the Connect i on. | DLE. This state must be reflected by an event sent to the
application.

Call Scenarios or Flows

As atelephone call progresses during its lifetime, the various objects associated with the Call may change state and new objects may be
created an associated with the Call. These changes typically occur after this method has successfully returned.

How the Call and its associated objects progress depends upon real-world conditions. Thereis alarge but finite number of waysin which
the state of a Call may progress. It is difficult to enumerate each possible way in which the state of a Call may progress. Instead, several
illustrative scenarios (also called flows) are presented for common real-world conditions. These scenarios obey the valid state transitions
as defined by the Call, Connection, and Terminal Connection objects.

Two common scenarios are presented below. Note that there may exist additional scenarios very similar to these which may only differ in
asingle step or state change. Any implementation which adheresto the rules outlined by the Call, Connection, and Terminal Connection
objects is considered a proper implementations with respect to call flows.

Normal Cal | . connect () Scenario

This this scenario, atelephone call is placed to atelephone number address. This address is outside the Provider's domain. The destination
party answers the telephone call.

1. TheCal | . connect () method isinvoked with the given arguments. Two Connection objects are created and returned, each in
theConnecti on. | DLE state.

Events delivered to the application: a CalActivEv and two ConnCreatedEv, one for each Connection.

2. Once the Provider begins to place the telephone call, the originating Connection moves from the Connect i on. | DLE stateinto
the Connect i on. CONNECTED state. A TerminalConnection is created in the Ter i nal Connecti on. | DLE stateand
movesinto the to model the Ter m nal Connect i on. ACTI VE relationship between the originating Terminal and the
Connection.

Events delivered to the application: a ConnConnectedEv for the originating Connection, a TermConnCreatedEv and a
TermConnActiveEv for the new Terminal Connection.

Note: Depending upon the configuration of the switch, additional Terminal Connection objects associated with the originating
Connection may be created. If the originating Address has more than on Terminal, these additional Terminals may beinvolved in
the telephone call. For each Terminal Connection created a TermConnCreatedEv is delivered. Typically, these

Terminal Connections will be in the Ter mi nal Connect i on. PASSI VE state and a TermConnPassiveEv is delivered for each.

3. Thedestination Connection into the Connect i on. | NPROGRESS state as the Call proceeds.

Events delivered to the application: a ConnlnProgressEv for the destination Connection.

4. The destination Connection movesinto the Connect i on. ALERTI NGstate as the destination is aerted to the telephone call.
Terminal Connection object may be created to model the relationship between any known destination Terminals associated with
the Call, eachinthe Ter mi nal Connecti on. RI NG NGstate. If the destination Terminals are unknown, then no
Terminal Connections are created.

Events delivered to the application: a TermConnAlerting for the destination Connection, a TermConnCreatedEv and
TermConnRingingEv for any destination Terminal Connections created.

5. The destination Connection moves into the Connect i on. CONNECTED state when the called party answers the telephone call.
If the destination Terminals are known, the answering Terminal Connection movesinto the Ter mi nal Connecti on. ACTI VE
State.

Eventsdelivered to the application: a ConnConnectedEv for the destination Connection and a TermConnActiveEv for the
answering Terminal Connection, if known.

Note: For al other non-answering destination Terminal Connections known, either one of two state changes will occur depending
upon the configuration of the switch. These Termina Connections will either move into the

Ter mi nal Connect i on. PASSI VE state or the Ter mi nal Connect i on. DROPPED state, depending upon whether or not
these Terminals continue as part of the telephone call. For each, either a TermConnPassiveEv or TermConnDroppedEv is
delivered.

At the conclusion of this scenario, the Call will beinthe Cal | . ACTI VE state, both Connections will be in the
Connect i on. CONNECTED state, and the originating TerminalConnection will beinthe Ter m nal Connect i on. ACTI VE state.

Failure Cal | . connect () Scenario

In this scenario, atelephone call is placed to a destination address. The destination cannot be reached, perhaps because the destination
addressis busy.

Thefirst three steps of the first scenario are the same asin this scenario. They are not repeated here for brevity. The fourth and final step
of thisscenariois:
1. The destination Connection movesinto the Connect i on. FAI LED because the destination party could not be reached. (e.g.
busy)

Events delivered to the application: a ConnFailedEv is delivered for the destination Connection.

At the conclusion of this scenario, the Call will beinthe Cal | . ACTI VE state, the originating Connection will be in the
Connect i on. CONNECTED state, the destination Connection will bein the Connect i on. FAI LED state, and the originating
Terminal Connection will bein the Ter m nal Connect i on. ACTI VE state.
Pre-conditions:

1. (this.getProvider()).getState() == Provider.IN_SERVICE

2. this.getState() == Call.IDLE
Post-conditions:

1. (this.getProvider()).getState() == Provider.IN_SERVICE

2. this.getState() == Call.ACTIVE

3. Let Connection c[] = this.getConnections()

4. clength ==

5. ¢[0].getState() == Connection.IDLE (at |east)

6. c[1].getState() == Connection.IDLE (at least)
Parameters:

origterm - The originating Terminal for this telephone call.

origaddr - The originating Address for this telephone call.

destaddr - The destination address string for this telephone call.
Throws. ResourceUnavailableException

An internal resource necessary for placing the phone call is unavailable.
Throws: PrivilegeViolationException

The application does not have the proper authority to place atelephone call.
Throws: InvalidPartyException

Either the originator or the destination does not represent avalid party required to place atelephone call.
Throws: InvalidArgumentException

An argument provided is not valid either by not providing enough information for this method or is inconsistent with another
argument.

Throws: InvalidStateException

Some object required by this method is not in avalid state as designated by the pre-conditions for this method.
Throws. MethodNotSupportedException

The implementation does not support this method.
See Also:

CadlActiveEv, ConnAlertingEv, ConnConnectedEv, ConnCreatedEv, ConnlnProgressEv, TermConnActiveEy,
TermConnCreatedEv, TermConnDroppedEv, TermConnPassiveEv, TermConnRingingEv

o addObserver

public abstract void addCbserver(Call Cbserver observer) throws
Resour ceUnavai | abl eExcepti on, Met hodNot Support edExcepti on

Adds an observer to the Call. The Cal | Gbser ver reportsall Call-related events. This includes changes in the state of the Call and all
Connection-related and Terminal Connection-related events. The observer added with this method will report events on the call for aslong
as the implementation can observer the Call. In the case that the implementation can no longer observe the Call, the applications receives a
CallObservationEndedEv. The observer receives no more events after it receives the Call ObservationEndedEv and is no longer reported
viatheCal | . get Qbser ver s() method.

Observer Lifetime
The Cal | Obser ver will receive events until one of the following occurs, whereupon the observer receives a Call ObservationEndedEv

and the observer is no longer reported viathe Cal | . get Cbser ver s() method.
1. The observer isremoved by the application with Cal | . r enroveObser ver ().

2. Theimplementation can no longer monitor the call.
3. The Call has completed and moved into the Cal | . | NVALI D state.

Event Snapshots

By default, when an observer is added to atelephone call, the first batch of events may be a"snapshot”. That is, if the observer was added
after state changesin the Call, the first batch of events will inform the application of the current state of the Call. Note that these snapshot
events do NOT provide a history of all events on the Call, rather they provide the minimum necessary information to bring the application
up-to-date with the current state of the Call. The meta code for al of these events will be Ev. META_ SNAPSHOT.

CallObservers from Addresses and Terminals

There may be additional call observers on the call which were not added by this method. These observers may have become part of the
call viathe Addr ess. addCal | Cbserver () and Ter m nal . addCal | Qbser ver () methods. See the specifications for these
methods for more information.

Multiple Invocations

If an application attempts to add an instance of an observer already present on this Call, there are two possible outcomes:

1. If the observer was added by the application using this method, then a repeated invocation will silently fail, i.e. multiple instances
of an observer are not added and no exception will be thrown.

2. If the observer is part of the call because an application invoked Addr ess. addCal | Cbserver () or
Term nal . addCal | Cbser ver (), either of these methods modifies the behavior of that observer asif it were added viathis
method instead. That is, the observer is no longer removed when the call leaves the Address or Terminal. The observer now
receives events until one of the conditionsin "Observer Lifetime" is met.
Post-Conditions:
1. observerisanelement of t hi s. get Gbservers()
2. A snapshot of eventsis delivered to the observer, if appropriate.
Parameters:
observer - The observer being added.
Throws: MethodNotSupportedException

The observer cannot be added at thistime
Throws. ResourceUnavailableException

The resource limit for the numbers of observers has been exceeded.

- getObservers

public abstract Call Observer[] get Cbservers()

Returns an array of al Cal | Cbser ver s onthis Call. If no observers are on this Call object, then this method returns null. This method
returns all observers on this call no matter how they were added to the Call. Call observers may be added to this call in one of three ways:

1. The application added the observer viaCal | . addQbser ver ().
2. The application added the observer via Addr ess. addCal | Obser ver () andthe call came to that Address.
3. The application added the observer viaTer i nal . addCal | Cbser ver () andthecall cameto that Terminal.

An instance of a CallObserver object will only appear once in thislist.

Post-Conditions:
1. Let CallObserver|[] obs = this.getObservers()
2. obs==null or obs.length>=1
Returns:
An array of CallObserver objects associated with this Call.

- removeObser ver

public abstract void renoveCbserver(Call Cbserver observer)

Removes the given observer from the Call. If successful, the observer will receive a CallObservationEndedEv asthe last event it receives
and will no longer be reported viathe Cal | . get Gbser ver s() method.
This method has different effects depending upon how the observer was added to the Call, asfollows:

1. If the observer was added viaCal | . addCbser ver () , this method removes the observer until it is re-applied by the
application.

2. If the observer was added via Addr ess. addCal | Gbserver () or Ter m nal . addCal | Gbser ver (), this method
removes the observer for this call only. It does not affect whether this observer will be added to future calls which come to that
Address. See Addr ess. addCal | Cbserver () and Ter mi nal . addCal | Goser ver () for more details.

If an observer is not part of the Call, then this method fails silently, i.e. no observer is removed and no exception is thrown.

Post-Conditions:
1. observer isnot an element of this.getObservers()
2. CallObservationEndedEv is delivered to the application
Parameters:
observer - The observer which is being removed.

@ getCapavilities

public abstract Call Capabilities getCapabilities(Ternminal termnal,
Addr ess address) throws

| nval i dAr gunent Excepti on

Returns the dynamic capabilities for the instance of the Call object. Dynamic capabilities tell the application which actions are possible at
the time this method is invoked based upon the implementations knowledge of its ahility to successfully perform the action. This
determination may be based upon argument passed to this method, the current state of the call model, or some implementation-specific
knowledge. These indications do not guarantee that a particular method can be successfully invoked, however.

The dynamic call capabilities are based upon a Terminal/Address pair as well as the instance of the Call object. These parameters are used
to determine whether certain call actions are possible at the present. For example, the Cal | Capabi | i ti es. canConnect () method
will indicate whether a telephone call can be placed using the Terminal/Address pair as the originating endpoint.

Parameters:
terminal - Dynamic capabilities are with respect to this Terminal.
address - Dynamic capabilities are with respect to this Address.
Returns:
The dynamic Call capabilities.
Throws: InvalidArgumentException

Indicates the Terminal and/or Address argument provided was not valid.

@ getCallCapabilities

public abstract Call Capabilities getCall Capabilities(Ternmnal term
Addr ess addr) throws
[nval i dAr gunent Excepti on, Pl atfornmException

Note: getCallCapabilities() is deprecated. Snce JTAPI v1.2. This method has been replaced by the Call.getCapabilities() method.
Gets the Call Capahilities object with respect to a Terminal and an Address. If null is passed as a Terminal parameter, the
general/provider-wide Call capabilities are returned.
Note: This method has been replaced in JTAPI v1.2. TheCal | . get Capabi | i ti es() method returns the dynamic Call capabilities.
This method now should simply invoke the Cal | . get Capabi | i ti es() method with the given Termina and Address arguments.
Parameters:

term - Dynamic Call capabilitiesin JTAPI v1.2 are with respect to this Terminal.

addr - Dynamic Call capabilitiesin JTAPI v1.2 are with respect to this Address.

Throws:. InvalidArgumentException

Indicates the Terminal and/or Address argument provided was not valid.
Throws: PlatformException

A platform-specific exception occurred.

Al |l Packages Thi s Package Previous Next

Al l Packages Thi s Package Previous Next

Interface javax.telephony.CallObserver

public interface CallObser ver
Introduction

The Cal | Qoser ver interfacereportsall changes which happen to the Call object and all of the Connection and Termina Connection objects
which are part of the Call. These changes are reported as eventstothe Cal | Cbser ver. cal | ChangedEvent () method. Applications must
instantiate an object which implements this interface and then add the observer to the call using one of several mechanisms described below to
receive al future events associated with the Call and its Connections and Terminal Connections.

TheCal | Qbserver. cal | ChangedEvent () method receives an array of events which all must extend the Cal | Ev interface. Since severa
changes may happen to asingle JTAPI object at once, alist of eventsis needed to convey those changes which happen at the same time.
Applications iterate through the array of events provided.

Adding an Observer to a Call

Applications may add an observer to a Call viaone of several mechanisms. They may directly add an observer viathe Cal | . addCbser ver ()
method. Applications may also add observersto Callsindirectly viathe Addr ess. addCal | Cbserver () and

Term nal . addCal | Cbser ver () methods. These methods add the given observer to the Call when the Call comesto the Address or
Terminal. See the specifications for Call, Address, and Terminal for more information.

Call State Changes

In the core package, an event is delivered whenever the Call changes state. The event interfaces which correspond to these state changes for the
core package are: Cal | Acti veEvandCal I | nval i dEv.

Connection Events

All events pertaining to the Connection object are reported on this interface. Connection events extend the ConnEv event, which in turn, extends
the Cal | Ev event. In the core package, an event is delivered to this interface whenever the Connection changes state.

TerminalConnection Events

All events pertaining to the Terminal Connection object are reported on this interface. Terminal Connection events extend the Ter mConnEv
interface, which in turn, extendsthe Cal | Ev interface. In the core package, an event is delivered to thisinterface whenever the
Terminal Connection changes state.

Call Observation Ending

At various times, the underlying implementation may not be able to observe the Call. In these instances, the CallObserver is sent an
CallObservationEndedEv event. Thisindicates that the application will not receive further events associated with the Call object. This observer is
no longer reported viathe Cal | . get Cbser ver s() method.

See Also:

CdlEv, ConnEv, TermConnEv, CallObservationEndedEv, CallActiveEv, CallnvalidEv, ConnAlertingEv, ConnConnectedEv,
ConnCreatedEv, ConnDisconnectedEv, ConnFailedEv, ConnlnProgressEv, ConnUnknownEv, TermConnActiveEv, TermConnCreatedEyv,
TermConnDroppedEv, TermConnPassiveEv, TermConnRingingEv, TermConnUnknownEv

Method [ndex

& callChangedEvent(CallEv([])

Reports all events associated with the Call object.

MeEhods

@ callChangedEvent

public abstract void call ChangedEvent (Call Ev eventList[])

Reports all events associated with the Call object. This method passes an array of CallEv objects as its arguments which correspond to the
list of events representing the changes to the Call object as well as changesto all of the Connection and Terminal Connection objects
associated with this Call.

Parameters:
eventList - Thelist of Call events.

Al |l Packages Thi s Package Previous Next

Al l Packages Thi s Package Previous Next

Interface javax.telephony.Connection

public interface Connection
Introduction

A Connection represents alink (i.e. an association) between a Call object and an Address object. The purpose of a Connection object is to describe
the relationship between a Call object and an Address object. A Connection object existsif the Addressis a part of the telephone call. Each
Connection has a state which describes the particular stage of the relationship between the Call and Address. These states and their meanings are
described below. Applications usethe Connect i on. get Cal | () and Connecti on. get Addr ess() methodsto obtain the Call and
Address associated with this Connection, respectively.

From one perspective, an application may view a Call only in terms of the Address/Connection objects which are part of the Call. Thisistermed a
logical view of the Call because it ignores the details provided by the Terminal and Terminal Connection objects which are also associated with a
Call. In many instances, simple applications (such as an outcall program) may only need to concern itself with the logical view. In thislogical
view, atelephone call is views as two or more endpoint addresses in communication. The Connection object describes the state of each of these
endpoint addresses with respect to the Call.

Calls and Addresses

Connection objects are immutable in terms of their Call and Address references. In other words, the Call and Address object references do not
change throughout the lifetime of the Connection object instance. The same Connection object may not be used in another telephone call. The
existence of a Connection implies that its Address is associated with its Call in the manner described by the Connection's state.

Although a Connection's Address and Call references remain valid throughout the lifetime of the Connection object, the same is not true for the
Call and Address object's references to this Connection. Particularly, when a Connection moves into the Connection.DISCONNECTED state, it is
no longer listed by the Cal | . get Connecti ons() and Addr ess. get Connecti ons() methods. Typically, when a Connection moves into
the Connect i on. DI SCONNECTED state, the application loses its references to it to facilitate its garbage collection.

TerminalConnections

Connections objects are containers for zero or more Terminal Connection objects. Connection objects are containers for zero or more

Terminal Connection objects. Connection objects represent the relationship between the Call and the Address, whereas Terminal Connection objects
represent the relationship between the Connection and the Terminal. The relationship between the Call and the Address may be viewed as alogical
view of the Call. The relationship between a Connection and a Terminal represents the physical view of the Call, i.e. at which Terminal the
telephone calls terminates. The Terminal Connection object specification provides further information.

Connection States

Below is a description of each Connection state in real-world terms. These real-world descriptions have no bearing on the specifications of
methods, they only serve to provide a more intuitive understanding of what is going on. Several methods in this specification state pre-conditions
based upon the state of the Connection.

This state isthe initial state for al new Connections. Connections which areinthe Connect i on. | DLE state
are not actively part of atelephone call, yet their references to the Call and Address objects are valid.
Connectionstypically do not stay in the Connect i on. | DLE state for long, quickly transitioning to other
states.

This state impliesit is no longer part of the telephone call, although its references to Call and Address till
remain valid. A Connection in this state isinterpreted as once previously belonging to this telephone call.

This state implies that the Connection, which represents the destination end of atelephone call, isin the
Connecti on. | NPROGRESS process of contacting the destination side. Under certain circumstances, the Connection may not progress
beyond this state. Extension packages elaborate further on this state in various situations.

Connecti on. ALERTI NG This state implies that the Addressis being notified of an incoming call.

This state implies that a Connection and its Address is actively part of atelephone call. In common terms, two
peopl e talking to one another are represented by two Connectionsin the Connect i on. CONNECTED state.

Connection. | DLE

Connect i on. DI SCONNECTED

Connect i on. CONNECTED

This state implies that the implementation is unable to determine the current state of the Connection.
Connect i on. UNKNOAN Typically, methods are invalid on Connections which arein this state. Connections may move in and out of
the Connect i on. UNKNOWN state at any time.

This state indicates that a Connection to that end of the call has failed for some reason. One reason why a

Connecti on. FAILED Connection would beinthe Connect i on. FAI LED state is because the party was busy.

Connection State Transitions

With these loose, real-world meaningsin the back of one's mind, the Connection class defines a finite-state diagram which describes the allowable
Connection state transitions. This finite-state diagram must be guaranteed by the implementation. Each method which causes achangein a
Connection state must be consistent with this state diagram. This finite state diagram is below:

Note there is ageneral |eft-to-right progression of the state transitions. A Connection object may transition into and out of the
Connect i on. UNKNOWN state at any time (hence, the asterisk qualifier next to its bidirectional transition arrow).

(except FAILED
or DISCOMMECTELD)

o*

The Connection.disconnect() Method

The primary method supported on the core package's Connection interface isthe Connect i on. di sconnect () method. This method drops an
entire Connection from a telephone call. The result of this method is to move the Connection object into the Connect i on. DI SCONNECTED
state. See the specification of the Connect i on. di sconnect () method on this page for more detailed information.

Observers and Events

All events pertaining to the Connection object are reported viathe Cal | Cbser ver interface on the Call object associated with this Connection.
In the core package, events are reported to a CallObserver when a new Connection is created and whenever a Connection changes state. Observers
are added to Call objectsviathe Cal | . addCbser ver () method and more indirectly viathe Addr ess. addCal | Cbser ver () and

Termi nal . addCal | Qbser ver () methods. See the specifications for the Call, Address, and Terminal interfaces for more information.

The following Connection-related events are defined in the core package. Each of these events extend the ConnEv interface (which, in turn,
extendsthe Cal | Ev interface).

ConnCr eat edEv Indicates a new Connection has been created on a Call.

Connl nPr ogr essEv Indicates the Connection has moved into the Connect i on. | NPROGRESS state.

ConnAl erti ngEv Indicates the Connection has moved into the Connect i on. ALERTI NG state.

ConnConnect edEv Indicates the Connection has moved into the Connect i on. CONNECTED state.
ConnDi sconnect edEv Indicates the Connection has moved into the Connect i on. DI SCONNECTED state.

ConnFai | edEv Indicates the Connection has moved into the Connect i on. FAI LED state.
ConnUnknownEv Indicates the Connection has moved into the Connect i on. UNKNOWN state.
See Also:
CallObserver, ConnEv, ConnCreatedEv, ConnlnProgresskEv, ConnAlertingEv, ConnConnectedEv, ConnDisconnectedEv, ConnFailedEv,
ConnUnknownEv

Variable [ndex

@ ALERTING

The Connect i on. ALERTI NGstate implies that the Addressis being notified of an incoming call.
CONNECTED

The Connect i on. CONNECTED state implies that a Connection and its Address is actively part of atelephone call.
@ DISCONNECTED

The Connect i on. DI SCONNECTED state impliesit is no longer part of the telephone call, although its references to Call and Address
still remain valid.

@ FAILED

The Connect i on. FAI LED state indicates that a Connection to that end of the call has failed for some reason.
@IDLE

The Connect i on. | DLE stateistheinitial state for all new Connections.
INPROGRESS

The Connect i on. | NPROGRESS state implies that the Connection, which represents the destination end of atelephone call, isin the
process of contacting the destination side.

2 UNKNOWN
The Connect i on. UNKNOWN state implies that the implementation is unable to determine the current state of the Connection.

Method [ndex

@ disconnect()
Drops a Connection from an active telephone call.

@ getAddress()
Returns the Address object associated with this Connection.

» getCall()

Returns the Call object associated with this Connection.
@ getCapabilities()

Returns the dynamic capabilities for the instance of the Connection object.
@ getConnectionCapabilities(Terminal, Address)

Gets the ConnectionCapabilities object with respect to a Terminal and an Address. Depr ecated.

@ getState()
Returns the current state of the Connection.

@ getTerminal Connections()

Returns an array of Terminal Connection objects associated with this Connection.

Variables

@ DLE

public static final int IDLE

The Connect i on. | DLE stateistheinitial state for all new Connections. Connections which are in the Connection.IDLE state are not
actively part of atelephone call, yet their references to the Call and Address objects are valid. Connections typically do not stay in the
Connect i on. | DLE state for long, quickly transitioning to other states.

@ INPROGRESS

public static final int | NPROGRESS

The Connect i on. | NPROGRESS state implies that the Connection, which represents the destination end of atelephone call, isin the
process of contacting the destination side. Under certain circumstances, the Connection may not progress beyond this state. Extension
packages elaborate further on this state in various situations.

@ ALERTING

public static final int ALERTING
The Connect i on. ALERTI NG state implies that the Addressis being notified of an incoming call.

& CONNECTED

public static final int CONNECTED

The Connect i on. CONNECTED state implies that a Connection and its Addressis actively part of atelephone call. In common terms,
two people talking to one another are represented by two Connectionsin the Connect i on. CONNECTED state.

@ DISCONNECTED

public static final int DI SCONNECTED

The Connect i on. DI SCONNECTED state impliesit is no longer part of the telephone call, although its references to Call and Address
till remain valid. A Connection inthe Connect i on. DI SCONNECTED state isinterpreted as once previously belonging to this
telephone call.

@ rFalLED

public static final int FAILED

The Connect i on. FAI LED state indicates that a Connection to that end of the call has failed for some reason. One reason why a
Connection would bein the Connect i on. FAI LED state is because the party was busy.

@ UNKNOWN

public static final int UNKNOMW

The Connect i on. UNKNOMN state implies that the implementation is unable to determine the current state of the Connection. Typically,
method are invalid on Connections which arein the Connect i on. UNKNOAN state. Connections may move in and out of this state at any
time.

Mefhods

@ getState

public abstract int getState()
Returns the current state of the Connection. The return value will be one of states defined above.
Returns:
The current state of the Connection.

@ geccal

public abstract Call getCall ()

Returns the Call object associated with this Connection. This Call reference remains valid throughout the lifetime of the Connection
object, despite the state of the Connection object. This Call reference does not change once the Connection object has been created.

Returns:
The call object associated with this Connection.

- getAddress

public abstract Address get Address()

Returns the Address object associated with this Connection. This Address object reference remains valid throughout the lifetime of the
Connection object despite the state of the Connection object. This Address reference does not change once the Connection object has been
created.

Returns:
The Address associated with this Connection.

@ getTerminalConnections

public abstract Term nal Connection[] getTerm nal Connections()

Returns an array of Terminal Connection objects associated with this Connection. Terminal Connection objects represent the relationship
between a Connection and a specific Terminal endpoint. There may be zero Terminal Connections associated with this Connection. In that
case, this method returns null. Connection objects lose their reference to a Terminal Connection once the Terminal Connection moves into
the Ter mi nal Connect i on. DROPPED state.
Post-conditions:

1. Let TerminalConnection tc[] = this.getTerminal Connections()

2. tc==null ortclength>=1

3. For dl i, tc[i].getState() != Terminal Connection.DROPPED
Returns:

An array of Terminal Connection objects associated with this Connection, null if there are no Terminal Connections.

o disconnect

public abstract void disconnect() throws Privil egeViolationException,
Resour ceUnavai | abl eExcepti on, ©Met hodNot Support edException, Invali dStateException

Drops a Connection from an active telephone call. The Connection's Address is no longer associated with the telephone call. This method
does not necessarily drop the entire telephone call, only the particular Connection on the telephone call. This method provides the ability
to disconnect a specific party from atelephone call, which is especially useful in telephone calls consisting of three or more parties.
Invoking this method may result in the entire telephone call being dropped, which is a permitted outcome of this method. In that case, the
appropriate events are delivered to the application, indicating that more than just a single Connection has been dropped from the telephone
call.

Allowable Connection States

The Connection object must be in one of several statesin order for this method to be successfully invoked. These allowable states are:
Connect i on. CONNECTED, Connect i on. ALERTI NG Connect i on. | NPROGRESS, or Connect i on. FAI LED. If the
Connection is not in one of these allowabl e states when this method is invoked, this method throws InvalidStateException. Having the

Connection in one of the allowable states does not guarantee a successful invocation of this method.
Method Return Conditions

This method returns successfully only after the Connection has been disconnected from the telephone call and has transitioned into the
Connect i on. DI SCONNECTED. This method may return unsuccessfully by throwing one of the exceptions listed below. Note that this
method waits (i.e. the invocating thread blocks) until either the Connection is actually disconnected from the telephone call or an error is
detected and an exception thrown. Also, all of the Termina Connections associated with this Connection are moved into the
Ter m nal Connect i on. DROPPED state. As aresult, they are no longer reported via the Connection by the
Connecti on. get Ter mi nal Connecti ons() method.
Asaresult of this method returning successfully, one or more events are delivered to the application. These events are listed below:

1. A ConnDisconnectedEv event for this Connection.

2. A TermConnDroppedEv event for all Termina Connections associated with this Connection.
Dropping Additional Connections

Additional Connections may be dropped indirectly as a result of this method. For example, dropping the destination Connection of a
two-party Call may result in the entire telephone call being dropped. It is up to the implementation to determine which Connections are
dropped as aresult of this method. Implementations should not, however, drop additional Connectionsiif it does not reflect the natural
response of the underlying telephone hardware.

Dropping additional Connections implies that their Terminal Connections are dropped as well. Also, if al of the Connections on a
telephone call are dropped as aresult of this method, the Call will moveintothe Cal | . | NVALI D state. The following lists additional
events which may be delivered to the application.

1. ConnDisconnectedEv/TermConnDroppedEv are delivered for all other Connections and Terminal Connections dropped indirectly
as aresult of this method.

2. CdllnvalidEv if al of the Connections are dropped indirectly as aresult of this method.

Pre-conditions:
1. ((this.getCdll()).getProvider()).getState() == Provider.IN_SERVICE
2. this.getState() == Connection. CONNECTED or Connection.ALERTING or Connection.INPROGRESS or Connection.FAILED
3. Let Terminal Connection tc[] = this.getTerminal Connections (see post- conditions)
Post-conditions:
1. ((this.getCadll()).getProvider()).getState() == Provider.IN_SERVICE
. this.getState() == Connection.DISCONNECTED
. For all i, tc[i].getState() == Terminal Connection.DROPPED
. this.getTerminal Connections() == null.
. thisis not an element of (this.getCall()).getConnections()
. ConnDisconnectedEv is delivered for this Connection.
. TermConnDroppedEv is delivered for all Terminal Connections associated with this Connection.

00 N O U A WDN

. ConnDisconnectedEv/TermConnDroppedEv are delivered for all other Connections and Terminal Connections dropped indirectly
asaresult of this method.

9. Cdllnvalidev if al of the Connections are dropped indirectly as aresult of this method.
Throws: PrivilegeViolationException

The application does not have the authority or permission to disconnected the Connection. For example, the Address associated
with this Connection may not be controllable in the Provider's domain.

Throws: ResourceUnavailableException

Aninternal resource required to drop a connection is not available.
Throws: MethodNotSupportedException

This method is not supported by the implementation.
Throws: InvalidStateException

Some abject required for the successful invocation of this method is not in the proper state as given by this method's

pre-conditions. For example, the Provider may not be in the Provider.IN_SERVICE state or the Connection may not be in one of
the allowable states.

See Also:
ConnDisconnectedEv, TermConnDroppedEyv, CalllnvalidEv

@ getCapabilities

public abstract ConnectionCapabilities getCapabilities()

Returns the dynamic capabilities for the instance of the Connection object. Dynamic capabilitiestell the application which actions are
possible at the time this method is invoked based upon the implementations knowledge of its ability to successfully perform the action.
This determination may be based upon the current state of the call model or some implementation-specific knowledge. These indications
do not guarantee that a particular method can be successfully invoked, however.

The dynamic Connection capabilities require no additional arguments.

Returns:

The dynamic Connection capabilities.

- getConnectionCapabilities

public abstract ConnectionCapabilities getConnectionCapabilities(Ternmi nal termnnal,
Addr ess addr ess)

throws | nvali dArgunent Exception, Pl atfornmException

Note: getConnectionCapabilities() is deprecated. Snce JTAPI v1.2. This method has been replaced by the Connection.getCapabilities()
method.

Gets the ConnectionCapabilities object with respect to a Terminal and an Address. If null is passed as a Terminal parameter, the general/
provider-wide Connection capabilities are returned.

Note: This method has been replaced in JTAPI v1.2. The Connect i on. get Capabi | i ti es() method returns the dynamic
Connection capabilities. This method now should simply invoke the Connect i on. get Capabi | i ti es() method.

Parameters:
terminal - Thisargument isignored in JTAPI v1.2 and later.
address - Thisargument isignored in JTAPI v1.2 and later.
Throws: InvalidArgumentException

This exception is never thrown in JTAPI v1.2 and later.
Throws: PlatformException

A platform-specific exception occurred.

Al l Packages Thi s Package Previous Next

Al l Packages Thi s Package Previous Next

Interface javax.telephony.JtapiPeer

public interface JtapiPeer
Introduction

The Jt api Peer interface represents a vendor's particular implementation of the Java Telephony API. Each JTAPI implementation vendor must
implement this interface. The Jtapi Peer object returned by the Jt api Peer Fact ory. get Jt api Peer () method determines which Providers
are made available to the application.

Obtaining a Provider

Applications usethe Jt api Peer . get Provi der () method on thisinterface to obtain new Provider objects. Each implementation may support
one or more different "services' (e.g. for different types of underlying network substrate). A list of available services can be obtained viathe
Jt api Peer . get Servi ces() method.

Applications may also supply optional arguments to the Provider through the Jt api Peer . get Pr ovi der () method. These arguments are
appended to the pr ovi der St ri ng argument passed to the Jt api Peer . get Pr ovi der () method. The pr ovi der St r i ng argument has
the following format:

<servicename > ; argl =vall; arg2 = val2; ...

Where < service name > is not optional, and each optional argument pair which followsis separated by a semi-colon. The keys for these arguments
isimplementation specific, except for two standard-defined keys:

1. login: providesthe login user name to the Provider.
2. passwd: provides a password to the Provider.
See Also:

JapiPeerFactory

Method [rndex

@ getName()
Returns the name of this JtapiPeer object instance.

@ getProvider (String)
Returns an instance of aPr ovi der object given a string argument which contains the desired service name.

& getServices()
Returns the services that this implementation supports.

MeFhods

- getName

public abstract String get Nane()

Returns the name of this JtapiPeer object instance. This name is the same name used as an argument to JtapiPeer Factory.getJtapiPeer ()
method.

Returns:
The name of this JtapiPeer object instance.

@ getServices
public abstract String[] getServices()
Returns the services that this implementation supports. This method returnsnul | if no services as supported.

Returns:
The services that this implementation supports.

- getProvider

public abstract Provider getProvider(String providerString) throws
Pr ovi der Unavai | abl eExcepti on

Returns an instance of aPr ovi der object given a string argument which contains the desired service name. Optional arguments may
also be provided in this string, with the following format:

<servicename > ; argl =vall; arg2 = val2; ...
Where < service name > is not optional, and each optional argument pair which followsis separated by a semi-colon. The keys for these
arguments is implementation specific, except for two standard-defined keys:
1. login: providesthe login user name to the Provider.
2. passwd: provides a password to the Provider.
If the argument is null, this method returns some default Provider as determined by the JtapiPeer object. The returned Provider isin the
Provi der. OQUT_OF_ SERVI CE state.
Post-conditions:
1. this.getProvider().getState() == Provider.OUT_OF SERVICE
Parameters:
providerString - The name of the desired service plus an optional arguments.
Returns:
An instance of the Provider object.
Throws: ProviderUnavailableException

Indicates a Provider corresponding to the given string is unavailable.

Al |l Packages Thi s Package Previous Next

Al l Packages Thi s Package Previous Next

Interface javax.telephony.Provider

public interface Provider
Introduction

A Provider represents the telephony software-entity that interfaces with atelephony subsystem. The telephony subsystem could be a PBX
connected to a server machine, atelephony/fax card in a desktop machine or a networking technology such asIP or ATM.

Provider States

The Provider may either be in one of the following states: Pr ovi der . | N_SERVI CE, Pr ovi der . QUT_COF_SERVI CE, or
Pr ovi der . SHUTDOMN. The Provider state represents whether any action on that Provider may be valid. The following tables describes each
state:

Provi der. | N_SERVI CE This state indicates that the Provider is currently alive and available for use.

This state indicates that a Provider istemporarily not available for use. Many methods in the Java Telephony
Provi der . QUT_OF_SERVI CE API areinvalid when the Provider isin this state. Providers may come back in service at any time, however,
the application can take no direct action to cause this change.

This state indicates that a Provider is permanently no longer available for use. Most methods in the Java
Telephony API are invalid when the Provider isin this state. Applications may use the

Pr ovi der . shut down() method on thisinterface to cause a Provider to moveinto the

Pr ovi der . SHUTDOWN state.

Pr ovi der . SHUTDOVWN:

The following diagram shows the allowabl e state transitions for the Provider as defined by the core package.

I EEVICE

SHTT T2
Hrdtinl Shte?
ST OF SERVICE

Obtaining a Provider

A Provider is created and returned by the Jt api Peer . get Provi der () method which is given a string to describe the desired Provider. This
method sets up any needed communication paths between the application and the Provider. The string given is one of the serviceslisted in the
Jt api Peer . get Ser vi ces() . JapiPeers particular implementation on a system and may be obtained viathe Jt api Peer Fact or y class.

Observers and Events

Each time a state changes occurs on a Provider, the application is notified via an event. This event is reported viathe Pr ovi der Cbser ver
interface. Applications instantiate objects which implement thisinterface and use the Pr ovi der . addObser ver () method to begin the delivery
of events. All Provider events reported via this interface extend the Pr ovEv interface. Applications may then query the event object returned for
the specific state change. In the core package API, the following events are sent to the ProviderObserver when the Provider changes state:

ProvInServiceEv, ProvOutOf ServiceEv, and ProvShutdownEv. The ProvObservationEndedEv event is delivered to all observers when the Provider
becomes unobservable and is the final event delivered to the observer.

Call Objects and Providers

The Provider maintains knowledge of the calls currently associated with it. Applications may obtain an array of these Callsviathe

Provi der . get Cal | s() method. A Provider may have Calls associated with it which were created before it came into existence. It isthe
responsibility of the implementation of the Provider to model and report all existing telephone calls which were created prior to the Provider's
lifetime. The Provider maintains references to al calls until they moveintothe Cal | . | NVALI D state.

Applications may create new Callsusing the Pr ovi der . cr eat eCal | () method. A new Call isreturnedinthe Cal | . | DLE state.
Applications may then use thisidle Call to place new telephone calls. Once created, this new Call object is returned viathe
Provi der. get Cal | s() method.

The Provider's domain

The term Provider's domain refersto the collection of Address and Termina objects which are local to the Provider, and typically, can be
controlled by the Provider. For example, the domain of a Provider of a desktop system with an ISDN card are the Address(es) and Terminal(s)
which represent that ISDN endpoint. The domain of a Provider for a PBX may be the Addresses and Terminalsin that PBX. The Provider
implementation controls access to Addresses and Terminals by limiting the domain its presents to the application.

Address and Terminal Objects

An Address object represents what we commonly think of as a"telephone number." In more rare implementations where the underlying network is
not a telephony network, this address may represent something else, such as an IP address. Regardless, it represents alogical endpoint of a
telephone call. A Terminal represents a physical hardware endpoint connected to the telephone network. An example of a Terminal is atelephone
set, but a Terminal does not have to take the form of this limited and traditional example. Addresses and Terminals are in a many-to-many
relationship. An Address may contain multiple Terminals, and Terminals may contain multiple Addresses. See the specifications for the Address
and Terminal objects for more information.

Unlike Call objects, applications may not create Terminal or Address objects. The Provider begins with knowledge of certain Terminal and
Address objects defined asitslocal domain. Thislist is static once the Provider is created. The Addresses and Terminals in the Provider's domain
arereported viathe Pr ovi der . get Addr esses() and Pr ovi der . get Ter mi nal s() methods, respectively.

Other Addresses and Terminals may be created sometime during the operation of the Provider when the Provider learns of new instances of these
objects. These new objects, however, represent Addresses and Terminals outside the Provider's domain. For example, if the Provider'sdomainisa
PBX, the Provider will know about all Addresses and Terminalsin this PBX when the Provider first starts. Any Addresses and Terminalsit
subsequently learns about are outside this PBX. These Address and Terminal objects outside this PBX are not reported via the

Provi der. get Term nal s() and Pr ovi der. get Addr esses() methods. Address and Terminal objects outside of the Provider's domain
arereferred to asremote.

Capabilities: Static and Dynamic

The Provider interface supports methods to return static capabilities for each of the Java Telephony call model objects. Static capabilities provide
applications with information concerning the ability of the implementation to perform certain methods. These static capabilities indicate whether a
method isimplemented for a particular type of object and does not depend upon the particular instance of the object nor the current state of the call
model. Those methods for which the static capability returns false will throw a MethodNotSupportedException when invoked. The static capability
methods supported on thisinterface are: Pr ovi der . get Pr ovi der Capabi lities(),Provi der.getCall Capabilities(),

Provi der. get AddressCapabi lities(),Provider.getTerm nal Capabilities(),

Provi der. get Connecti onCapabi lities(),andProvi der. get Ter ni nal Connecti onCapabilities().

Dynamic capabilities tell the application which actions are possible at the time this method is invoked based upon the implementations knowledge
of its ahility to successfully perform the action. This determination may be based upon argument passed to this method, the current state of the call
model, or some implementation-specific knowledge. These indications do not guarantee that a particular method can be successfully invoked,
however. This interface returns the dynamic capabilities for a Provider object viathe Pr ovi der . get Capabi | i ti es() method. Note that this
method is distinct from the static capability method Pr ovi der . get Provi der Capabi lities().

Multiple Providers and Multiple Applications

It is not guaranteed or expected that objects (Call, Terminal, etc.) instantiated through one Provider will be usable with another Provider. Therefore,
an application that uses two providers must keep all the objects relating to these providers separate. In the future, there may be a mechanism
whereby a Provider may share objects with another Provider if they are speaking to the same telephony hardware, however, such capabilities are
not availablein thisrelease.

Also, multiple applications may request and communicate with the same Provider implementation. Typically, since each application executesin its
own object space, each will have its own instance of the Provider object. These two different Provider objects may, in fact, be proxiesfor a
centralized Provider instance. Certain methods in JTAPI are specified to affect only the invoking applications and have not affect on others. The
only examplein the core packageisthe Pr ovi der . shut down() method.

See Also:
Jtapi Peer, JtapiPeerFactory, ProviderObserver

Variable [Hdex

@ |IN_SERVICE

TheProvi der . | N_SERVI CE stateindicates that a Provider is currently available for use.
* OUT_OF_SERVICE

ThePr ovi der. OUT_OF_SERVI CE state indicates that a Provider istemporarily not available for use.
2 SHUTDOWN

The Pr ovi der . SHUTDOWN state indicates that a Provider is permanently no longer available for use.

Method [ndex

@ addObser ver (ProviderObserver)

Adds an observer to the Provider.
= createCall()

Creates and returns a new instance of the Call object.
@ getAddress(String)

Returns an Address object which corresponds to the tel ephone number string provided.
@ getAddressCapabilities()

Returns the static capabilities of the Address object.
@ getAddr essCapabilities(Terminal)

Gets the AddressCapabilities object with respect to a Terminal. Depr ecated.
@ getAddresses()

Returns an array of Addresses associated with the Provider and within the Provider's domain.
@ getCallCapabilities()

Returns the static capabilities of the Call object.
@ getCallCapabilities(Terminal, Address)

Gets the Call Capabilities object with respect to a Termina and an Address. Deprecated.
w getCalls()

Returns an array of Call objects currently associated with the Provider.
& getCapabilities()

Returns the dynamic capabilities for the instance of the Provider object.
@ getConnectionCapabilities()

Returns the static capabilities of the Connection object.
@ getConnectionCapabilities(Terminal, Address)

Gets the ConnectionCapabilities object with respect to a Terminal and an Address. Depr ecated.
@ getName()

Returns the unique string name of the Provider.
@ getObservers()

Returns alist of all ProviderObservers associated with this Provider object.
@ getProvider Capabilities()

Returns the static capabilities of the Provider object.
@ getProvider Capabilities(Terminal)

Returns the ProviderCapabilities object with respect to a Terminal. Deprecated.

@ getState()

Returns the current state of the Provider, either Pr ovi der . | N_SERVI CE, Pr ovi der . OQUT_OF_SERVI CE, or
Pr ovi der . SHUTDOMN.

@ getTerminal (String)
Returns an instance of the Terminal class which corresponds to the given name.
getTerminalCapabilities()

Returns the static capabilities of the Terminal object.
@ getTerminal Capabilities(Terminal)

Gets the Terminal Capabilities object with respect to a Terminal. Deprecated.
@ getTerminalConnectionCapabilities()

Returns the static capabilities of the Terminal Connection object.
getTerminalConnectionCapabilities(Terminal)

Gets the Terminal ConnectionCapabilities of a Terminal. Deprecated.

@ getTerminals()
Returns an array of Terminals associated with the Provider and within the Provider's domain.
@ removeObser ver (ProviderObserver)

Removes the given observer from the Provider.
shutdown()

Instructs the Provider to shut itself down and perform all necessary cleanup.

Variables

@ IN_SERVICE

public static final int I N SERVICE
The Pr ovi der . | N_SERVI CE state indicates that a Provider is currently available for use.

@ ouT OF SERVICE

public static final int OUT_OF_SERVI CE

TheProvi der. OQUT_OF_SERVI CE state indicates that a Provider is temporarily not available for use. Many methods in the Java
Telephony API are invalid when the Provider isin this state. Providers may come back in service at any time, however, the application
can take no direct action to cause this change.

@ sHUTDOWN

public static final int SHUTDOAN

The Pr ovi der . SHUTDOWN state indicates that a Provider is permanently no longer available for use. Most methods in the Java
Telephony API are invalid when the Provider isin this state.

MeEhods

@ getState

public abstract int getState()

Returns the current state of the Provider, either Pr ovi der . | N_SERVI CE, Pr ovi der. OUT_OF_SERVI CE, or
Pr ovi der . SHUTDO/N.

Returns:
The current state of the provider.

@ getName

public abstract String get Nane()

Returns the unique string name of the Provider. Each different Provider must have a unique string associated with it. Thisisthe same
string which the application passed to the Jt api Peer . get Provi der () method to create this Provider instance.

Returns:
The name of the Provider.
See Also:

Japi Peer
@ getcalls

public abstract Call[] getCalls() throws ResourceUnavail abl eException

Returns an array of Call objects currently associated with the Provider. When a Call movesinto the Cal | . | NVALI D state, the Provider
losesits reference to this Call. Therefore, all Calls returned by this method must either beintheCal | . | DLE or Cal | . ACTI VE state.
This method returns null if the Provider has zero calls associated with it.
Post-conditions:

1. Let Callscallg[] = Provider.getCals()

2. cals==null or calslength>=1

3. For dl i, callgi].getState() == Call.IDLE or Cal.ACTIVE
Returns:

An array of Call objects currently associated with this Provider.

Throws:. ResourceUnavailableException

Indicates the number of calls present in the Provider istoo great to return as a static array.

- getAddress

public abstract Address get Address(String nunber) throws Invali dArgunent Exception

Returns an Address object which corresponds to the tel ephone number string provided. If the provided name does not correspond to an
Address known by the Provider and within the Provider's domain, InvalidArgumentException is thrown. In other words, the Address must
appear in thelist generated by Pr ovi der . get Addr esses() .
Pre-conditions:;

1. Let Address address = this.getAddress(number);

2. addressisan element of this.getAddresses();
Post-conditions:

1. Let Address address = this.getAddress(number);
2. addressis an element of this.getAddresses();
Parameters:
number - The telephone address string.
Returns:
The Address object corresponding to the given telephone number.
Throws: InvalidArgumentException

The name, e.g. telephone number of the Address does not correspond to the name of any Address object known to the Provider or
within the Provider's domain.

- getAddresses

public abstract Address[] get Addresses() throws ResourceUnavail abl eExcepti on

Returns an array of Addresses associated with the Provider and within the Provider's domain. Thislist is static (i.e. is does not change)
after the Provider isfirst created. If no Address objects are associated with this Provider, then this method returns null.
Post-conditions:

1. Let Address[] addresses = this.getAddresses()

2. addresses == null or addresses.|length>=1
Returns:

An array of Addresses known by this provider.

Throws: ResourceUnavailableException

Indicates the number of addresses present in the Provider istoo great to return as a static array.

@ getTerminals

public abstract Terminal[] getTerm nals() throws ResourceUnavail abl eException

Returns an array of Terminals associated with the Provider and within the Provider's domain. Each Terminal possesses a unique name,
which is assigned to it by the JTAPI implementation. If there are no Terminals associated with this Provider, then this method returns null.
Post-conditions:

1. Let Terminal[] terminals = this.getTerminal ()

2. terminals == null or terminals.length >= 1
Returns

An array of Terminalsin the Provider'slocal domain.

Throws. ResourceUnavailableException

Indicates the number of terminals present in the Provider istoo great to return as a static array.

- getTerminal

public abstract Terminal getTerm nal (String nane) throws |nvali dArgunent Exception

Returns an instance of the Terminal class which corresponds to the given name. Each Terminal has a unique name associated with it,
which is assigned to it by the JTAPI implementation. If no Terminal is available for the given name within the Provider's domain, this
method throws the InvalidArgumentException. This Terminal must be in the array generated by Pr ovi der . get Ter mi nal s() .
Pre-conditions:

1. Let Terminal terminal = this.getTerminal (name);

2. terminalsis an element of this.getTerminal s();
Post-conditions:

1. Let Terminal terminal = this.getTerminal (name);

2. terminal is an element of this.getTerminals();
Parameters:

name - The name of desired Terminal object.

Returns:

The Terminal object associated with the given name.

Throws: InvalidArgumentException

@ shutdown

The name provided does not correspond to a name of any Terminal known to the Provider or within the Provider's domain.

public abstract void shutdown()

Instructs the Provider to shut itself down and perform all necessary cleanup. Applications invoke this method when they no longer intend
to use the Provider, most often right before they exit. This method isintended to allow the Provider to perform any necessary cleanup
which would not be taken care of when the Java objects are garbage collected. This method causes the Provider to move into the

Pr ovi der . SHUTDOMN state, in which it will stay indefinitely.

If the Provider isalready in the Pr ovi der . SHUTDOWN state, this method does nothing. The invocation of this method should not affect

other applications which are using the same implementation of the Provider object.

Post-conditions:
1. this.getState() == Provider. SHUTDOWN

o createCall

public abstract Call createCall () throws ResourceUnavail abl eExcepti on,

| nval i dSt at eException, Privil egeViol ati onExcepti on, Met hodNot Support edExcepti on

Creates and returns a new instance of the Call object. This new call objectisintheCal | . | DLE st at e and has no Connections. An
exception is generated if anew call cannot be created for various reasons. This Provider must bein the Pr ovi der . | N_SERVI CE state,

otherwise an InvalidStateException is thrown.

Pre-conditions:

1

this.getState() == Provider.IN_SERVICE

Post-conditions:

1
2.
3.
4,
5.

this.getState() == Provider.IN_SERVICE
Let Cal cal =this.createCall();
call.getState() == Call.IDLE.
call.getConnections() == null

call isan element of this.getCalls()

Returns:

The new Call object.

Throws. ResourceUnavailableException

An internal resource necessary to create a new Call object is unavailable.

Throws: InvalidStateException

The Provider isnot inthe Pr ovi der . | N_SERVI CE state.

Throws: PrivilegeViolationException

The application does not have the proper authority to create a new telephone call object.

Throws. MethodNotSupportedException

The implementation does not support creating new Call objects.

o addObserver

public abstract void addCbserver (Provi der Gbhserver observer) throws
Resour ceUnavai | abl eExcepti on, Met hodNot Support edExcepti on

Adds an observer to the Provider. Provider-related events are reported viathe Pr ovi der Obser ver interface. The Provider object will

report eventsto this interface for the lifetime of the Provider object or until the observer is removed with the
Provi der. renmobveObser ver () method or until the Provider is no longer observable.

If the Provider becomes unobservable, a ProvObservationEndedEv is delivered to the application asisfinal event. No further events are
delivered to the observer unlessit is explicitly re-added by the application. When an observer receives a ProvObservationEndedEv it isno
longer reported viathe Pr ovi der . get Qbser ver s() method.

This method is valid anytime and has no pre-conditions. Application must have the ability to add observersto Providers so they can
monitor the changes in state in the Provider.

If an application attempts to add an instance of an observer already present on this Provider, then repeated attempts to add the instance of
the observer will silently fail, i.e. multiple instances of an observer are not added and no exception will be thrown.
Post-conditions:
1. observer isan element of this.getObservers()

Parameters:

observer - The observer being added.
Throws: MethodNotSupportedException

The observer cannot be added at thistime.
Throws: ResourceUnavailableException

The resource limit for the numbers of observers has been exceeded.

- getObservers

public abstract ProviderOoserver[] get Cbservers()

Returns alist of all ProviderObservers associated with this Provider object. If no observers exist on this Provider, then this method returns
null.

Post-conditions:
1. Let ProviderObserver[] observers = this.getObservers()
2. observers == null or observers.length >= 1
Returns:
An array of ProviderObserver objects associated with this Provider.

o removeObser ver

public abstract void renoveCbserver (Provi der Observer observer)

Removes the given observer from the Provider. The given observer will no longer receive events generated by this Provider object. The
final event will be the ProvObservationEndedEv event and will no longer be listed by the Pr ovi der . get Gbser ver s() method.

Also, if an observer isnot part of the Provider, then this method fails silently, i.e. no observer is removed an no exception is thrown.

Post-conditions:
1. observer isnot an element of this.getObservers()
2. ProvObservationEndedEv is delivered to observer
Parameters:
observer - The observer which is being removed.

@ getProvider Capabilities

public abstract ProviderCapabilities getProviderCapabilities()

Returns the static capabilities of the Provider object. The value of these capabilities will not change over the lifetime of the Provider. They
represent the static abilities of the implementation to perform certain methods on the Provider object. For all capability methods which
return false, the invocation of that method will aways throw MethodNotSupportedException.

NOTE: This method is different from the Pr ovi der . get Capabi | i ti es(), method which returns the dynamic capabilities of a

Provider object instance.
Returns:
The static capabilities of the Provider object.

@ getcallCapabilities

public abstract Call Capabilities getCall Capabilities()

Returns the static capabilities of the Call object. The value of these capabilities will not change over the lifetime of the Provider. They
represent the static abilities of the implementation to perform certain methods on the Call object. For al capability methods which return
false, the invocation of that method will always throw M ethodNotSupportedException.

Returns;
The static capabilities of the Call object.

@ getAddressCapabilities

public abstract AddressCapabilities get AddressCapabilities()

Returns the static capabilities of the Address object. The value of these capabilities will not change over the lifetime of the Provider. They
represent the static abilities of the implementation to perform certain methods on the Address object. For all capability methods which
return false, the invocation of that method will aways throw MethodNotSupportedException.

Returns:
The static capabilities of the Address object.

@ getTerminalCapabilities

public abstract Termi nal Capabilities getTerm nal Capabilities()

Returns the static capabilities of the Terminal object. The value of these capabilities will not change over the lifetime of the Provider.
They represent the static abilities of the implementation to perform certain methods on the Terminal object. For al capability methods
which return false, the invocation of that method will always throw MethodNotSupportedException.

Returns
The static capabilities of the Address object.

@ getConnectionCapabilities

public abstract ConnectionCapabilities getConnectionCapabilities()

Returns the static capabilities of the Connection object. The value of these capahilities will not change over the lifetime of the Provider.
They represent the static abilities of the implementation to perform certain methods on the Connection object. For all capability methods
which return false, the invocation of that method will always throw MethodNotSupportedException.

Returns:
The static capabilities of the Connection object.

- getTerminalConnectionCapabilities

public abstract Term nal Connecti onCapabilities getTerm nal Connecti onCapabilities()

Returns the static capabilities of the Terminal Connection object. The value of these capabilities will not change over the lifetime of the
Provider. They represent the static abilities of the implementation to perform certain methods on the Terminal Connection object. For all
capability methods which return false, the invocation of that method will always throw M ethodNotSupportedException.

Returns:
The static capabilities of the Terminal Connection object.

@ getcapabilities

public abstract ProviderCapabilities getCapabilities()

Returns the dynamic capabilities for the instance of the Provider object. Dynamic capabilities tell the application which actions are
possible at the time this method is invoked based upon the implementations knowledge of its ability to successfully perform the action.
This determination may be based upon argument passed to this method, the current state of the call model, or some

implementation-specific knowledge. These indications do not guarantee that a particular method can be successfully invoked, however.
There are no arguments passed into this method for dynamic Provider capabilities

NOTE: This method is different from the Pr ovi der . get Provi der Capabi | i ti es() method which returns the static capabilities
for the Provider object.

Returns:
The dynamic Provider capabilities.

- getProvider Capabilities

public abstract ProviderCapabilities getProviderCapabilities(Term nal termnal)
throws | nval i dArgunent Exception, Pl atfornException

Note: getProvider Capabilities() is deprecated. Since JTAPI v1.2. This method has been replaced by the
Provider.getProvider Capabilities() method.

Returns the ProviderCapabilities object with respect to a Terminal. If null is passed as a Terminal parameter, the general/provider-wide
Provider capabilities are returned.

Note: This method has been replaced in JTAPI v1.2. The Pr ovi der . get Pr ovi der Capabi | i ti es() method returns the static
Provider capabilities. This method now should simply invoke the Pr ovi der . get Provi der Capabi | i ti es(voi d) method.

Parameters.
terminal - This parameter isignored in JTAPI v1.2 and later.
Throws: InvalidArgumentException

This exception is never thrown in JTAPI v1.2 and later.
Throws: PlatformException

A platform-specific exception occurred.

@ getCallCapabilities

public abstract Call Capabilities getCall Capabilities(Term nal terninal,
Addr ess address) throws

| nval i dAr gunent Exception, Pl atfornException

Note: getCallCapabilities() is deprecated. Snce JTAPI v1.2. This method has been replaced by the Provider.getCall Capabilities()
method.

Gets the Call Capabilities object with respect to a Terminal and an Address. If null is passed as a Terminal/Address parameter, the
general/provider-wide Call capabilities are returned.

Note: This method has been replaced in JTAPI v1.2. The Pr ovi der . get Cal | Capabi | i ti es() method returns the static Call
capabilities. This method now should simply invoke the Pr ovi der . get Cal | Capabi | i ti es(voi d) method.

Parameters:
terminal - Thisargument isignored in JTAPI v1.2 and later.
address - Thisargument isignored in JTAPI v1.2 and later.
Throws: InvalidArgumentException

This exception is never thrown in JTAPI v1.2 and later.
Throws: PlatformException

A platform-specific exception occurred.

@ getConnectionCapabilities

public abstract ConnectionCapabilities getConnectionCapabilities(Term nal termnal,
Addr ess addr ess)

throws | nvali dArgunent Exception, Pl atfornmException

Note: getConnectionCapabilities() is deprecated. Snce JTAPI v1.2. This method has been replaced by the
Provider.getConnectionCapabilities() method.

Gets the ConnectionCapabilities object with respect to a Terminal and an Address. If null is passed as a Terminal/Address parameter, the
general/ provider-wide Connection capabilities are returned.

Note: This method has been replaced in JTAPI v1.2. The Pr ovi der . get Connect i onCapabi |l i ti es() method returnsthe static
Connection capabilities. This method now should simply invoke the Pr ovi der . get Connect i onCapabi | iti es(voi d) method.
Parameters:

terminal - Thisargument isignored in JTAPI v1.2 and later.

exception - Thisargument isignored in JTAPI v1.2 and later.
Throws: InvalidArgumentException

This exception is never thrown in JTAPI v1.2 and later.
Throws: PlatformException

A platform-specific exception occurred.

@ getAddressCapabilities

public abstract AddressCapabilities get AddressCapabilities(Termnal termnal)
throws lnvali dArgunent Exception, PlatformException

Note: getAddressCapabilities() is deprecated. Snce JTAPI v1.2. This method has been replaced by the
Provider.getAddressCapabilities() method.

Gets the AddressCapabilities object with respect to a Terminal. If null is passed as a Terminal parameter, the general/provider-wide
Address capahilities are returned.

Note: This method has been replaced in JTAPI v1.2. The Pr ovi der . get Addr essCapabi | i ti es() method returns the static
Address capahilities. This method now should simply invoke the Pr ovi der . get Addr essCapabi | i ti es(voi d) method.

Parameters:
terminal - Thisargument isignored in JTAPI v1.2 and later.
Throws: InvalidArgumentException

This exception is never thrown in JTAPI v1.2 and later.
Throws: PlatformException

A platform-specific exception occurred.

- getTerminalConnectionCapabilities

public abstract Term nal Connecti onCapabilities
get Ter m nal Connecti onCapabilities(Term nal term nal) throws
| nval i dAr gunent Excepti on, Pl atfornmException

Note: getTerminalConnectionCapabilities() is deprecated. Snce JTAPI v1.2. This method has been replaced by the
Provider.getTerminal ConnectionCapabilities() method.

Gets the Terminal ConnectionCapabilities of a Terminal. If null is passed asa Terminal parameter, the general/provider-wide
Terminal Connection capabilities are returned.

Note: This method has been replaced in JTAPI v1.2. The Pr ovi der . get Ter mi nal Connecti onCapabiliti es() method
returns the static Terminal Connection capabilities. This method now should simply invoke the
Provi der. get Ter mi nal Connecti onCapabil i ties(voi d) method.

Parameters:
terminal - Thisargument isignored in JTAPI v1.2 and later. are being queried
Throws: InvalidArgumentException

This exception is never thrown in JTAPI v1.2 and later.
Throws: PlatformException

A platform-specific exception occurred.

@ getTerminalCapabilities

public abstract Term nal Capabilities getTerm nal Capabilities(Terninal term nal)
throws | nvali dArgunment Exception, Pl atfornException
Note: getTerminalCapabilities() is deprecated. Snce JTAPI v1.2. This method has been replaced by the
Provider.getTerminal Capabilities() method.

Gets the Terminal Capabilities object with respect to a Terminal. If null is passed as a Terminal parameter, the general/provider-wide
Terminal capabilities are returned.

Note: This method has been replaced in JTAPI v1.2. The Pr ovi der . get Ter m nal Capabi |l i ti es() method returnsthe static
Terminal capabilities. This method now should simply invoke the Pr ovi der . get Ter mi nal Capabi |l i ti es(voi d) method.

Parameters:
terminal - Thisargument isignored in JTAPI v1.2 and later.

Throws: InvalidArgumentException

This exception is never thrown in JTAPI v1.2 and later.
Throws: PlatformException

A platform-specific exception occurred.

Al l Packages Thi s Package Previous Next

Al l Packages Thi s Package Previous Next

Interface javax.telephony.ProviderObserver

public interface Provider Observer
Introduction

ThePr ovi der Cbser ver interface reports al changes which happen to the Provider object. These changes are reported as eventsto the
Provi der Gbser ver. provi der ChangedEvent () method. Applications must instantiate an object which implements this interface and
then usethe Pr ovi der . addObser ver ()) method to register the object to receive al future events associated with the Provider object.

TheProvi der Gbser ver. provi der ChangedEvent () method receives an array of events which all must extend the Pr ovEv interface.

Since severa changes may happen to asingle JTAPI object at once, alist of eventsis needed to convey those changes which happen at the same
time. Applications iterate through the array of events provided.

Provider State Changes

In the core package, an event is delivered whenever the Provider changes state. The event interfaces which correspond to these state changes for the
core package are: Pr ovl nSer vi ceEv, ProvQut O Ser vi ceEv, and Pr ovShut downEv.

Provider Observation Ending

At various times, the underlying implementation may not be able to observe the Provider. In these instances, the ProviderObserver is sent an
ProvObservationEndedEv event. This indicates that the application will not receive further events associated with the Provider object. This
observer will no longer be reported viathe Pr ovi der . get Gbser ver s() method.

See Also:
ProvEv, ProvinServiceEv, ProvOutOf ServiceEv, ProvShutdownEv, ProvObservationEndedEv

Merhod [ndeyx

@ provider ChangedEvent(ProvEV[])

Reports al events associated with the Provider object.

MeEhods

@ provider ChangedEvent

public abstract void provi der ChangedEvent (ProvEv eventList[])

Reports all events associated with the Provider object. This method passes an array of ProvEv objects as its arguments which correspond
tothelist of events representing the changes to the Provider object.

Parameters:
eventList - Thelist of Provider events.

Al l Packages Thi s Package Previous Next

Al l Packages Thi s Package Previous Next

Interface javax.telephony.Terminal

public interface Terminal
Introduction

A Terminal represents a physical hardware endpoint connected to the telephony domain. An example of a Terminal is atelephone set, but a
Terminal does not have to take the form of thislimited and traditional example. For example, computer workstations and hand-held devices are
modeled as Terminalsif they act as physical endpointsin atelephony network.

A Terminal object has a string name which is unique for all Terminal objects. The Terminal does not attempt to interpret this string in any way.
This nameisfirst assigned when the Terminal is created and does not change throughout the lifetime of the object. The method

Ter mi nal . get Nane() returns the name of the Terminal object. The name of the Terminal may not have any real-world interpretation.
Typically, Terminals are chosen from alist of Terminals obtained from an Address object.

Terminal objects may be classified into two categories: local and remote. Local Terminal objects are those terminals which are part of the
Provider's local domain. These Terminal objects are created by the implementation of the Provider object when it isfirst instantiated. All of the
Provider's local terminals are reported viathe Pr ovi der . get Ter mi nal s() method. Remote Terminal objects are those outside of the
Provider's domain which the Provider learns about during its lifetime through various happenings (e.g. an incoming call from a currently unknown
address). Remote Terminal objects are not reported viathe Pr ovi der . get Ter mi nal s() method. Note that applications never explicitly
create new Terminal objects.

Address and Terminal objects

Address and Terminal objects exist in a many-to-many relationship. An Address object may have zero or more Terminals associated with it. For
each Terminal associated with an Address, that Terminal must also reflect its association with the Address. Since the implementation creates
Address (and Terminal) objects, it is responsible for insuring the correctness of these relationships. The Terminals associated with an Addressis
given by the Addr ess. get Ter m nal s() method.

An association between an Address and Terminal object indicates that the Terminal contains the Address object as one of its tel gphone number
addresses. In many instances, atelephone set (represented by a Terminal object) has only one tel ephone number (represented by an Address object)
associated with it. In more complex configurations, telephone sets may have several tel ephone numbers associated with them. Likewise, a
telephone number may appear on more than one telephone set. For example, feature phonesin PBX environments may exhibit this configuration.

Terminals and Call objects

Terminal objects represent the physical endpoints of atelephone call. With respect to a single Address endpoint on a Call, multiple physical
Terminal endpoints may exist. Terminal objects are related to Call objects via the Terminal Connection object. Terminal Connection objects are
associated with Call indirectly via Connections. A Terminal may be associated with a Call only if one of its Addressesis associated with the Call.
The Termina Connection object has a state which describes the current relationship between the Connection and the Terminal. Each Terminal
object may be part of more than one telephone call, and in each case, is represented by a separate Terminal Connection objet. The

Ter m nal . get Ter m nal Connecti ons() method returns al Terminal Connection object currently associated with the Terminal.

A Terminal object is associated with a Connection until the Terminal Connection moves into the Ter m nal Connect i on. DROPPED state. At
that time, the Terminal Connection is no longer reported viathe Ter i nal . get Ter ni nal Connect i ons() method. Therefore, the
Ter m nal . get Ter m nal Connecti ons() method never reports a TerminalConnection in the Ter mi nal Connect i on. DROPPED state.

Existing Telephone Calls

The Java Telephony API specification states that the implementation is responsible for reporting all existing telephone calls when a Provider isfirst
created. Thisimpliesthat an Terminal object must report information regarding existing telephone callsto that Terminal. In other words, Terminal
objects must report all Terminal Connection objects which represent existing telephone calls.

Terminal Observers and Events

All changesin an Terminal object are reported viathe TerminalObserver interface. Applications instantiate an object which implementsthis

interface and begins this delivery of eventsto this object using the Ter mi nal . addObser ver () method. All Terminal-related events extend the
Ter nEv interface provided in the core package. Applications receive events on an observer until the observer isremoved viathe

Term nal . renoveQbser ver () method or until the Terminal is no longer observable. In these instances, each Terminal Observer receives a
TermObservationEndedEv asits final event.

Currently in the core package, the only Terminal-related event is TermObservationEndedEv.
Call Observers

At times, applications may want to monitor a particular Terminal for all Calls which come to that Terminal. For example, a desktop telephone
application is only interested in telephone calls associated with a particular agent terminal. To achieve this sort of Terminal-based Call monitoring
applications may add CallObserversto an Terminal viathe Ter mi nal . addCal | Cbser ver () method.

When a CallObserver is added to an Terminal, this observer instance isimmediately added to al Calls at this Terminal and is added to al Calls
which cometo this Terminal in the future. These observers remain on the telephone call aslong as the Terminal is associated with the telephone
call.

The specification of Ter mi nal . addCal | Cbser ver () contains more precise semantics.
See Also:
Terminal Observer, CallObserver

Method [ndex

@ addCallObser ver (CallObserver)

Adds an observer to a Call object when this Terminal object first becomes part of that Call.
@ addObser ver (Terminal Observer)

Adds an observer to the Terminal.

@ getAddresses()
Returns an array of Address objects associated with this Terminal object.
@ getCallObservers()

Returns alist of all CallObservers associated with this Terminal object.
@ getCapabilities()

Returns the dynamic capabilities for the instance of the Terminal object.
@ getName()

Returns the name of the Terminal.

@ getObservers()

Returns alist of all TerminalObservers associated with this Terminal object.
@ getProvider ()

Returns the Provider associated with this Terminal.
@ getTerminal Capabilities(Terminal, Address)

Gets the Terminal Capabilities object with respect to a Terminal and an Address. Depr ecated.
@ getTerminal Connections()

Returns an array of Terminal Connection objects associated with this Terminal.
= removeCallObser ver (Call Observer)

Removes the given CallObserver from the Terminal.
@ removeObser ver (Terminal Observer)

Removes the given observer from the Terminal.

Mefhods

- getName

public abstract String get Nanme()

Returns the name of the Terminal. Each Terminal possesses a unique name. This nameis assigned by the implementation and may or may
not carry areal-world interpretation.

Returns:
The name of the Terminal.

@ getProvider

public abstract Provider getProvider()

Returns the Provider associated with this Terminal. This Provider object is valid throughout the lifetime of the Terminal and does not
change once the Terminal is created.

Returns:
The Provider associated with this Terminal.

- getAddresses

public abstract Address[] get Addresses()

Returns an array of Address objects associated with this Terminal object. The Terminal object must have at |east one Address object
associated with it. Thislist does not change throughout the lifetime of the Terminal object.

Post-conditions:
1. Let Address[] addrs = this.getAddresses()
2. addrslength>=1
Returns:
An array of Address objects associated with this Terminal.

- getTerminalConnections

public abstract Term nal Connection[] getTerm nal Connections()

Returns an array of Terminal Connection objects associated with this Terminal. Once a Termina Connection is added to a Terminal, the
Terminal maintains a reference until the Termina Connection movesinto the Ter mi nal Connect i on. DROPPED state. Therefore, all
Terminal Connections returned by this method will never bein the Ter mi nal Connect i on. DROPPED state. If there are no
Terminal Connections associated with this Terminal, this method returns null.
Post-conditions:

1. Let TerminalConnection tc[] = this.getTerminal Connections()

2. tc==null or tclength>=1

3. For all i, tc[i].getState() != Terminal Connection.DROPPED
Returns:

An array of Terminal Connection objects associated with this Terminal.

o addObserver

public abstract void addObserver(Terni nal Gbserver observer) throws
Resour ceUnavai | abl eExcepti on, Met hodNot Support edExcepti on

Adds an observer to the Terminal. The TerminalObserver reports al Terminal-related state changes as events. The Terminal object will
report events to this Terminal Observer object for the lifetime of the Terminal object or until the observer is removed with the

Term nal . renoveQbser ver () oruntil the Terminal is no longer observable. In these instances, a TermObservationEndedEv is
delivered to the observer asits final event. The observer will receive no events after TermObservationEndedEv unless the observer is
explicitly re-added viathe Ter mi nal . addQbser ver () method. Also, once an observer receives an TermObservationEndedEv, it will
no longer be reported viathe Ter mi nal . get Cbservers().

If an application attempts to add an instance of an observer already present on this Terminal, this attempt will silently fail, i.e. multiple
instances of an observer are not added and no exception will be thrown.

Currently, only the TermObservationEndedEv event is defined by the core package and delivered to the Terminal Observer.

Post-conditions:
1. observer isan element of this.getObservers()
Parameters:
observer - The observer being added.
Throws. MethodNotSupportedException

The observer cannot be added at thistime
Throws. ResourceUnavailableException

The resource limit for the numbers of observers has been exceeded.

@ getObservers

public abstract Termni nal Cbserver[] getObservers()

Returnsalist of all Terminal Observers associated with this Terminal object. If there are no observers associated with this Terminal, this
method returns null.

Post-conditions:
1. Let TerminalObserver[] obs = this.getObservers()
2. obs==null or obslength>=1
Returns:
An array of Terminal Observer objects associated with this Terminal.

- removeObser ver

public abstract void renpoveCbserver (Tern nal Observer observer)

Removes the given observer from the Terminal. If successful, the observer will no longer receive events generated by this Terminal
object. Asitsfina event, the Terminal Observer receives a TermObservationEndedEv.

If an observer is not part of the Terminal, then this method fails silently, i.e. no observer is removed an no exception is thrown.

Post-conditions:
1. A TermObservationEndedEv event is reported to the observer asits final event.
2. observer is not an element of this.getObservers()
Parameters:
observer - The observer which is being removed.

@ addcallObserver

public abstract void addCal | Cbserver (Call Gbserver observer) throws
Resour ceUnavai | abl eExcepti on, Met hodNot Support edExcepti on

Adds an observer to a Call object when this Terminal object first becomes part of that Call. This method permits applicationsto select a
Terminal object in which they are interested and automatically have the implementation attach an observer to al present and future Calls
which come to this Terminal.

JTAPI v1.0 Semantics

In version 1.0 of the Java Telephony API specification, the application monitored the Terminal object for the TermCallAtTermEv event.
This event indicated that a Call has come to this Terminal. Then, applications would manually add an observer to the Call. With this
architecture, potentially dangerous race conditions existed while an application was adding an observer to the Call. As aresult, this
mechanism has been replaced in version 1.1.

JTAPI v1.1 Semantics

In version 1.1 of the specification, the TermCall AtTermEv event does not exist and this method replaces the functionality described
above. Instead of monitoring for a TermCall AtTermEv event, the application simply usesthe Ter ni nal . addCal | Cbser ver ()
method, and observer will be added to new telephone calls at this Terminal automatically.

If an application attempts to add an instance of a call observer already present on this Terminal, these repeated attempts will silently fail,
i.e. multiple instances of a call observer are not added and no exception will be thrown.
When acall observer isadded to an Terminal with this method, the following behavior is exhibited by the implementation.

1. Itisimmediately associated with any existing calls at the Terminal and a snapshot of those calls are reported to the call observer.
For each of these calls, the observer isreported viaCal | . get Gbservers().

2. Itisassociated with all future calls which come to this Terminal. For each new call, the observer isreported via
Cal | . get Chservers().

Note that the definition of theterm ".. when acall isat a Terminal" means that the Call contains a Connection which contains a
Terminal Connection with this Terminal asits Terminal.

Call Observer Lifetime

For all call observers which are present on Calls because of this method, the following behavior is exhibited with respect to the lifetime of
the call.

1. The call observer receives events until the Call isno longer at this Terminal. In this case, the call observer will be re-applied to
the Call if the Call returns to this Terminal at some point in the future.

2. Thecall observer isremoved with Cal | . r enbveCbser ver () . Note that this only affects the instance of the call observer for
that particular call. If the Call subsequently leaves and returns to the Terminal, the observer will be re-applied.

3. The Call can no longer be monitored by the implementation.
4. The Call movesintotheCal | . | NVALI D state.

When the CallObserver leaves the Call because of one of the reasons above, it receives a Call ObservationEndedEv asits fina event.
Call Observer on Multiple Addresses and Terminals

Itis possible for an application to add CallObservers to more than one Address and Terminal (using Addr ess. addCal | Gbser ver ()
and Ter mi nal . addCal | Cbser ver (), respectively). The rules outlined above still apply, with the following additions:

1. A CallObserver is not added to a Call more than once, even if it has been added to more than one Address/Termina which are
present on the Call.

2. The CallObserver leavesthe call only if ALL of the Addresses and Terminals on which the Call Observer was added leave the
Call. If one of those Addresses/Terminals becomes part of the Call again, the call observer is re-applied to the Call.
Post-Conditions:
1. observer isan element of this.getCallObservers()
2. observer is an element of Call.getObservers() for each Call associated with the Connections from this.getConnections().
3. An array of snapshot events are reported to the observer for existing calls associated with this Terminal.
Parameters:
observer - The observer being added.
Throws. MethodNotSupportedException
The observer cannot be added at thistime
Throws:. ResourceUnavailableException

The resource limit for the numbers of observers has been exceeded.
See Also:

Call

- getCallObservers

public abstract Call Qbserver[] getCall Cbservers()

Returns alist of all CallObservers associated with this Terminal object. That is, it returns alist of CallObserver objects which have been
added viathe Ter ni nal . addCal | Gbser ver () method. If there are no Call observers associated with this Terminal object, this
method returns null.
Post-conditions:

1. Let CallObserver[] obs = this.getCallObservers()

2. obs==null or obs.length>=1
Returns:

An array of CallObserver objects associated with this Address.
@ removeCallObser ver

public abstract void renoveCal | Gbserver (Call Gbserver observer)

Removes the given CallObserver from the Terminal. In other words, it removes a Call Observer which was added via the
Term nal . addCal | Cbser ver () method. If successful, the observer will no longer be added to new Calls which are presented to
this Terminal, however it does not affect CallObservers which have already been added at a Call.

Also, if the CallObserver is not part of the Terminal, then this method fails silently, i.e. no observer is removed and no exception is
thrown.

Post-conditions:
1. observer isnot an element of this.getCallObservers()
Parameters:
observer - The CallObserver which is being removed.

@ getCapabilities

public abstract Termi nal Capabilities getCapabilities()

Returns the dynamic capabilities for the instance of the Terminal object. Dynamic capabilitiestell the application which actions are
possible at the time this method is invoked based upon the implementation's knowledge of its ability to successfully perform the action.
This determination may be based upon argument passed to this method, the current state of the call model, or some

implementation-specific knowledge. These indications do not guarantee that a particular method will be successful when invoked,
however.

The dynamic Terminal capabilities require no additional arguments.
Returns
The dynamic Terminal capabilities.

@ getTerminalCapabilities

public abstract Term nal Capabilities getTerm nal Capabilities(Terninal termninal,
Addr ess addr ess)

throws | nvali dArgunent Exception, Pl atfornException

Note: getTerminal Capabilities() is deprecated. Snce JTAPI v1.2. This method has been replaced by the Terminal.getCapabilities()
method.

Gets the Terminal Capabilities object with respect to a Terminal and an Address. If null is passed as a Terminal parameter, the
general/provider- wide Terminal capabilities are returned.

Note: This method has been replaced in JTAPI v1.2. The Ter mi nal . get Capabi | i ti es() method returns the dynamic Terminal
capabilities. This method now should simply invokethe Ter mi nal . get Capabi | iti es() method.

Parameters:

address - Thisargument isignored in JTAPI v1.2 and later.
terminal - Thisargument isignored in JTAPI v1.2 and later.
Throws: InvalidArgumentException

This exception is never thrown in JTAPI v1.2 and later.
Throws: PlatformException

A platform-specific exception occurred.

Al l Packages Thi s Package Previous Next

Al l Packages Thi s Package Previous Next

Interface javax.telephony.TerminalConnection

public interface TerminalConnection
Introduction

The Terminal Connection represents the rel ationship between a Connection and a Terminal. A Terminal Connection object must always be
associated with a Connection object and a Terminal object. The Connection and the Terminal objects associated with the Terminal Connection do
not change throughout the lifetime of the Terminal Connection. Applications obtain the Connection and Terminal associated with the
TerminalConnection viathe Ter mi nal Connect i on. get Connecti on() and Ter m nal Connecti on. get Ter mi nal () methods,
respectively.

Because a Terminal Connection is associated with a Connection, it there is also associated with some Call. The Termina Connection describes the
specific relationship between a physical Terminal endpoint with respect to an Address on a Call. Terminal Connections provide a physical view of a
Call. For aparticular Address endpoint on a Call, there may be zero or more Terminals at which the Call terminates. The Terminal Connection
describes each specific Terminal on the Call associated with a particular Address endpoint on the Call. Many simple applications may not care
about which specific Terminals are on the Call at a particular Address endpoint. In these cases, the logical view provided by Connections are
sufficient.

Requirements for TerminalConnections

In order for a Terminal to be on a Call and associated with a Connection, the Terminal must be associated with the Address object endpoint of the
Connection. That is, for each Terminal Connection on a Connection, the Connection's Address must be associated with the Terminal Connection's
Terminal. The following predicates illustrates this necessary relationship:

1. Let address = connection.getAddress();

2. Let tc[] = connection.getTerminal Connections();

3. Foraliintc]], let terminal[i] = tc[i].getTerminal();

4, Assert for al i: addressis an element of terminal[i].getAddresses();
5. Assert for al i: terminali] is an element of address.getTerminas();

TerminalConnection States

The Termina Connection has a state which describes the current relationship between a Terminal and a Connection. Termina Connection states are
distinct from Connection states. Connection states describe the relationship between an entire Address endpoint and a Call, whereas the

Terminal Connection state describes the relationship between one of the Terminals at the endpoint Address on the Call with respect to its
Connection. Different Terminals on a Call which are associated with the same Connection may be in different states. Furthermore, the state of the
Terminal Connection has a dependency and specific relationship to the state of its Connection, as described later on.

The Termina Connection interface in the core package has six states defined in real-world terms below:

This state istheinitial state for all Terminal Connections. Terminal Connection objects do not stay in this
state for long. They typically transition into another state quickly.

Ter mi nal Connect i on. RI NG NG This state indicates the a Terminal is ringing, indicating that the Terminal has an incoming Call.

. . This state indicates that a Terminal is part of atelephone call but not in an active fashion. This may imply
Term nal Connecti on. PASSI VE that aresource of the Terminal is being used and may limit actions on the Terminal.

This state indicates that a Terminal is actively part of atelephone call. This usually implies that the party
speaking on that Terminal is part of the telephone call.

Ter m nal Connect i on. DROPPED This state indicates that a particular Terminal has permanently left the telephone call.

: . NOWN This state indicates that the implementation is unable to determine the state of the Terminal Connection.
Term nal Connecti on. UNK Terminal Connections may transition into and out of this state at any time.

Ter mi nal Connection. | DLE

Ter mi nal Connect i on. ACTI VE

When a Termina Connection moves into the Ter i nal Connect i on. DROPPED state, it is no longer associated with its Connection and
Terminal. That is, both of these objects |ose their references to the Terminal Connection. However, the Terminal Connection still maintainsits
references to the Connection and Terminal object for application reference. That is, when a Terminal Connection movesinto the

Ter mi nal Connect i on. DROPPED state, the methods Ter i nal Connect i on. get Connecti on() and
Ter mi nal Connecti on. get Termi nal () still return valid objects.

TerminalConnection state transitions

Similar to the Connection, there is afinite-state diagram which describes the allowable state transitions of a Terminal Connection. The
implementation must guarantee these state transitions. The specifications of methods which affect the state of the Termina Connections also obey
these state transitions. This state diagram is below:

-l —-
X

(axcept DROPPED)]

55N

DROPPEL

Note the Terminal Connection may transition into the Ter mi nal Connect i on. DROPPED state from any state, and into and out of the
Ter mi nal Connect i on. UNKNOMN state from any state.

Relationship between Connections and TerminalConnections

As mentioned previoudly, the state of the Connection determines the following about Terminal Connections:
o Whether Terminal Connections may exist on a Connection.
« Thealowable states of the TerminalConnectionsiif they exist.

These properties about Connections and Terminal Connections are guaranteed by the implementation. This relationship is further illustrated in the
description of such methodsas Cal | . connect (), Connecti on. di sconnect ed(), and Ter mi nal Connecti on. answer (). The
following chart defines the specific relationship between Connection states and Termina Connections.

If the Connection isin state...

Connecti on

Connecti on

Connecti on

Connecti on

. I DLE

. | NPROGRESS

. ALERTI NG

. CONNECTED

... then the TerminalConnection is

No Terminal Connections may exist on this Connection, that is, the
Connecti on. get Ter m nal Connect i ons() method returns null.

No Terminal Connections may exist on this Connection, that is, the
Connecti on. get Ter m nal Connect i ons() method returns null.

Zero or more Terminal Connections may exist on this Connection, and each must bein the
Ter mi nal Connect i on. RI NG NGstate.

Zero or more Terminal Connections may exist on this Connection, and each must bein the

Ter m nal Connect i on. PASSI VE or the Ter mi nal Connect i on. ACTI VE state. Note that when
Terminal Connections must into the Ter m nal Connect i on. DROPPED state they are no longer associated
with the Connection.

No Terminal Connections may exist on this Connection, that is, the
Connect i on. DI SCONNECTED Connecti on. get Ter mi nal Connecti ons() method returns null. Note that all Terminal Connections
previously associated with this Connection will moveinto the Ter m nal Connect i on. DROPPED state.

No Terminal Connections may exist on this Connection, that is, the
Connecti on. FAI LED Connect i on. get Ter mi nal Connecti ons() method returns null. Note that all Terminal Connections
previously associated with this Connection will moveinto the Ter mi nal Connect i on. DROPPED state.

Zero or more Terminal Connections may exist on this Connection, and each must bein the

Connect i on. UNKNOMN Ter mi nal Connect i on. UNKNOWN state.

The TerminalConnection.answer() Method

The primary method supported on the core package's Terminal Connection interface isthe Ter mi nal Connect i on. answer () method. This
method answers atelephone call at a Terminal. This method moves the Terminal Connection into the Ter ni nal Connect i on. ACTI VE state
upon success. The Terminal Connection must be in the Ter m nal Connect i on. RI NG NG state when this method is invoked.

Observers and Events

All events pertaining to the Termina Connection object are reported viathe Cal | Obser ver interface on the Call object associated with this
Terminal Connection. In the core package, events are reported to a CallObserver when a new Terminal Connection is created and whenever a
Terminal Connection changes state. Observers are added to Call objectsviathe Cal | . addCbser ver () method and more indirectly viathe
Addr ess. addCal | Gbserver () and Ter m nal . addCal | Gbser ver () methods. See the specifications for the Call, Address, and
Terminal interfaces for more information.

The following Terminal Connection-related events are defined in the core package. Each of these events extend the Ter mConnEv interface (which,
in turn, extends the Cal | Ev interface).

Ter nConnCr eat edEv Indicates a new Terminal Connection has been created on a Connection.
Ter nConnRi ngi ngEv I ndicates the Terminal Connection has moved into the Ter mi nal Connect i on. Rl NG NGstate.
Ter nConnAct i veEv Indicates the Termina Connection has moved into the Ter mi nal Connect i on. ACTI VE state.

Ter nConnPassi veEv Indicates the Terminal Connection has moved into the Ter ni nal Connect i on. PASSI VE state.
Ter nConnDr oppedEv Indicates the Termina Connection has moved into the Ter mi nal Connect i on. DROPPED state.
Ter mConnUnknownEv Indicates the Termina Connection has moved into the Ter mi nal Connect i on. UNKNO/N state.

See Also:

CadllObserver, Termina Observer, TermConnEyv, CallEv, TermConnRingingEv, TermConnActiveEv, TermConnPassiveEy,
TermConnDroppedEv, TermConnUnknownEv

Variable [ndex

* ACTIVE

The Ter m nal Connect i on. ACTI VE state indicates that a Terminal is actively part of atelephone call.
DROPPED

The Ter m nal Connect i on. DROPPED state indicates that a particular Terminal has permanently left the telephone call.
#|DLE

The Ter m nal Connect i on. | DLE state istheinitial state for all Terminal Connection objects.
#* PASSIVE

The Ter m nal Connect i on. PASSI VE state indicates that a Terminal is part of atelephone call but not in an active fashion.
* RINGING

TheTer m nal Connecti on. RI NG NGstate indicates the a Terminal isringing, indicating that the Terminal has an incoming Call.
& UNKNOWN

The Ter m nal Connect i on. UNKNOMN state indicates that the implementation is unable to determine the state of the
Terminal Connection.

Method [rndex

® answer ()
Answers an incoming telephone call on this Termina Connection.
& getCapabilities()
Returns the dynamic capabilities for the instance of the Terminal Connection object.
getConnection()
Returns the Connection object associated with this Terminal Connection.
» getState()
Returns the state of the Terminal Connection object.

@ getTerminal()
Returns the Terminal associated with this Terminal Connection object.
getTerminalConnectionCapabilities(Terminal, Address)

Gets the Terminal ConnectionCapabilities object with respect to a Terminal and an Address. Depr ecated.

Variables

@ DLE

public static final int IDLE
The Ter m nal Connect i on. | DLE stateistheinitial state for all Termina Connection objects.

@ RINGING

public static final int R NG NG
TheTer m nal Connecti on. RI NG NGstate indicates the a Terminal isringing, indicating that the Terminal has an incoming Call.

@ pAssIVE

public static final int PASSIVE

The Ter m nal Connect i on. PASSI VE state indicates that a Terminal is part of atelephone call but not in an active fashion. This may
imply that aresource of the Terminal is being used and may limit actions on the Terminal.

@ AcTIVE

public static final int ACTIVE

The Ter m nal Connect i on. ACTI VE state indicates that a Terminal is actively part of atelephone call. This usually impliesthat the
party speaking on that Termina is party of the telephone call.

@ DROPPED

public static final int DROPPED
The Ter m nal Connect i on. DROPPED state indicates that a particular Terminal has permanently left the telephone call.

@ UNKNOWN

public static final int UNKNOMW

The Ter m nal Connect i on. UNKNOMN state indicates that the implementation is unable to determine the state of the
Termina Connection.

MeFhods

- getState

public abstract int getState()
Returns the state of the Terminal Connection object.
Returns:
The current state of the Terminal Connection object.

@ getTerminal

public abstract Termi nal getTerninal ()

Returns the Terminal associated with this Terminal Connection object. A Terminal Connection's reference to its Terminal remains valid for
the lifetime of the object, even if the Terminal loses its references to this Terminal Connection object. Also, this reference does not change
once the Terminal Connection object has been created.

Returns:
The Terminal object associated with this Terminal Connection.

@ getConnection

public abstract Connection get Connection()

Returns the Connection object associated with this Terminal Connection. A Termina Connection's reference to the Connection remains
valid throughout the lifetime of the Terminal Connection. Also, this reference does not change once the Terminal Connection object has
been created.

Returns:
The Connections associated with this Terminal Connection.

' answer

public abstract void answer() throws Privil egeViol ati onException,
Resour ceUnavai | abl eExcepti on, Met hodNot Support edExcepti on, |nvali dStateException

Answers an incoming telephone call on this Terminal Connection. This method waits (i.e. the invoking thread blocks) until the telephone
call has been answered at the endpoint before returning. When this method returns successfully, the state of this Terminal Connection
objectisTer ni nal Connecti on. ACTI VE.

Allowable TerminalConnection States

The Termina Connection must be in the Ter m nal Connect i on. RI NG NG state when this method isinvoked. According to the
specification of the Terminal Connection object, this state implies the associated Connection object isalso in the

Connect i on. ALERTI NG state. There may be more than one Terminal Connection on the Connection which are in the

Ter mi nal Connecti on. Rl NG NGstate. In fact, if the Connectionisin the Connect i on. ALERTI NGstate, al of these
Terminal Connections must bein the Ter i nal Connect i on. RI NG NGstate. Any of these Terminal Connections may invoke this
method to answer the telephone call.

Multiple TerminalConnections

The underlying telephone hardware determines the resulting state of other Terminal Connection objects after the telephone call has been
answered by one of the Terminal Connections. The other Terminal Connection object may either move into the
Ter m nal Connect i on. PASSI VE state or the Ter mi nal Connect i on. DROPPED state. If a Termina Connection movesinto the

Ter mi nal Connect i on. PASSI VE state, it remains part of the telephone call, but not actively so. It may have the ability to join the
call in the future. If a TerminalConnection movesinto the Ter m nal Connect i on. DROPPED state, it isremoved from the telephone
call and will never have the ability to join the call in the future. The appropriate events are delivered to the application indicates into which
of these two states the other Terminal Connection objects have moved.

Events

The following events are reported to applications via the CallObserver interface as aresult of the successful outcome of this method:
1. TermConnActiveEv for the Terminal Connection which invoked this method.
2. ConnConnectedEv for the Connection associated with the Terminal Connection.
3. TermConnPassiveEv or TermConnActiveEv for other Terminal Connections associated with the Connection.

Pre-conditions:

1. ((this.getTerminal()).getProvider()).getState() == Provider.IN_SERVICE

2. this.getState() == Terminal Connection.RINGING

3. (this.getConnection()).getState() == Connection. ALERTING
Post-conditions:

1. ((this.getTerminal()).getProvider()).getState() == Provider.IN_SERVICE
this.getState() == Termina Connection.ACTIVE
(this.getConnection()).getState() == Connection.CONNECTED
TermConnActiveEv for the Terminal Connection which invoked this method.
ConnConnectedEv for the Connection associated with the Terminal Connection.

o~ e DN

6. TermConnPassiveEv or TermConnActiveEv for other Termina Connections associated with the Connection.
Throws: PrivilegeViolationException

The application did not have proper authority to answer the telephone call. For example, the Terminal associated with the
Terminal Connection may not be in the Provider'slocal domain.

Throws. ResourceUnavailableException

The necessary resources to answer the telephone call were not available when the method was invoked.
Throws. MethodNotSupportedException

This method is currently not supported by this implementation.
Throws: InvalidStateException

An object was not in the proper state, violating the pre-conditions of this method. For example, the Provider was not in the
Provider.IN_SERVICE state or the Termina Connection was not in the Terminal Connection.RINGING state.

See Also:
TermConnActiveEv, TermConnPassiveEv, TermConnDroppedEv, ConnConnectedEv

@ getCapailities

public abstract Term nal Connecti onCapabilities getCapabilities()

Returns the dynamic capabilities for the instance of the Terminal Connection object. Dynamic capabilitiestell the application which
actions are possible at the time this method is invoked based upon the implementations knowledge of its ability to successfully perform
the action. This determination may be based upon argument passed to this method, the current state of the call model, or some
implementation- specific knowledge. These indications do not guarantee that a particular method will be successful when invoked,
however.

The dynamic Terminal Connection capabilities require no additional arguments.

Returns:

The dynamic Terminal Connection capabilities.

@ getTerminalConnectionCapabilities

public abstract Term nal Connecti onCapabilities

get Ter m nal Connecti onCapabilities(Term nal termnnal,

Address address) throws |nvali dArgunent Exception, Pl atformException

Note: getTerminalConnectionCapabilities() is deprecated. Snce JTAPI v1.2. This method has been replaced by the
Terminal Connection.getCapabilities() method.

Gets the Terminal ConnectionCapabilities object with respect to a Terminal and an Address. If null is passed asa Termina parameter, the
general/ provider-wide Terminal Connection capabilities are returned.

Note: This method has been replaced in JTAPI v1.2. The Ter m nal Connecti on. get Capabi | i ti es() method returnsthe
dynamic Termina Connection capabilities. This method now should simply invoke the
Ter m nal Connecti on. get Capabilities() method.

Parameters:
address - Thisargument isignored in JTAPI v1.2 and later.
terminal - Thisargument isignored in JTAPI v1.2 and later.
Throws: InvalidArgumentException

This exception is never thrown in JTAPI v1.2 and later.
Throws: PlatformException

A platform-specific exception occurred.

Al |l Packages This Package Previous Next

Al l Packages Thi s Package Previous Next

Interface javax.telephony.TerminalObserver

public interface T er minalObser ver
Introduction

The Ter m nal Obser ver interface reports al changes which happen to the Terminal object. These changes are reported as events to the
Ter mi nal Cbserver.term nal ChangedEvent () method. Applications must instantiate an object which implements this interface and
thenusethe Ter mi nal . addCbser ver ()) method to register the object to receive al future events associated with the Terminal object.

TheTer m nal Cbserver. term nal ChangedEvent () method receives an array of events which all must extend the Ter nEv interface.
Since severa changes may happen to asingle JTAPI object at once, alist of eventsis needed to convey those changes which happen at the same
time. Applications iterate through the array of events provided.

Terminal Observation Ending

At various times, the underlying implementation may not be able to observe the Terminal. In these instances, the Terminal Observer is sent an
TermObservationEndedEv event. This indicates that the application will not receive further events associated with the Terminal object. This
observer is no longer reported viathe Ter m nal . get Cbser ver s() method.

See Also:
TermEv, TermObservationEndedEv

Method Index

terminalChangedEvent(TermEV[])

Reports all events associated with the Terminal object.

Mefhods

- terminalChangedEvent

public abstract void term nal ChangedEvent (TernEv eventList[])

Reports all events associated with the Terminal object. This method passes an array of TermEv objects as its arguments which correspond
to thelist of events representing the changes to the Terminal object.

Parameters:
eventList - Thelist of Terminal events.

Al |l Packages Thi s Package Previous Next

Al l Packages Thi s Package Previous Next

Class javax.telephony.JtapiPeerFactory

j ava. | ang. Obj ect

+----javax. tel ephony. Jt api Peer Fact ory

public class JtapiPeer Factory
extends Object

Introduction

The Jt api Peer Fact ory classis aclass by which applications obtain a Provider object. Applications use this classto first obtain a class which
implementsthe Jt api Peer interface. The Jt api Peer interface represents a particular vendor's implementation of JTAPI. The term 'peer’ is
Java nomenclature for "a particular platform-specific implementation of a Javainterface or API". This term has the same meaning for the Java
Telephony API. Applications are not permitted to create an instance of the Jt api Peer Fact or y class. Through an installation procedure
provided by each implementator, aJt api Peer classis made available to an application environment. When applications have a JtapiPeer object
for a particular platform-dependent implementation, they may obtain a Provider object viathat interface. The details of that interface are discussed
in the specification for the Jt api Peer interface.

Obtaining a JtapiPeer Object

Applications usethe Jt api Peer Fact ory. get Jt api Peer () method to obtain a JtapiPeer object. The argument to this method is a
classname which represents an object which implementsthe Jt api Peer interface. This object and the classname under which it can be found
must be supplied by the vendor of the implementation. Note that this object is not a Provider, however, thisinterface is used to obtain Provider
objects from that particular implementation.

The Java Telephony API places conventions on vendors on the classname they use for their JapiPeer object. This class name must begin with the
domain name assigned to the vendor in reverse order. Because the space of domain names is managed, this scheme ensures that collisions between
two different vendor's implementations will not happen. For example, an implementation from Sun Microsystem's will have "com.sun" as the
prefix to its JtapiPeer class. After the reversed domain name, vendors are free to choose any class hierarchy they desire.

Default JtapiPeer

Additionally, the vendor providing the JtapiPeer class may supply aaDef aul t Jt api Peer . cl ass classfile. When placed in the classpath of
applications, this class (which must implement the Jt api Peer interface) becomes the default JtapiPeer object returned by the
Jt api Peer Fact ory. get Jt api Peer () method. By convention the default class name must be Def aul t Jt api Peer .

In basic environments, applications and users do not want the burden of finding out the class name in order to use a particular implementation.
Therefore, the Jt api Peer Fact or y class supports a mechanism for applications to obtain the default implementation for their system. If
applicationsuse anul | argument to the Jt api Peer Fact ory. get Jt api Peer () method, they will be returned the default installed
implementation on their system if it exists.

Note: It isthe responsibility of implementation vendorsto supply aversion of aDef aul t Jt api Peer or some meansto alias their peer
implementation along with ameansto place that Def aul t Jt api Peer classin the application classpath.

See Also:
JapiPeer

Method Index

& getJtapiPeer (String)
Returns an instance of a JtapiPeer object given afully qualified classname of the class which implements the JapiPeer object.

MeEHhods

W getJtapiPeer

public static synchroni zed Jtapi Peer getJtapi Peer(String jtapi Peer Nane) throws
Jt api Peer Unavai | abl eExcepti on

Returns an instance of a JtapiPeer object given afully qualified classname of the class which implements the JapiPeer object.
If no classnameis provided (null), a default class named Def aul t Jt api Peer ischosen asthe classname to load. If it does not exist or
isnot installed in the CLASSPATH as the default, a Jtapi PeerUnavail ableException exception is thrown.
Parameters:
jtapiPeerName - The classname of the JtapiPeer object class.
Returns:
An instance of the JtapiPeer object.
Throws: JapiPeerUnavailableException

Indicates that the JtapiPeer specified by the classname is not available.

Al l Packages Thi s Package Previous Next

Al l Packages Thi s Package Previous Next

Class javax.telephony.InvalidArgumentException

j ava. | ang. Obj ect

+----java.l ang. Throwabl e
I
+----java.l ang. Exception
|
+----javax. tel ephony. I nval i dAr gunent Excepti on

public class I nvalidArgumentException
extends Exception
An InvalidArgumentException indicates an argument passed to the method isinvalid.

CoNSFIrucror Index

2 InvalidArgumentException()

Constructor with no string.
@ | nvalidArgumentException(String)

Constructor which takes a string description.

CONEETHCEOrS

< [nvalidAr gumentException

public Invali dArgument Exception()
Constructor with no string.

« |nvalidAr gumentException

public Invali dArgunment Exception(String s)
Constructor which takes a string description.

Al Packages This Package Previous Next

Al l Packages Thi s Package Previous Next

Class javax.telephony.InvalidPartyException

j ava. | ang. Obj ect

+----java.l ang. Thr owabl e
I
+----java.l ang. Exception
|
+----javax. tel ephony. I nval i dPartyException

public class I nvalidPartyException
extends Exception

An InvalidPartyException indicates that a party given as an argument to the method call was invalid. This may either be the originating party of a
telephone call or the destination party of atelephone call.

Variable [Hdex

@ DESTINATION_PARTY

Indicates that the destination party was invalid.
ORIGINATING_PARTY

Indicates that the originating party was invalid.
UNKNOWN PARTY

Indicates that the party was unknown.

CoONSFIruckor Index

2 | nvalidPar tyException(int)

Constructor with no string.
2 | nvalidPar tyException(int, String)

Constructor which takes a string description.

Method [ndex

@ 0etType()
Returns the type of party.

Variables

9 ORIGINATING_PARTY

public static final int ORI G NATI NG PARTY

Indicates that the originating party wasinvalid.
@ DESTI NATION_PARTY

public static final int DESTI NATI ON_PARTY

Indicates that the destination party wasinvalid.
@ UNKNOWN_PARTY

public static final int UNKNOAMN_PARTY
Indicates that the party was unknown.

CONEFTHCEOrS

|nvalidPartyException

public InvalidPartyException(int type)
Constructor with no string.

«# | nvalidPartyException

public InvalidPartyException(int type,
String s)

Constructor which takes a string description.

MeEHhods

o getType

public int getType()
Returns the type of party.
Returns:
The type of party.

Al |l Packages Thi s Package Previous

Next

Al l Packages Thi s Package Previous Next

Class javax.telephony.InvalidStateException

j ava. | ang. Obj ect

+----java.l ang. Throwabl e
I
+----java.l ang. Exception
|
+----javax. tel ephony. I nval i dSt at eExcepti on

public class I nvalidStateException
extends Exception

An InvalidStateException indicates the current state of an object involved in the method invocation does not meet the acceptabl e pre-conditions for
the method. Each method which changes the call model typically has a set of states in which the object must be as a pre-condition for the method.
Each method documents the pre-condition states for objects. Typically, this method will succeed in the future once the object in question has
reached the proper state.

This exception provides the application with the object in question and the state it is currently in.

Variable [ndex

ADDRESS OBJECT

Theinvalid object in question isthe Address
@ CALL OBJECT

Theinvalid object in question isthe Call
CONNECTION_OBJECT

Theinvalid object in question is the Connection
PROVIDER OBJECT

Theinvalid object in question is the Provider
@ TERMINAL CONNECTION OBJECT

Theinvalid object in question isthe Terminal Connection
* TERMINAL _OBJECT

Theinvalid object in question isthe Terminal

Cong rucror ndex

|nvalidStateException(Object, int, int)

Constructor with no string.
2 |nvalidStateException(Object, int, int, String)

Constructor which takes a string description.

Method [ndex

@ getObject()
Returns the object which has the incorrect state.

@ getObjectType()
Returns the type of object in question.

@ getState()
Returns the state of the object.

Variables

@ pPrOVI DER_OBJECT

public static final int PROVI DER OBJECT
Theinvalid object in question isthe Provider

@ cALL oBJECT

public static final int CALL_OBJECT
Theinvalid object in question isthe Call

@ connECT ON_OBJECT

public static final int CONNECTI ON_ OBJECT
The invalid object in question is the Connection

@ TERMINAL_OBJECT

public static final int TERM NAL_OBJECT
Theinvalid object in question isthe Terminal

@ ADDRESS OBJECT

public static final int ADDRESS OBJECT
Theinvalid object in question isthe Address

@ TERMI NAL_CONNECTION_OBJECT

public static final int TERM NAL_CONNECTI ON_OBJECT
Theinvalid object in question isthe Termina Connection

CONBFIHCFOrs

+# |nvalidStateException

public InvalidStateExcepti on((hject object,

int type,

int state)

Constructor with no string.

«# |nvalidStateException

public InvalidStateExcepti on((hject object,

int type,

int state,

String s)
Constructor which takes a string description.

Mefhods

] getObjectType

public int getObjectType()
Returns the type of object in question.
Returns:
The type of object in question.

@ getobject

public Object gethject()
Returns the object which has the incorrect state.
Returns:
The object which isin the wrong state.

- getState

public int getState()
Returns the state of the object.
Returns:
The state of the object.

Al l Packages Thi s Package Previous

Next

Al l Packages Thi s Package Previous Next

Class javax.telephony.JtapiPeerUnavailableException

j ava. | ang. Obj ect

+----java.l ang. Throwabl e
I
+----java.l ang. Exception
|
+----javax. tel ephony. Jt api Peer Unavai | abl eExcepti on

public class JtapiPeer UnavailableException
extends Exception

The Jtapi PeerUnavail abl eException indicates that the JtapiPeer (i.e. a particular implementation of JTAPI is unavailable on the current system.

CoNSFIrucror Index

= JtapiPeer UnavailableException()

Constructor with no string.
« Jtapi Peer UnavailableException(String)

Constructor which takes a string description.

CONEETHCEOrS

< JtapiPeer UnavailableException

public Jtapi Peer Unavai | abl eExcepti on()
Constructor with no string.

< JtapiPeer UnavailableException

public Jtapi Peer Unavai | abl eException(String s)
Constructor which takes a string description.

Al Packages This Package Previous Next

Al l Packages Thi s Package Previous Next

Class javax.telephony.MethodNotSupportedException

j ava. | ang. Obj ect

+----java.l ang. Throwabl e
I
+----java.l ang. Exception
|
+----javax. tel ephony. Met hodNot Support edExcepti on

public class M ethodNotSuppor tedException
extends Exception
The MethodNotSupportedException indicates that the method which was invoked is not supported by the implementation.

CoNSFIrucror Index

2 MethodNotSupportedException()

Constructor with no string.
@ MethodNotSuppor tedException(String)

Constructor which takes a string description.

CONEETHCEOrS

' MethodNotSupportedException

publ i ¢ Met hodNot Support edExcepti on()
Constructor with no string.

' MethodNotSupportedException

publ i ¢ Met hodNot Support edException(String s)
Constructor which takes a string description.

Al Packages This Package Previous Next

Al l Packages Thi s Package Previous Next

Class javax.telephony.PlatformException

j ava. | ang. Obj ect

+----java.l ang. Throwabl e
I+----j ava. | ang. Excepti on
|+j ava. | ang. Runt i neExcepti on
I+- ---javax. tel ephony. Pl at f or mExcepti on

public class PlatformException
extends RuntimeException

A PlatformException indicates an implementation-specific exception. The specific exceptions which implementations throw is documented in their
release notes.

JTAPI v1.1.1 NOTE: PlatformException extends Java's RuntimeException. This permitsit to be thrown from a JTAPI method without being
declared in its signature. Note that no JTAPI methods declare PlatformException to be thrown. Thisis a change from v1.1, but does not affect
applications.

Since PlatformException typically denotes some form of unrecoverable platform-dependent error, invoking the method again typically does not
yield success. These types of exceptions are often best dealt with at ahigher level, in atop-level "try-catch" block where the entire application
could be restarted.

CoONSFIruckor Index

w PlatformException()

Constructor with no string.
2 Platfor mException(String)

Constructor which takes a string description.

ConNBFETHCEors

W PlatformException

public Pl atformException()
Constructor with no string.

« PlatformException

public Pl atformException(String s)
Constructor which takes a string description.

Al l Packages Thi s Package Previous Next

Al l Packages Thi s Package Previous Next

Class javax.telephony.PrivilegeViolationException

j ava. | ang. Obj ect

+----java.l ang. Throwabl e
I
+----java.l ang. Exception
|
+----javax.tel ephony. Privil egeVi ol ati onExcepti on

public class PrivilegeViolationException

extends Exception

A PrivilegeViolationException indicates that an action pertaining to a certain object failed because the application did not have the proper security
permissions to execute that command.

This class stores the type of privilege not available which is obtained viathe Pri vi | egeVi ol ati onExcepti on. get Type() method.

Variable [Hdex

@ DESTINATION_VIOLATION

A privilege violation occurred on the destination.
ORIGINATOR _VIOLATION

A privilege violation occurred on the originator.
UNKNOWN VIOLATION

A privilege violation occurred at an unknown place.

CoONSFIruckor Index

= PrivilegeViolationException(int)

Constructor, takes a type but no string.
@ PrivilegeViolationException(int, String)

Constructor, takes atype and a string.

Method [ndex

@ 0etType()
Returns the type of privilege which is not available.

Variables

9 ORIGINATOR_VIOLATION

public static final int OR G NATOR VI OLATI ON
A privilege violation occurred on the originator.

@ DESTINATION_VIOLATION

public static final int DESTI NATI ON_VI OLATI ON
A privilege violation occurred on the destination.

@ UNKNOWN_VIOLATION

public static final int UNKNOAN VI OLATI ON
A privilege violation occurred at an unknown place.

CONEFTHCEOrS

«## PrivilegeViolationException

public PrivilegeViolationException(int type)
Constructor, takes a type but no string.

¥ PrivilegeViolationException

public Privil egeViolationException(int type,
String s)

Constructor, takes atype and a string.

MeEHhods

o getType

public int getType()
Returns the type of privilege which is not available.
Returns:
The type of privilege.

Al |l Packages Thi s Package Previous Next

Al l Packages Thi s Package Previous Next

Class javax.telephony.ProviderUnavailableException

j ava. | ang. Obj ect

+----java.l ang. Throwabl e
I+----j ava. | ang. Excepti on
|+j ava. | ang. Runt i neExcepti on
I+- ---javax. t el ephony. Provi der Unavai | abl eExcepti on

public class Provider UnavailableException
extends RuntimeException

The ProviderUnavailableException indicates that the Provider is currently not available to the application. This exception extends Java's
RuntimeException, and therefore can be thrown on any JTAPI method. It istypically thrown in two situations: when

Jt api Peer. get Provi der () iscaled or on any method when the Provider isin aPr ovi der . SHUTDOWN state. Because this method
extends Runt i meExcept i on, it can be thrown from any method without being declared.

This exception isthrown on Jt api Peer . get Pr ovi der () when the requested Provider is not available to the application for a number of
reasons, including when an invalid service string or optional argument was given. If this exception is thrown on arandom JTAPI method, it
indicates that the method call isinvalid because the Provider isnot in the "in service” state.

This exception stores the reason for the failure which may be obtained viathe Pr ovi der Unavai | abl eExcepti on. get Cause() method.

Variable [ndex

@ CAUSE_INVALID ARGUMENT

Constant definition for an invalid optional argument givento Jt api Peer . get Provi der ().
@ CAUSE_INVALID SERVICE

Constant definition for an invalid service string givento Jt api Peer . get Provi der ().
@ CAUSE_NOT_IN_SERVICE

Constant definition for the Provider not in the "in service" state.
CAUSE UNKNOWN

Constant definition for an unknown cause.

Cong rucror ndex

w Provider UnavailableException()

Constructor with no cause and string.
2 Provider UnavailableException(int)

Constructor which takes a cause string.

2 Provider UnavailableException(int, String)

Constructor which takes both a string and a cause.
w Provider UnavailableException(String)

Constructor which takes a string description.

Method [rndex

@ getCause()
Returns the cause for this exception.

Variables

@ CAUSE_ UNKNOWN

public static final int CAUSE_UNKNOAN
Constant definition for an unknown cause.

@ CAUSE_NOT_IN_SERVICE

public static final int CAUSE_NOT_ | N_SERVI CE
Constant definition for the Provider not in the "in service" state.

9 CAUSE_INVALID_SERVICE

public static final int CAUSE | NVALI D_SERVI CE
Constant definition for an invalid service string givento Jt api Peer . get Provi der ().

@ CAUSE_ INVALID_ ARGUMENT

public static final int CAUSE | NVALI D ARGUMENT
Constant definition for an invalid optional argument given to Jt api Peer . get Provi der ().

CONEETHCEOrS

«# Provider UnavailableException

publ i ¢ Provi derUnavai |l abl eExcepti on()
Constructor with no cause and string.

«# Provider UnavailableException

publ i c ProviderUnavail abl eException(int cause)
Constructor which takes a cause string.

«# Provider UnavailableException

public ProviderUnavail abl eException(String s)

Constructor which takes a string description.

« Provider UnavailableException

publi ¢ Provi der Unavai | abl eException(int cause,
String s)

Constructor which takes both a string and a cause.

MeEhods

< getCause

public int getCause()
Returns the cause for this exception.
Returns:
The cause of this exception.

Al Packages Thi s Package Previous Next

Al l Packages Thi s Package Previous Next

Class javax.telephony.ResourceUnavailableException

j ava. | ang. Obj ect

+----java.l ang. Thr owabl e
I
+----java.l ang. Exception
|
+----javax. tel ephony. Resour ceUnavai | abl eExcepti on

public class Resour ceUnavailableException
extends Exception

The ResourceUnavailableException indicates that a resource inside the system in not available to complete an operation. The type embodied in this
exception further clarifies what is not available and is obtained viathe Resour ceUnavai | abl eExcepti on. get Type() method.

Variable [ndex

@ NO _DIALTONE

No dialtone detected.
@ OBSERVER LIMIT EXCEEDED

The number of observers existing already reached the limit.
2 ORIGINATOR UNAVAILABLE

The originating device was not available for this action.
OUTSTANDING METHOD EXCEEDED

Theinternal resources to handle another method have been exceeded.
@ TRUNK LIMIT EXCEEDED

The number of trunks which are currently in use has been exceeded.
& UNKNOWN

Indicates the specific reason is unspecified.
UNSPECIFIED LIMIT EXCEEDED

Aninternal resource, unspecified by the implementation, has been exceeded.
USER RESPONSE

A user has not responded in the time allowed by an implementation.

CONSFIucror Index

@ Resour ceUnavailableException(int)

Constructor, takes a type but no string.

@ Resour ceUnavailableException(int, String)

Constructor, takes atype and a string.

Method [rndex

@ et Type()
Returns the type of resource which was unavailable.

Variables

@ UNKNOWN

public static final int UNKNOMW
Indicates the specific reason is unspecified.

@ oriGl NATOR_UNAVAILABLE

public static final int OR G NATOR UNAVAI LABLE
The originating device was not available for this action.

- OBSERVER_LIMIT_EXCEEDED

public static final int OBSERVER LI M T_EXCEEDED
The number of observers existing already reached the limit.

@ TRUNK_LIMIT_EXCEEDED

public static final int TRUNK LI M T_EXCEEDED
The number of trunks which are currently in use has been exceeded.

@ OUTSTANDI NG_METHOD_EXCEEDED

public static final int OUTSTAND NG METHOD_ EXCEEDED
Theinternal resources to handle another method have been exceeded.

@ UNSPECIFI ED_LIMIT_EXCEEDED

public static final int UNSPECI FI ED LI M T_EXCEEDED
An internal resource, unspecified by the implementation, has been exceeded.

@ NO DIALTONE

public static final int NO D ALTONE
No dialtone detected.

@ USER_RESPONSE

public static final int USER_RESPONSE
A user has not responded in the time allowed by an implementation.

CONEFTHCEOrS

Resour ceUnavailableException

publ i ¢ ResourceUnavai |l abl eException(int type)
Constructor, takes atype but no string.

¥ Resour ceUnavailableException

publ i ¢ ResourceUnavai |l abl eException(int type,
String s)

Constructor, takes atype and a string.

MeEHhods

o getType

public int getType()
Returns the type of resource which was unavailable.
Returns:
The type of resource unavailable.

Al |l Packages Thi s Package Previous Next

Al |l Packages

package javax.telephony.callcenter

Interface [ndex

« ACDAddress

o ACDAddressObserver
« ACDConnection

« ACDManagerAddress
« ACDManagerConnection
« Agent

« AgentTerminal

« AgentTermina Observer
« CalCenterAddress

« CalCenterCal

« CallCenterCallObserver
« CallCenterProvider

« CallCenterTrunk

« RouteAddress
 RouteCallback

« RouteSession

Al l Packages Thi s Package Previous Next

Interface javax.telephony.callcenter ACDAddress

public interface ACDAddr ess
extends CallCenterAddress

Introduction

Automated Call Distribution (ACD) isa Call Center feature that provides a mechanism for receiving calls, queueing them, and distributing them to
agent extensions within ACD Groups. An ACD Group comprises zero or more agent extensions, which are dynamically associated with ACD
Groups through alogin/logout process. The ACDAddr ess interface models an ACD Group for ACD systems.

A call placed to an ACDAddr ess represents a call which is being routed to an available agent logged into the ACD Group. In the case where no
agent is available, the ACDAddr ess isqueued for a group of agents who arelogged in to that ACD Group, but unavailable to service that call.
Calls are distributed to the agentsin that group based on their availability and other factors determined by the implementation.

Calls may placed directly to an ACDAddr ess or the ACD machanism can be relied upon to select a destination ACDAddr ess by placing the call
to an ACDVanager Addr ess.

The ACDAddr ess extends Cal | Cent er Addr ess with the methods necessary to obtain ACD-specific information such as the Agent objects
associated with the ACDAddr ess and avariety of call queue methods to get information on calls queued at this address.

ACDAddresses differ from Addresses

Some important differences between ACDAddr ess and Address are:
1. An ACDAddr ess cannot have Ter m nal objects associated with it.

2. An ACDAddr ess isnot alogical endpoint of acall inthe same sense as an Addr ess Rather, it models a queuing process whereby the
selection of alogical endpoint is deferred.

3. ACDConnect i ons to an ACDAddr ess do not enter into a CONNECTED state.
4. Itisnot returned on Pr ovi der . get Addr esses(), but isavailable through Cal | Cent er Provi der . get ACDAddr esses()

ACDAddresses and ACDConnections

A call presented to an ACDAddr ess is modeled by an ACDConnect i on. That ACDConnect i on may be betweenaCal | object and the
ACDAddr ess or it may exist between a ACDManager Connect i on and the ACDAddr ess, depending on whether the call was placed directly
to the ACDAddr ess or whether it arrived indirectly through the distribution mechanism from an ACDManager Addr ess.

Observation at an ACDAddress

All events pertaining to the ACDAddr ess interface are reported viathe Addr essCbser ver . addr essChangedEvent () method. In order
to observe Agent state changes for Agent s associated with an ACDAddr ess, an application must implement an ACDAddr essChser ver
interface and associate it with the ACDAddr ess using theaddObser ver () method on an ACDAddr ess object.

See Also:
ACDConnection, CallCenterAddress, ACDAddressObserver, Address

Method [ndex

getACDM anager Addr ess()

FOR JTAPI 1.2 Returns the ACDVanager Addesses (wasasingle ACDManager Addess) associated at system administration time
with this ACDAddr ess.

@ getl oggedOnAgents()

Returns the Agents logged into the ACDAddress.
@ getNumber Queued()

Returns the number of Calls queued at an ACDAddress.
@ getOldestCallQueued()

Rreturns the oldest Call queued to an ACDAddress.
@ getQueueWaitTime()

Returns the estimated wait time for new Calls queued at an ACDAddress.
@ getRelativeQueuel oad()

Returnsthe relative load of an ACDAddress queue.

MeFhods

- getL oggedOnAgents

public abstract Agent[] getLoggedOnAgents() throws MethodNot SupportedExcepti on
Returns the Agents logged into the ACDAddress.
Returns:
An array of Agents associated with the ACDAddress.
Throws: MethodNotSupportedException

This method is not supported by the implementation.
@ getNumber Queued

public abstract int getNunber Queued() throws Met hodNot Support edException
Returns the number of Calls queued at an ACDAddress.
Returns:
The number of calls queued.
Throws: MethodNotSupportedException

This method is not supported by the implementation.
@ getOldestCallQueved

public abstract Call getd destCall Queued() throws Met hodNot Support edExcepti on
Rreturns the oldest Call queued to an ACDAddress.
Returns:
The oldest Call queued.
Throws. MethodNotSupportedException

This method is not supported by the implementation.
- getRelativeQueuel oad

public abstract int getRel ativeQueueLoad() throws Met hodNot Support edException
Returnsthe relative load of an ACDAddress queue.

Returns:
Therelative load of the ACDAddress queue.
Throws:. MethodNotSupportedException

This method is not supported by the implementation.

@ getQueueWaitTime

public abstract int getQueueWaitTinme() throws MethodNot SupportedException
Returns the estimated wait time for new Calls queued at an ACDAddress.
Returns:
The estimated wait time for new calls at the ACDAddress.
Throws: MethodNotSupportedException

This method is not supported by the implementation.
@ getACDM anager Addr ess

public abstract ACDVanager Address[] get ACDManager Address() throws
Met hodNot Suppor t edExcepti on

FOR JTAPI 1.2 Returns the ACDVanager Addesses (wasasingle ACDVanager Addess) associated at system administration time
with this ACDAddr ess. This method returns anull if no are associated with this ACDAddr ess.

Returns:
The ACDManagerAddress associated with this ACDAddress.
Throws. MethodNotSupportedException

This method is not supported by the implementation.

Al |l Packages Thi s Package Previous Next

Al l Packages Thi s Package Previous Next

Interface javax.telephony.callcenter. ACDAddressObserver

public interface ACDAddr essObserver
extends AddressObserver

The ACDAddr essCbser ver interface reports all state changesin the Agent that is associated with the ACDAddr ess as events. Applications
instantiate an object which implements this interface and use the Addr ess. addCbser ver () to request delivery of eventsto this observer
object. Events will be delivered to thisinterface only if the Provider isinthe Pr ovi der . | N_SERVI CE state. All events which are reported via
this interface must extend the ACDAddr Ev interface.

Events are reported viathe Addr essChser ver . addr essChangedEvent () method. This interface defines no additional methods and
therefore serves as away applications signal to the implementation that is desires call center package events.

Note that the state changesin the Agent are also reported viathe Agent Ter mi anl Gbser ver for the Agent Ter mi nal onwhich the Agent
islogged in to.

See Also:
Address, AddressObserver, ACDAddress, AgentTerminal Observer, ACDAddrEv, ACDAddrBusyEv, ACDAddrL oggedOffEv,

ACDAddrLoggedOnEv, ACDAddrNotReadyEv, ACDAddrReadyEv, ACDAddrUnknownEv, ACDAddrWorkNotReadyEv,
ACDAddrWorkReadyEv

Al Packages Thi s Package Previous Next

Al l Packages Thi s Package Previous Next

Interface javax.telephony.callcenter. ACDConnection

public interface ACDConnection
extends Connection

Introduction

An ACDConnect i on models either a direct relationship between aCal | and an ACDAddr ess or an indirect relationship between aCal | and
an ACDAddr ess through an ACDManager Addr ess.

The direct relationship occurswhen aCal | arrives at an ACDAddr ess. Theindirect relationship occurswhenaCal | arrives at an
ACDManager Addr ess and the implementation of the ACDManger Addr ess determines that it must involve an ACDAddr ess intheCal | .

The ACDConnect i on to an ACDAddr ess in either case, direct or indirect, models a Call that is being routed to an agent logged into the
ACDAddr ess, or acal that is being queued for agents logged into the ACDAddr ess

ACDConnection as a Direct Connection

«

ACDConnection as an Indirect Connection

ACDC ormecton

ACDAddress

The ACDConnect i on isnot a connection in the same sense asa Connect i on, because it never represents acall to an endpoint. Its purposeisto
model acall that is being routed or queued by an ACD system.

ACDConnections and TerminalConnections

Theget Ter mi nal Connecti on() method on the core Connect i on interface, which ACDConnect i on extends, will awaysreturn nul |
because ACDAddr esses do not have Ter m nal s associated with them.

ACDConnection States
The state of the ACDConnect i on isavailable through the ACDConnect i on. get St at e() method inherited from the core Connect i on

interface. Each state is an integer constant defined in the core Connect i on interface. Their meaning in this interface are summarized below:

ACDConnect i on. | DLE Asin the core, thisistheinitial and transitory state for new ACDConnect i on objects.

o : ROGRE This state indicates that an ACDConnect i on isqueued at a particular ACDAddr ess. Thiswill result
A hnecti on. 1 NP SS when there are no agents available to route the cal to.

CDG : This state indicates that the ACDConnect i on has been made to a particular ACDAddr ess. This stateis
A nnecti on. ALERTI NG only valid for ACDConnect i ons that are not associated with an ACDManager Connect i on.

ACDConnect i on. DI SCONNECTED This state has the same definition as in the core.
ACDConnect i on. FAl LED This state has the same definition asin the core.
ACDConnect i on. UNKNOWN This state has the same definition as in the core.

ACDConnection State Transitions

The ACDConnect i on class defines the allowable ACDConnect i on state transitions. These finite-state transitions must be guaranteed by the
implementation. Each method that causes a change in an ACDConnect i on state must be consistent with this state diagram.

Note thereis ageneral |eft-to-right progression of the state transitions. A Connection object may transition into and out of the
ACDConnect i on. UNKNOWN state at any time with the annotated exceptions (hence, the asterisk qualifier next to its bidirectiona transition

arrow).

(except from FAILED
or DISCONMECTED)

¥

See Also:
ACDAddress, ACDManagerAddress, ACDM anagerConnection

Method [ndex

@ getACDM anager Connection()
Returns the ACDVanager Connect i on associated with this ACDConnect i on.

Mefhods

- getACDM anager Connection

publ i c abstract ACDManager Connecti on get ACDVanager Connection() throws
Met hodNot Suppor t edExcepti on

Returns the ACDVanager Connect i on associated with this ACDConnect i on. A null isreturned if this ACDConnect i on isnot in
an indirect relationship between a Call, an ACDAddr ess and an ACDManager Addr ess.

Returns:
The ACDM anagerConnection associated with this ACDConnection.
Throws. MethodNotSupportedException

This method is not supported by the implementation.

Al |l Packages Thi s Package Previous Next

Al l Packages Thi s Package Previous Next

Interface javax.telephony.callcenter ACDManagerAddress

public interface ACDM anager Address
extends CallCenterAddress

Introduction

The ACDManager Addr ess interface models an ACD management control point that manages one or more Agent Groups. Calls are presented to
an ACDManager Addr ess so that it can distribute those calls to agents logged into the Agent Groups managed by this specia address.

ACDManagerAddresses and other ACD Objects

When acall is placed to an ACDManager Addr ess, itsimplementation routes that call to one or more Agent Groups, which are modeled by
ACDAddr esses. When an ACDAddr ess receivesthe call it may present that call to an available Agent in its Agent Group, or it may queue the
call until an Agent isavailable.

The ultimate destination of acall isahuman at a phone terminal. This person may have "sessions’ active at different Agent Groups, each of which
presents her or him as an Agent in that Agent Group. An Agent is the recipient of acall in an Agent Group and Agents are modeled as Agent
objects. When an Agent is selectd, the call is completed by aConnect i on betweenthe Cal | object that originally involved the

ACDManager Addr ess and the Addr ess associated with that Agent . The ACDManager Connect i on and ACDConnect i ons that
modeled ACD call routing and queuing to that point are then placed in a DISCONNECTED state.

ACDManagerAddresses differ from Addresses

Some important differences between ACDManager Addr ess and Address are:
1. An ACDMVanager Addr ess cannot have any Ter ni nal objects associated with it.

2. An ACDManager Addr ess isnot alogical endpoint of acall in the same sense asan Addr ess, rather it models a distribution process
whereby the selection of alogical endpoint is deferred.

3. ACDMvanager Connect i ons associated with an ACDAddr ess do not enter into the CONNECTED state.
See Also:
ACDManagerConnection, ACDAddress, ACDManagerConnection

MeFtnod lndex

@ getACDAddr esses()
Returns the ACDAddess(es) associated at system administration time with this ACDManager Addr ess.

MeEhods

@ getACDAddresses

public abstract ACDAddress[] get ACDAddresses() throws MethodNot SupportedException
Returnsthe ACDAddess(es) associated at system administration time with this ACDManager Addr ess. This method returnsanull if

no ACDAddr ess is associated with this ACDManager Addr ess.
It does not return the ACDAddr ess(es) connected to this ACDManager Addr ess inaCal | . That information can be obtained
through the get ACDConnect i ons() method on ACDManager Connecti on.
Returns:
The ACDAddresses associated with this ACDManagerAddress.
Throws: MethodNotSupportedException

This method is not supported by the implementation.

Al l Packages Thi s Package Previous Next

Al l Packages Thi s Package Previous Next

Interface
javax.telephony.callcenter., ACDManagerConnection

public interface ACDM anager Connection
extends Connection

Introduction

The ACDManagerConnection models a call that is being offered for routing by an ACD. The ACD mechanism selects among Agent Groups as
recipients of the call. A call can be offered to one or more Agent Groups. If none of those groups contain an agent that is able to service the call, the
call will be queued at each of the groups. As soon as an agent from one of those groups can be given the call, the call is connected to that agent's
Terminal and all the queued instances of that call are removed.

ACDManagerConnections and other ACD Objects

The ACDManager Connect i on interface models the relationship between a Call and an ACDManager Addr ess. A call placed to an
ACDManagerAddress is one that is being offered for routing to Agent Groups. Agent Groups are modeled by ACDAddr esses. When an
implementation of an ACDVanager Addr ess routesacall to an ACDAddr ess, an ACDConnect i on isadded to the routing
ACDManagerConnection to model the offering or queuing nature of the call being extended to the ACDAddr ess

ACDManagerConnections and TerminalConnections

Theget Ter mi nal Connecti on() method onthe Connect i on interface, that ACDManager Connect i on extends, will always return null
because ACDManager Addr esses do not have Ter ni nal s associated with them.

ACDManagerConnection States

The following are the possible core Connect i on states presented by this interface: |DLE, ALERTING FAI LED,
DI SCONNECTED.

The state of the ACDManager Connection is avail ble through the ACDMVanager Connecti on. get St ate()
inherited fromthe core Connection interface. Each state is an integer constant defined in the
core Connection interface. Their neaning in this interface are sunmmari zed bel ow.

ACDManager Connecti on. | DLE Asinthe core, thisistheinitial and transitory state for new ACDConnect i on objects.
ACDManager Connect i on. ALERTI NG This state indicates that the ACDVanager Connect i on has been made to a particular

ACDManager Addr ess.
ACDManager Connect i on. DI SCONNECTED This state has the same definition as in the core.
ACDManager Connect i on. FAI LED This state has the same definition asin the core.
ACDManager Connect i on. UNKNOAN This state has the same definition asin the core.

ACDManagerConnection State Transitions

The ACDManager Connection class defines the all owabl e ACDVManager Connecti on state transitions. These
finite-state transitions nust be guaranteed by the inplenmentation. Each nmethod that causes a
change in an ACDMVanager Connection state nust be consistent with this state di agram

Note there is a general left-to-right progression of the state transitions. A Connection object
may transition into and out of the ACDManager Connecti on. UNKNOM state at any tinme with the
annot at ed exceptions (hence, the asterisk qualifier next to its bidirectional transition arrow).

Cexcept from FAILED
or DISCOWWECTED]

»

See Al so:
ACDAddr ess, ACDManager Addr ess, ACDConnecti on

Method [rndex

get ACDConnecti ons()

Ret urns t he ACDConnecti on objects associated with this ACDVanager Connecti on.

MeEHhods

@ get ACDConnect i ons

public abstract ACDConnection[] get ACDConnections() throws
Met hodNot Suppor t edExcepti on

Returns the ACDConnection objects associated with this ACDManager Connection. A null will be
returned i f this ACDManager Connecti on has no associ at ed ACDConnecti ons.

Ret ur ns:
The Iist of ACDConnection associated with this ACDVanager Connecti on.
Throws: Met hodNot Support edExcepti on

This method is not supported by the inplenmentation.

Al |l Packages Thi s Package Previous Next

Al | Packages Thi s Package Previous Next

Interface javax.telephony.callcenter.Agent

public interface Agent
Introduction

An Agent represents an individual capable of handling telephone calls for a particular Address. For example, an agent may be a customer service
representative in acall center environment. An Agent is associated with a particular Agent Ter mi nal , which represents the particular Terminal
endpoint associated with the Agent. Each Agent isaso logged into a particular ACDAddr ess. The act of logging into an address announces the
availability of the Agent to handle Calls which come into that ACDAddr ess. Distinct Agents are used to represent the same individual who is logged
into multiple ACDAddr esses from the same Agent Ter nmi nal

Adding and Removing Agents

Agents are created and added to a particular ACDAddr ess viathe Agent Ter mi nal . addAgent () method. This method creates anew Agent
associated with the Agent Ter i nal and the ACDAddr ess given as an argument.

Agents are removed from an Agent Ter mi nal viathe Agent Ter mi nal . r enroveAgent () method. This method also removes the Agent from its
ACDAddr ess. The Agent is no longer available to receive telephone calls coming into its ACDAddr ess.

The Agent's State

The state of the Agent describes whether it is currently logged into an ACDAddr ess or its current ability to handle telephone calls. Applications obtain
the state of the Agent viathe Agent . get St at e() method. Applications may also directly change the state of the Agent viathe
Agent . set St at e() method. Each state is an integer constant defined in this interface and summarized below.

Agent . LOG I N This state indicates the Agent islogged into an ACDAddr ess.
Agent . LOG_OUT This state indicates the Agent has logged out of an ACDAddr ess.
This state indicates the Agent is not available to handle Calls because it is busy with other non-call servicing related

Agent . NOT_READY taske

Agent . READY This state indicates the Agent is available to service Calls.

Agent . WORK_NOT_READY This state indicates the Agent is not available to service Calls because it is busy with other call-servicing related tasks.
Agent . WORK_READY This state indicates the Agent is available to service Calls and is a so performing other call-servicing related tasks.
Agent . BUSY This state indicates the Agent is not available to service Calls because it is busy with another Call.

Agent . UNKNOVWN This state indicates the state of the Agent is currently not known.

The following diagram illustrates the valid state transitions for the Agent . The implementation must guarantee the Agent state adheres to these state
transitions. If an applications requests an Agent state change which violates the transitions, the set St at e() method on this interface will throw
I nval i dSt at eExcept i on. The state of this object can be atered by invoking the the setState method.

h
BUSY

LOG IN \

{except LOG_IH)
READY RK_READY
3
UNKNOWN
e e
NOT READY WORK_MOT READY LOG QUT

Observers and Events

Application are notified when an Agent changes state via an event. Each Agent state has a corresponding event. Agent state changes are reported via
two interfaces: ACDAddr essObser ver for the ACDAddr ess associated with this Agent, and Agent Ter ni nal Cbser ver for the
Agent Ter mi nal associated with this Agent. Both of these interfaces receive Agent state events.

See Also:

AgentTermina, ACDAddress, AgentTermina Observer, ACDAddressObserver

Variable [Hdex

* BUSY

The Agent .

*LOG_IN

The Agent .

#LOG OUT

The Agent .

NOT_READY

The Agent .

tasks.
@ READY

The Agent .

2 UNKNOWN

The Agent .

BUSY state indicates the Agent is not available to service Calls because it is busy with another Call.

LOG | N stateindicates that an Agent, which is associated with an Agent Ter mi nal islogged into an ACDAddr ess.

LOG_QUT state indicates the Agent has logged out of an ACDAddr ess.

NOT _READY state indicates the Agent is not available to handle Calls because it is busy with other non-call servicing related

READY state indicates the Agent is available to service Calls.

UNKNOWN state indicates the state of the Agent is currently not known.

WORK_NOT_READY

The Agent . WORK_NOT_READY state indicates the Agent is not available to service Calls because it is busy with other call-servicing related
tasks.

* WORK _READY
The Agent . WORK_READY state indicates the Agent is available to service Calls and is also performing other call-servicing related tasks.

Merhod [ndeyx

@ getACDAddress()
Returns the ACDAddr ess which this Agent islogged into.
@ getAgentAddress()
Returns the Address associated with the Agent Ter mi nal from which this Agent islogged in.

@ getAgentI D()
Returns the Agent's string identification.

@ getAgentTerminal()

Returnsthe Agent Ter mi nal associated with this Agent and which this Agent islogged into.

» getState()
Returns the current Agent state.
@ setState(int)
Changes the state of the Agent.

Vvariables

@ UNKNOWN

public static final int UNKNOM
The Agent . UNKNOWN state indicates the state of the Agent is currently not known.

@ L0G N

public static final int LOGIN
The Agent . LOG_| Nstate indicates that an Agent, which is associated with an Agent Ter mi nal islogged into an ACDAddr ess.

@ L oG out

public static final int LOG OUT
The Agent . LOG_QUT state indicates the Agent has logged out of an ACDAddr ess.

@ NOT_READY

public static final int NOT_READY

The Agent . NOT_READY state indicates the Agent is not available to handle Calls because it is busy with other non-call servicing related
tasks.

@ READY

public static final int READY
The Agent . READY state indicates the Agent is available to service Calls.

@ WORK_NOT_READY

public static final int WORK NOT_READY

The Agent . WORK_NOT_READY state indicates the Agent is not available to service Calls because it is busy with other call-servicing related
tasks.

@ WORK_READY

public static final int WORK READY
The Agent . WORK_READY state indicates the Agent is available to service Calls and is also performing other call-servicing related tasks.

@ BusY

public static final int BUSY
The Agent . BUSY state indicates the Agent is not available to service Calls because it is busy with another Call.

Methods

- setState

public abstract void setState(int state) throws |nvali dArgunent Excepti on,
I nval i dSt at eExcepti on

Changes the state of the Agent. The new desired state is given as a parameter to this method. The Agent's state must adhere to the state
transition diagram given in this interface definition. If the given, new Agent state violates the transition diagram, this method throws
I nval i dSt at eExcepti on.
Pre-Conditions

1. this.getAgentTerminal().getProvider().getState()==Provider.IN_SERVICE

2. this.getState() == Agent.READY, Agent.NOT_READ, Agent WORK_READY, or Agent WORK_NOT_READY.
Post-Conditions

1. this.getAgentTerminal().getProvider().getState()==Provider.IN_SERVICE

2. this.getState() == state

3. The proper Agent state event is delivered to the application
Parameters:

state - The new, desired state of the Agent.

Throws: InvalidArgumentException

The state given as the argument is not avalid Agent state.
Throws: InvalidStateException

Either the provider is not in service or the Agent is not in a state in which the requested state change can be honored.

- getState

public abstract int getState()
Returns the current Agent state. This method returns one of the integer constants defined by thisinterface.
Returns:
The current Agent state.

@ getAgentlD
public abstract String getAgent!|X)

Returns the Agent's string identification. Thisidentification is passed as an argument to the Agent Ter mi nal . addAgent () method.
Returns:

the Agent'sID.
@ getACDAddress

public abstract ACDAddress get ACDAddress()

Returns the ACDAddr ess which this Agent islogged into.
Returns:
The ACDAddress this Agent islogged into.

@ getAgentAddress

public abstract Address get Agent Address()

Returns the Address associated with the Agent Ter mi nal from which this Agent islogged in.
Returns:
The Agent's Address.

@ getAgentTerminal

public abstract Agent Term nal getAgent Termi nal ()

Returnsthe Agent Ter mi nal associated with this Agent and which this Agent islogged into. If the state of the Agent isAgent . LOG_QOUT,
this method returns null.

Returns:
The AgentTerminal associated with this Agent.

Al'l Packages This Package Previous Next

Al l Packages Thi s Package Previous Next

Interface javax.telephony.callcenter.AgentTerminal

public interface Agent T erminal
extends Terminal

The Agent Ter mi nal interface extends the core Ter m nal interface. Thisinterface add methods to support ACD and Agent features.
Adding and Removing Agents

Applications may create and add new Agent s associated with this Agent Ter ni nal viathe Agent Ter i nal . addAgent () method. This
method creates and returns anew Agent which is associated with this Agent Ter ni nal and an ACDAddr ess given as an argument. Agents
model human individuals who are able to service telephone calls coming into an Address.

Agents may be removed from this Agent Ter mi nal viathe Agent Ter mi nal . r enoveAgent () method.
See Also:
Terminal, Agent, ACDAddress, AgentTerminal Observer

MeFtnod lndex

@ addAgent(Address, ACDAddress, int, String, String)
Creates anew Agent associated with this Terminal and is logged into the ACDAddr ess given as an argument.
@ getAgents()
Returns an array of Agents current associated with this Terminal.
& removeAgent(Agent)
Removes a previously added Agent from thisAgent Ter m nal .
@ setAgents(Agent([])
Setsthe current list of Agentson this Terminal. Deprecated.

Mefhods

- addAgent

public abstract Agent addAgent (Address agent Address,
ACDAddr ess acdAddr ess,

int initial State,

String agentl D,

String password) throws |nvali dArgunent Exception,
I nval i dSt at eExcepti on, ResourceUnavai | abl eExcepti on

Creates anew Agent associated with this Terminal and islogged into the ACDAddr ess given as an argument. This method returns the
new Agent when it has been successfully created and logged into the ACDAddr ess.

Applications remove the new Agent viather enoveAgent () method defined by this interface. Applications obtain all Agents
associated with this Terminal viathe get Agent s() method defined on thisinterface.

Subs:guent invocations of this methods with the same agentAddress and acdAddress parameters will simply return the Agent originally
created.
Pre-Conditions
1. this.getProvider().getState() == Provider.IN_SERVICE
2. initial State == Agent.LOGIN, Agent.READY, or Agent. NOT_READY
Post-Conditions
1. Let agent be the Agent created an returned
this.getProvider().getState() == Provider.IN_SERVICE
agent is an element of this.getAgents()
agent.getState() == initial State
Either an AgentTermLoggedOnEv, AgentTermReadyEv, or AgentTermNotReadyEv is delivered for this Agent
Either an ACDAddrLoggedOnEv, ACDAddrReadyEv, or ACDAddrNotReadyEvV is delivered for this Agent
Parameters:

o g~ WD

agentAddress - The Address associated with this Terminal. Terminals may support more than one Address on which an Agent
may be associated.

acdAddress - The Address which the Agent logsinto.

initial State - The initial state of the Agent.

agentlD - The Agent's string identification.

password - The string password which authorizes the application to log in as an Agent.
Returns:

An Agent representing the association between this AgentTerminal and the ACDAddress.
Throws: ResourceUnavailableException

An internal resource necessary for adding the Agent to this Terminal and ACDAddress is unavailable.
Throws: InvalidArgumentException

An argument provided is not valid either by not providing enough information for addAgent() or is inconsistent with another
argument.

Throws: InvalidStateException

Either the provider is not in service or the AgentTerminal is not in astate in which it can be logged into the ACDAddress.

@ removeAgent

public abstract void renoveAgent (Agent agent) throws |nvali dArgunent Exception,
I nval i dSt at eExcepti on

Removes a previously added Agent from this Agent Ter mi nal . This method returns when the Agent islogged out of the
ACDAddr ess and the state of the Agent movesto Agent . LOG_QOUT.
Pre-Conditions

1. this.getProvider().getState() == Provider.IN_SERVICE

2. agent isan element of this.getAgents()
Post-Conditions

1. this.getProvider().getState() == Provider.IN_SERVICE

2. agent is not an element of this.getAgents()

3. agent.getState() == Agent.LOG_OUT

4, AgentTermLoggedOffEv and ACDAddrLoggedOffEv is delivered for the Agent.
Parameters:

agent - The Agent to be removed and logged out.

Throws: InvalidArgumentException

The Agent given is not valid.
Throws: InvalidStateException

Either the provider is not in service or the AgentTerminal is not in a state in which it can be logged out of the ACDAddress.
See Also:

AgentTermLoggedOffEv, AgentTermL oggedOnEv

@ getAgents

public abstract Agent[] getAgents()

Returns an array of Agents current associated with this Terminal. This method returnsnul | isno Agents exist. Agents are reported via

this method once they are added viathe addAgent () method until they are removed viather enoveAgent () method defined on this
interface.

Returns:
A list of Agents associated with this Terminal.

@ setAgents

public abstract void set Agents(Agent agents[]) throws MethodNot SupportedException

Note: setAgents() is deprecated. Since JTAPI v1.2. Has been replaced with addAgent() and removeAgent()

Sets the current list of Agentson this Terminal. This method may remove Agents previously on this Terminal. When this method is
finished, the set of Agents on this Terminal will be the given array.

Note: This method has been removed for JTAPI v1.2 and later. It has been replaced with the Agent Ter mi nal . addAgent () and
Agent Ter mi nal . r enoveAgent () methods. This method should now always throw Met hodNot Suppor t edExcept i on.

Parameters:
The - array of Agentsto be either added, removed, or changed.
Throws. MethodNotSupportedException

This exception should always be thrown for JTAPI v1.2 and later.

Al | Packages This Package Previous Next

Al l Packages Thi s Package Previous Next

Interface
javax.telephony.callcenter.AgentTerminalObserver

public interface Agent T er minal Obser ver
extends Terminal Observer

The Agent Ter mi nal Cbser ver interface reports al state changesin the Agent that is associated with the Agent Ter mi nal asevents.
Applications instantiate an object which implements this interface and use the Ter mi nal . addCbser ver () to request delivery of eventsto this
observer object. Eventswill be delivered to thisinterface only if the Provider isinthe Pr ovi der . | N_SERVI CE state. All events which are
reported viathisinterface must extend the Agent Ter nEv interface.

Events are reported viathe Ter m nal Cbser ver. t er mi nal ChangedEvent () method. Thisinterface defines no additional methods and
therefore serves as away applications signal to the implementation that is desires call center package events.

Note that the state changesin the Agent are also reported viathe ACDAddr essCbser ver for the ACDAddr ess on which the Agent islogged
into.

See Also:
Terminal, Terminal Observer, AgentTerminal, ACDAddressObserver, AgentTermEv, AgentTermBusyEv, AgentTermL oggedOffEv,

AgentTermLoggedOnEv, AgentTermNotReadyEv, AgentTermReadyEv, AgentTermUnknownEv, AgentTerm\WorkNotReadyEv,
AgentTermWorkReadyEv

Al |l Packages Thi s Package Previous Next

Al l Packages Thi s Package Previous Next

Interface javax.telephony.callcenter.CallCenterAddress

public interface CallCenter Address
extends Address

The Cal | Cent er Addr ess interfaceis the base Address interface for the call center package. This package defines two additional Address
interfaces which both extend this interface: ACDAddr ess and ACDManager Addr ess.
The addCal | Gbserver () Method

Thisinterface defines aversion of theaddCal | Cbser ver () method which overloaded the definition in the Addr ess interface. This
overloaded version accepts an additional boolean parameter which allows applications to monitor Calls which come to this Address for the lifetime
of the Call, and not just while it is at this Address.

See Also:
Address, ACDAddress, ACDManagerAddress

Method Index

addCallObser ver (CallObserver, boolean)

This method behaves similarly to Addr ess. addCal | Gbser ver (), with the following exceptions:
o If remain istrue, the observer remains on all Calls which come to this Address, for the lifetime of the Call.

MeEhods

@ addcallObserver

public abstract void addCal | Cbserver(Call Gbserver observer,

bool ean remain) throws
Resour ceUnavai | abl eException, Privil egeViol ati onException,

Met hodNot Support edExcepti on

This method behaves similarly to Addr ess. addCal | Cbser ver (), with the following exceptions:
o If remainistrue, the observer remains on al Calls which come to this Address, for the lifetime of the Call.
o If remainisfalse, this method behaves exactly the same as Addr ess. addCal | Gbser ver ()
If an application attempts to add an instance of an observer to the Address more than once, whether viathe method or viathe

Addr ess. addCal | bser ver () method, only asingle instance of an observer will be added. Repeated attempts to add an observer
will silently fail, i.e. no exception is thrown.

Post-Conditions:

1. observer isan element of this.getCallObservers()
2. observer is an element of Call.getObservers() for each Call associated with the Connections from this.getConnections()
3. Anarray of snapshot eventsis reported to the observer for existing calls associated with this Address.

Parameters:
observer - The observer being added.
remain - If true, the observer remains on the Call for the lifetime of the Call. If false, the observer uses the default behavior.

Throws. MethodNotSupportedException

The Addressis currently not observable.
Throws: ResourceUnavailableException

The resource limit for the numbers of observers has been exceeded.
Throws: PrivilegeViolationException

The application does not have the proper authority to perform this type of observation.
See Also:
Address

Al l Packages Thi s Package Previous Next

Al l Packages Thi s Package Previous Next

Interface javax.telephony.callcenter.CallCenterCall

public interface CallCenter Call
extends Call

Introduction

TheCal | Cent er Cal | interface extendsthe core Cal | interface. Thisinterface provides additional Call-related features for the call center
package. Applications may query an object with thei nst anceof operator to check whether it supports this interface.

Predictive Dialing

Predictive dialing is a special means to place atelephone call. In a predictive telephone call, the destination end is created and placed on the Call
first. Only when the destination Connection reaches a certain state, as designated by the application, the originating Connection is created and the
originating end is placed on the Call. Predictive dialing is used, for example, when customers are called from along list, and a customer service
representative is placed on the Call only when a customer can be reached. Applications placed predictive telephone calls viathe

connect Predi cti ve() method on thisinterface.

Application Data

Applications may associated an arbitrary piece of datawith a Call. This datais seen by any application which has ahandleto a Call. This
mechanism is often used to store information specific to a Call, such as customer information. The set Appl i cat i onDat a() method defined
on this sets the current data and the get Appl i cat i onDat a() method retrieves the current application-specific data.

Trunks

Zero or more trunks may be associated with the Call. Applications obtain the trunks associated with a Call viatheget Tr unks() method on this
interface. A trunk isrepresented by the Cal | Cent er Tr unk interface.

Observers and Events

Events pertaining to the Cal | Cent er Cal | interface are reported viathe Cal | Cent er Cal | Ghser ver interface. The following are those
events reported viathisinterface:

« Connection "in progress" state event
« Trunk state events
« Application data change events
See Also:
CallCenterCallObserver, CallCenterTrunk

Variable [ndex

@ ANSWERING _TREATMENT_CONNECT

Answering endpoint treatment: connect the Call when the endpoint is detected.
@ ANSWERING_TREATMENT_DROP

Answering endpoint treatment: drop the Call when the endpoint is detected.

ANSWERING _TREATMENT_NONE

Answering endpoint treatment: no treatment specified.
ANSWERING TREATMENT PROVIDER DEFAULT

Answering endpoint treatment: follow the default treatment.
@ ENDPOINT_ANSWERING_MACHINE

Answering endpoint type: answering endpoint may be an answering machine.
@ ENDPOINT ANY

Answering endpoint type: answering endpoint may be anything.
@ ENDPOINT FAX MACHINE

Answering endpoint type: answering endpoint may be afax machine.
@ ENDPOINT_HUMAN_INTERVENTION

Answering endpoint type: answering endpoint may be a human.
MAX RINGS

TheCal | Cent er Cal | . M N_RI NGS constant defines the minimum number of rings which the application may specify for the
destination end before a predictive telephone call is classified as "no answer".

@ MIN_RINGS

TheCal | Cent er Cal | . M N_RI NGS constant defines the minimum number of rings which the application may specify for the
destination end before a predictive telephone call is classified as "no answer".

MeFtnod lndex

@ connectPredictive(Terminal, Address, String, int, int, int, int)

Places a predictive telephone call.
getApplicationData()

Returns the application-specific data associated with the Call.
@ getTrunks()

Returnsan array of al Cal | Cent er Tr unks currently being used for this Call.
@ setApplicationData(Object)

This method associates application specific datawith a Call.

Variables

@ MIN RINGS

public static final int MN_R NGS

TheCal | Cent er Cal | . M N_RI NGS constant defines the minimum number of rings which the application may specify for the
destination end before a predictive telephone call is classified as "no answer".

@ MAX RINGS

public static final int MAX RI NGS

TheCal | Cent er Cal | . M N_RI NGS constant defines the minimum number of rings which the application may specify for the
destination end before a predictive telephone call is classified as "no answer".

@ ANSWERI NG_TREATMENT_PROVIDER_DEFAULT

public static final int ANSWERI NG TREATMENT_PROVI DER_DEFAULT
Answering endpoint treatment: follow the default treatment. The answering endpoint treatment should follow the default treatment.

@ ANSWERI NG_TREATMENT_DROP

public static final int ANSWERI NG TREATMENT DROP
Answering endpoint treatment: drop the Call when the endpoint is detected.

@ ANSWERI NG_TREATMENT_CONNECT

public static final int ANSWERI NG TREATMENT_ CONNECT
Answering endpoint treatment: connect the Call when the endpoint is detected.

@ ANSWERING_TREATMENT_NONE

public static final int ANSWERI NG TREATMENT_NONE
Answering endpoint treatment: no treatment specified.

@ enpPoI NT_ANSWERING_MACHINE

public static final int ENDPO NT_ANSVERI NG MACHI NE
Answering endpoint type: answering endpoint may be an answering machine.

@ ENDPOINT_FAX_MACHINE

public static final int ENDPO NT_FAX MACH NE
Answering endpoint type: answering endpoint may be afax machine.

@ enpPol NT_HUMAN_INTERVENTION

public static final int ENDPO NT_HUVAN | NTERVENTI ON
Answering endpoint type: answering endpoint may be a human.

@ ENDPOINT_ANY

public static final int ENDPO NT_ANY
Answering endpoint type: answering endpoint may be anything.

MeEhods

o connectPredictive

public abstract Connection[] connectPredictive(Terninal originatorTermnal,

Resour ceUnavai | abl eExcepti on,

Addr ess ori gi nat or Addr ess,

String destination,

i nt connectionState,

i nt maxRi ngs,

int treatnent,

i nt endpoi nt Type) throws

Privil egeViol ati onException, |nvalidPartyException,

| nval i dAr gunent Excepti on,

| nval i dSt at eExcepti on,

Met hodNot Suppor t edExcepti on

Places a predictive telephone call. A predictive telephone call is atelephone call placed to the destination end first, and connects the
originating end only if the destination end reaches either the Connect i on. CONNECTED or Connect i on. ALERTI NGstate. The
destination Connection is created first, and the originating Connection is created only if the destination reaches the designated state. This

method returns successfully when both Connections are created and returned.
The originating and destination end arguments

Thefirst three arguments are identical to the arguments of the Cal | . connect () method. They represent the desired originating and
destination ends of the Call. The originating Terminal may be nul | , however, for certain types of Addresses, such as ACD Addresses,
this argument may be nul | . The destination address string given must be complete and valid.

The target destination Connection state

The application designates when the originating end of the Call is created and placed on the telephone Call, based upon the state of the
destination Connection. The desired target state for the destination Connection is given as the connectionSate argument to this method.
The value must be either Connect i on. CONNECTED or Connect i on. ALERTI NG. If the destination Connection never reachesthis
state, this method throws an appropriate exception.

The maximum number of rings

The application may also designate the maximum number of rings allowed on the destination end before the Call is classified asa'"no
answer”. The value must be between Cal | CenterCal | . M N_RI NGS (2) and Cal | Cent er Cal | . MAX_RI NGS (15).

Answering treatment and endpoint type

The two final arguments specify how the Call is treated when the destination Connection reaches its target destination, and the allowed
kinds of endpoints on the answering end. Each of these arguments must be one of the designated constants defined by this interface.

The returned Connections

The Connections created and returned by this method behave similarly to Connections which were returned from Cal | . connect ().
The originating Connection moves into the Connect i on. CONNECTED state when an originating party is placed on the Call. If the
target state for the destination Connection is Connect i on. ALERTI NG, it movesinto the Connect i on. CONNECTED state when the
called party answers the Call.
Pre-conditions

1. (this.getProvider()).getState() == Provider.IN_SERVICE

2. this.getState() == Call.IDLE

3. connectionState == Connection.CONNECTED or Connection.ALERTING

4. maxRings >= CallCenterCall.MIN_RINGS

5. maxRings <= CallCenterCall. MAX_RINGS
Post-conditions

1. Let connectiong[] = this.getConnections()
(this.getProvider()).getState() == Provider.IN_SERVICE
this.getState() == Call.IDLE
connections.length ==

o DN

connectiong[0].getState() == connectionState
6. connectiong|1].getState() == Connection.IDLE
Parameters:

originatorTerminal - The originating Terminal. If the originating Addressis an ACD Address, for example, this value may be
null.

originatorAddress - The originating Address of the telephone call.
dialedDigits - The complete and valid telephone address string.

connectionState - The target state for the destination Connection before the originating Connection is created. This must either be
Connection.CONNECTED or Connection. ALERTING

maxRings - The maximum number of rings before classifying the Call as"no answer".
treatment - The treatment of the Call when the endpoint is detected.

endpointType - The permitted answering endpoint type.
Returns:

An array of the originating and destination Connection
Throws: ResourceUnavailableException

An internal resource necessary for placing the phone call is unavailable.
Throws: PrivilegeViolationException

The application does not have the proper authority to place atelephone call.
Throws: InvalidPartyException

Either the originator or the destination does not represent avalid party required to place atelephone call.
Throws: InvalidArgumentException

An argument provided is not valid either by not providing enough information or isinconsistent with another argument.
Throws: InvalidStateException

Either the Provider is not in service or the Call isnot idle.
Throws: MethodNotSupportedException

The implementation does not support this method.

@ setApplicationData

public abstract void setApplicationData(Cbject data) throws
Resour ceUnavai | abl eExcepti on, Invali dArgunment Exception, lnvalidStateException,

Met hodNot Suppor t edExcepti on

This method associates application specific datawith a Call. The format of the datais application-specific. The application-specific data
given in this method replaces any existing application data. If the argument givenisnul | , the current application data (if any) is
removed.

In the case that a Call is transfered or conferenced, the application data from the Call from which the conference or transfer isinvoked will
be retained.
Pre-conditions:

1. (this.getProvider()).getState() == Provider.IN_SERVICE

2. this.getState() == Call.ACTIVE or Call.IDLE
Post-conditions:

1. (this.getProvider()).getState() == Provider.IN_SERVICE

2. this.getState() == Call.ACTIVE or Call.IDLE

3. this.getApplicationData() = data

4. A CallCentCallAppDataEv is delivered for this Call
Parameters:

data - The data to be associated with the call.

Throws: ResourceUnavailableException

An internal resource necessary for adding the data was unavailable. For example, the size of the Object was not supported by the
implementation.

Throws:. InvaidArgumentException

The argument provided is not valid. For example, the implementation does not support the specific object type.
Throws: InvalidStateException

Either the Provider was not in service or the Call was not active or idle.
Throws: MethodNotSupportedException

The implementation does not support this method.
See Also:

CdlCentCallAppDataEv

@ getApplicationData

public abstract Ohject getApplicationData() throws MethodNot SupportedException

Returns the application-specific data associated with the Call. This method returnsnul | isthereis no associated data.
Returns:

s The application-specific data associated with this Call.
Throws: MethodNotSupportedException

The implementation does not support this method.

< getTrunks

public abstract Call CenterTrunk[] get Trunks() throws MethodNot SupportedExcepti on

Returns an array of al Cal | Cent er Tr unks currently being used for this Call. If there are no trunks being used for this Call, this
method returns null. Each trunk returns by this method will bein the Cal | Cent er Tr unk. VALI D state.

Post-conditions:
1. Let CallCenterTrunk]] trunks = this.getTrunks()
2. trunks==null or trunks.length>=1
3. trunkg[i].getState() == CalCenterTrunk.VALID_TRUNK, for al i
Returns:
An array of trunks currently associated with this Call.
Throws: MethodNotSupportedException

The implementation does not support this method.

Al |l Packages Thi s Package Previous Next

Al l Packages Thi s Package Previous Next

Interface
javax.telephony.callcenter.CallCenterCallObserver

public interface CallCenter CallObserver

extends CallObserver

TheCal | Cent er Cal | Gbser ver interface extends the event reporting of of the core Cal | Gbser ver toinclude call center related events.
Applications instantiate an object which implements this interface and usethe Cal | . addCbser ver () to request delivery of eventsto this

observer object. Eventswill be delivered to thisinterface only if the Provider isinthe Pr ovi der . | N_SERVI CE state. All events which are
reported viathisinterface must extend the Cal | Cent Cal | Ev interface.

Events are reported viathe Cal | Gbser ver. cal | ChangedEvent () method. This interface defines no additional methods and therefore
serves as away applications signal to the implementation that is desires call center package events.

See Also:

Call, CdlObserver, CalCentCallEv, CalCentTrunkValidEv, CallCentTrunklnvalidEv, CallCentCallAppDataEyv,
CallCentConnl nProgressEv

Al l Packages Thi s Package Previous Next

Al l Packages Thi s Package Previous Next

Interface javax.telephony.callcenter.CallCenterProvider

public interface CallCenter Provider
extends Provider

TheCal | Cent er Provi der interface extends the core Pr ovi der interface. Thisinterface defines additional methods to query the Provider's
local domain. This interface defines method to return the routeabl e addresses, the ACD addresses, and the ACD manager addresses in the
Provider's domain.

See Also:
Provider, RouteAddress, ACDAddress, ACDManagerAddress

Method [rndex

@ getACDAddr esses()

Returns an array of ACD Addresses associated with the Provider and within the Provider's domain.
@ getACDM anager Addr esses()

Returns an array of ACD manager Addresses associated with the Provider and within the Provider's domain.
@ getRouteableAddr esses()

Returns an array of routeable Addresses associated with the Provider and within the Provider's domain.

Mefhods

- getRouteableAddr esses

public abstract RouteAddress[] get Routeabl eAddresses() throws
Met hodNot Suppor t edExcepti on

Returns an array of routeable Addresses associated with the Provider and within the Provider's domain. Thislist is static (i.e. is does not
change) after the Provider isfirst created. If no routeable Addresses are associated with this Provider, then this method returns null.
Post-conditions:

1. Let RouteAddress[] addresses = this.getRouteabl eAddresses()

2. addresses == null or addresses.|ength >= 1
Returns:

An array of RouteAddresses in the Provider's domain

Throws: MethodNotSupportedException

This method is not supported by the implementation.
< getACDAddresses

public abstract ACDAddress[] get ACDAddresses() throws MethodNot SupportedException

Returns an array of ACD Addresses associated with the Provider and within the Provider's domain. Thislist is static (i.e. is does not

change) after the Provider isfirst created. If no ACD Addresses are associated with this Provider, then this method returns null.

Post-conditions:
1. Let ACDAddress[] addresses = this.getACDAddresses()
2. addresses == null or addresses.|ength >= 1
Returns:
An array of ACDAddresses in the Provider's domain
Throws: MethodNotSupportedException

This method is not supported by the implementation.
@ getACDM anager Addr esses

public abstract ACDVanager Address[] get ACDManager Addresses() throws
Met hodNot Suppor t edExcept i on

Returns an array of ACD manager Addresses associated with the Provider and within the Provider'sdomain. Thislist is static (i.e. is does
zaltlchange) after the Provider isfirst created. If no ACD manager Addresses are associated with this Provider, then this method returns
Post-conditions:

1. Let ACDManagerAddress[] addresses = this.getACDManagerAddresses()

2. addresses == null or addresses.|length>= 1
Returns:

An array of ACDManagerAddresses in the Provider's domain

Throws: MethodNotSupportedException

This method is not supported by the implementation.

Al |l Packages This Package Previous Next

Al l Packages Thi s Package Previous Next

Interface javax.telephony.callcenter.CallCenterTrunk

public interface CallCenter Trunk
Introduction

The Cal | Cent er Tr unk interface represents atrunk on the underlying telephony hardware. Each trunk has four attributes: its name, its state, its
type, and its associated Call.

The Trunk Name

Thefirst attribute of atrunk isits string name. This nameis assigned to the trunk by the underlying telephony hardware. Applications obtains the
name of the trunk viathe get Narme() method on thisinterface. A trunk's name does not change throughout its lifetime.

The Trunk State

The second attribute of atrunk isits state. The state indicates whether the trunk is associated with a Call (i.e. valid) or not associated with a Call
(i.e. invalid). Applications obtain the state of atrunk viathe get St at e() method on thisinterface. The following chart summarizes the two trunk
states:

Cal | Cent er Trunk. VALI D_ TRUNK Thetrunk isvalid and associated with a Call.
Cal | Cent er Trunk. | NVALI D_TRUNK Thetrunk is not valid and not associated with a Call.

The Trunk Type

The third attribute of atrunk isitstype. The type indicates whether the trunk is an "incoming", "outgoing", or "unknown". Applications obtain the
trunk type viathe get Type() method on thisinterface. The following chart summarizes the three trunk types:

Cal | Cent er Trunk. | NCOM NG_TRUNK The trunk is an incoming trunk
Cal | Cent er Tr unk. OQUTGO NG_TRUNK The trunk is an outgoing trunk
Cal | Cent er Tr unk. UNKNOWN_TRUNK The trunk typeis not known

The Associated Call

The fourth attribute of atrunk is the Call associated with it. The Call is assigned when the trunk isfirst created and remains the same throughout
the lifetime of the trunk. Applications obtain the associated Call viatheget Cal | () method on thisinterface.

Observers and Events

Applications receive an event whenever the state of the trunk changes. These events are reported viathe Cal | Cent er Cal | Cbser ver interface.
TheCal | Cent TrunkVal i dEv event is delivered when the trunk movesto the Cal | Cent er Tr unk. VALI D_TRUNK state and a
Cal | Cent Trunkl nval i dEv event is devliered when the trunk movesto the Cal | Cent er Tr unk. | NALI D_TRUNK state.

See Also:
CallCenterCall, CalCenterCallObserver, CallCentTrunkValidEv, CallCentTrunklnvaidEv

Variable [ndex

@ INCOMING_TRUNK

Trunk type: The trunk isincoming.
@ INVALID TRUNK

Trunk state: The trunk isinvalid.
OUTGOING_TRUNK

Trunk type: The trunk is outgoing.
UNKNOWN TRUNK

Trunk type: The trunk is unknown.
@ VALID TRUNK

Trunk state: The trunk isvalid.

Method [ndex

@ getCall()
Returns the Call associated with this trunk.

@ getName()
Returns the name of the trunk.

@ getState()
Returns the current state of the Trunk.

@ 0etType()
Returns the type of trunk.

Variables

@ INVALID_TRUNK

public static final int |NVALI D TRUNK
Trunk state: Thetrunk isinvalid.

@ VALID TRUNK

public static final int VALI D TRUNK
Trunk state: The trunk is valid.

@ ncomi NG_TRUNK

public static final int | NCOM NG TRUNK
Trunk type: The trunk isincoming.

@ outcol NG_TRUNK

public static final int OUTGO NG TRUNK
Trunk type: The trunk is outgoing.

@ UNKNOWN_TRUNK

public static final int UNKNOAN_TRUNK

Trunk type: The trunk is unknown.

MeEHhods

@ getName

public abstract String get Nane()
Returns the name of the trunk. This name is assigned by the underlying telephony hardware.
Returns:
The name of the trunk.

- getState

public abstract int getState()
Returns the current state of the Trunk.
Returns:
The current state of the trunk.

o getType

public abstract int getType()
Returns the type of trunk.
Returns:
The type of trunk.

@ geccal

public abstract Call getCall ()

Returns the Call associated with thistrunk. This Call reference remains valid throughout the lifetime of the trunk, despite the current state
of the trunk.

Returns:
The Call associated with this trunk.

Al |l Packages Thi s Package Previous Next

Al l Packages Thi s Package Previous Next

Interface javax.telephony.callcenter.RouteAddress

public interface RouteAddr ess
extends Address

The Rout eAddr ess interface extends the core Addr ess interface and add methods to allow applications the ability to select destinations for
calls coming into this Address.

Applications may register to route calls for this Address viather egi st er Rout eCal | back() method defined on thisinterface. This method
takes an instance of an object which implementsthe Rout eCal | back interface. For each Call which comesinto this Address, a new
Rout eSessi on iscreated for each callback which is currently registered. The callbacks will receive routing requests via the callbacks.

Applications may register to route calls for all RouteAddresses via a special Address created by the Provider. This Address has the name

Rout eAddr ess. ALL_ROUTE_ADDRESS and may be obtained viathe Pr ovi der . get Addr esses() or Provi der. get Addr ess()
method. When applicationsinvoke ther egi st er Rout eCal | back() method on this special address, the callback will receive routing requests
for all routeable Addresses in the Provider's domain.

Variable [ndex

*ALL_ROUTE_ADDRESS

The string name of the special Address created by the Provider used by applications to register a callback for all routeable Addressesin
the Provider's domain.

MeFtnod lndex

@ cancel RouteCallback (RouteCallback)

Cancels a previoudly registered routing callback for this Address.
getActiveRouteSessions()

Returns an array of all active route sessions associated with this Address.
@ getRouteCallback()

Returns an array of al callbacks which are registered to route Calls for this Address.
@ r egister RouteCallback (RouteCallback)

Registers a callback to route calls for this Address.

Variables

@ ALL_ROUTE_ADDRESS

public static final String ALL_ROUTE_ADDRESS

The string name of the special Address created by the Provider used by applications to register a callback for all routeable Addressesin
the Provider's domain.

MeEhods

< register RouteCallback

public abstract void registerRouteCall back(RouteCal |l back routeCall back) throws
Resour ceUnavai | abl eExcepti on, Met hodNot Support edExcepti on

Registers a callback to route calls for this Address. The callback given as an argument will be notified of all routing requests for Calls
which come into this Address. Applications may register a callback for all routeable Addresses in the Provider's domain by invoke this

method on a special Address with the name Rout eAddr ess. ALL_ROUTE_ADDRESS.

Multiple callbacks may be registered on asingle Address. This method throws Resour ceUnavai | abl eExcept i on if the maximum

number of registered callbacks on the Address has been exceeded.

Pre-Conditions

1. this.getProvider().getState() == Provider.IN_SERVICE
Post-Conditions

1. this.getProvider().getState() == Provider.IN_SERVICE

2. routeCallback is an element of this.getRouteCallback()
Parameters:

routeCallback - The callback to be registered.

Throws. ResourceUnavailableException

Indicates the maximum number of registered callbacks for this Address has been exceeded.
Throws. MethodNotSupportedException

The implementation does not support this method.

o cancelRouteCallback

public abstract void cancel Rout eCal | back(Rout eCal | back routeCall back) throws
Met hodNot Suppor t edExcepti on

Cancels a previously registered routing callback for this Address. If the given callback is currently no registered on this Address, this

method fails silently, i.e. no callback is removed and no exception is thrown.

Pre-Conditions

1. this.getProvider().getState() == Provider.IN_SERVICE
Post-Conditions

1. this.getProvider().getState() == Provider.IN_SERVICE

2. routeCallback is not an element of this.getRouteCallback()
Parameters:

routeCallback - The callback to be cancelled.

Throws: MethodNotSupportedException

will be thrown if provider does not support this method.

@ getRouteCallback

public abstract RouteCallback[] getRouteCallback() throws
Met hodNot Suppor t edExcepti on

Returns an array of al callbacks which are registered to route Calls for this Address. This method returnsnul | if there exists no
registered callbacks.

Returns:

An array of register callbacks.
Throws. MethodNotSupportedException

The implementation does not support this method.

- getActiveRouteSessions

publ i c abstract RouteSession[] getActiveRouteSessions() throws
Met hodNot Suppor t edExcepti on

Returns an array of all active route sessions associated with this Address. This method returnsnul | if there exists no active route
sessions.

Returns:
An array of active route sessions associated with this Address.
Throws, MethodNotSupportedException

The implementation does not support this method.

Al |l Packages This Package Previous Next

Al l Packages Thi s Package Previous Next

Interface javax.telephony.callcenter.RouteCallback

public interface RouteCallback

The Rout eCal | back interface is used by applications to receive routing requests for aparticular Rout eSessi on. Applications instantiates an
object which implements this interface and registers the callback for a particular routeable address viathe
Rout eAddr ess. r egi st er Rout eCal | back() method.

Applications override the individual methods defined by thisinterface, each of which corresponds to a different kind of routing request.
See Also:
RouteAddress, RouteSession

MeFtnod lndex

@ r eRouteEvent(ReRouteEvent)

This method indicates the application is being asked to select another route for a Call.
routeCallback EndedEvent(RouteCallbackEndedEvent)

This method indicates that this callback will no longer receive routing requests or routing information and the callback has been
terminated.

@ r outeEndEvent(RouteEndEvent)

This method indicates that a routing session has ended.
@ r outeEvent(RouteEvent)

This method indicates the application is being asked to route a Call.
@ r outeUsedEvent(RouteUsedEvent)

This method indicates that a Call has successfully reached afinal destination which the application has selected.

Mefhods

o routeEvent

public abstract void routeEvent (Rout eEvent event)

This method indicates the application is being asked to route a Call. The Rout eSessi on associated with thisRout eCal | back has
transitioned into the Rout eSessi on. ROUTE state.

Parameters:
event - The RouteEvent object describing the routing request.

o reRouteEvent

public abstract void reRout eEvent (ReRout eEvent event)

This method indicates the application is being asked to select another route for aCall. The Rout eSessi on associated with this
Rout eCal | back hastransitioned into the Rout eSessi on. RE_ROUTE state.

Parameters:
event - The ReRouteEvent object describing the routing request.

o routeUsedEvent

public abstract void routeUsedEvent (Rout eUsedEvent event)

This method indicates that a Call has successfully reached afinal destination which the application has selected. The Rout eSessi on
associated with this Rout eCal | back hastransitioned into the Rout eSessi on. ROUTE_USED state.

Parameters:
event - The RouteUsedEvent object describing the route used.

o routeEndEvent

public abstract void routeEndEvent (Rout eEndEvent event)

This method indicates that a routing session has ended. The Rout eSessi on associated with thisRout eCal | back has transitioned
into the Rout eSessi on. ROUTE_END state.

Parameters:
event - The RouteEndEvent object describing the ending of the routing session.

o routeCallbackEndedEvent

public abstract void routeCall backEndedEvent (Rout eCal | backEndedEvent event)

This method indicates that this callback will no longer receive routing requests or routing information and the callback has been
terminated. The Rout eSessi on associated with thisRout eCal | back hastransitioned into the
Rout eSessi on. ROUTE_CALLBACK_ ENDED state.

Parameters:
event - The RouteCallbackEndedEvent object describing the ending of the routing callback.

Al |l Packages Thi s Package Previous Next

Al l Packages Thi s Package Previous Next

Interface javax.telephony.callcenter.RouteSession

public interface RouteSession
Introduction

A Rout eSessi on represents an outstanding route request of a Call. Each session is associated with a particular Rout e Addr ess which
represents the Address to which the Call was originally placed. This Rout eAddr ess is obtained viathe get Rout eAddr ess() method defined
on thisinterface. Applications must have previoudly asked to route calls to this Address.

Routing Callbacks

Each Rout eSessi on may be associated with zero or more routing callbacks, as represented by the Rout eCal | back interface. Using the
Rout eCal | back interface, applications may routing decisions for Calls. Applications register a callback viathe

Rout eAddr ess. r egi st er Rout eCal | back() method. Current callbacks registered on aRout eAddr ess are associated with all new
Rout eSessi ons created at that Rout eAddr ess. A Rout eSessi on, therefore, may have more than one callback associated with it. The first
Rout eCal | back to respond with arouting request for a particular Rout eSessi on wins, in the case multiple Rout eCal | backs exist.

The Routing State

A Rout eSessi on has a state which represents the current status of the Call with respect to the routing requests submitted by the application.
These states are defined as static integer constants on this interface. Applications obtain the current state viathe Rout eSessi on. get St at e()
method. The various states of aroute session are summarized below.

Rout eSessi on. ROUTE This state indicates that an application has been requested to route a Call.

: This state indicates that a destination has been selected for a Call. This destination is one which
Rout eSessi on. ROUTE_USED the application had selected during its routing of the Call.

Rout eSessi on. ROUTE_END This state indicates that the routing of a Call has terminated.

. RE_ROUTE 'cr:gjlssiate indicates that an application has been requested to select another destination for the

This state indicates that all Rout eCal | back objects have been removed from this routing
Rout eSessi on. ROUTE_CALLBACK ENDED session. There are no more routing callbacks associated with this session. Thisisthe final state
for the Rout eSessi on interface.

Rout eSessi on

RouteSession State Transition Diagram

The states of the Rout eSessi on must transition according to the finite state diagram below. The implementation must guarantee the state of a
Rout eSessi on adheres to these valid transitions.

ROUTE_USED

ECUTE CALLBACK ENDED
-

ROUTE ECUTE EML

RE_ROUTE

Selecting the Routing for a Call

Applications use the Rout eSessi on. sel ect Rout e() method to select possible destinations for the Call associated with this routing session.
The state of the Rout eSessi on must either be Rout eSessi on. ROUTE or Rout eSessi on. RE_ROUTE in order for this method to be valid.

An array of destination address strings are given to this method. Thislist represents a priority-order list of possible destinations for the Call. The
Call isrouted to the first destination given (at index 0). If it fails, the second destination is attempted. This process is repeated until there are no
more remaining destinations, or until a successful destination has been chosen. If a successful destination has been chosen, the state of the

Rout eSessi on movesinto Rout eSessi on. ROUTE_USED.

See Also:

RouteCallback, RouteAddress, RouteSessionEvent, RouteEvent, ReRouteEvent, RouteUsedEvent, RouteEndEvent,
RouteCallbackEndedEvent

Variable [Hdex

@ CAUSE_INVALID DESTINATION

Cause code indicating that the routing session is being terminated because because the application supplied an invalid destination in the
Rout eSessi on. r out eSel ect () method.

CAUSE_NO_ERROR

Cause code indicating no error.
CAUSE PARAMETER NOT SUPPORTED

Cause code indicating that the routing session is being terminated because the application supplied an unsupported parameter in the
Rout eSessi on. r out eSel ect () method.

CAUSE_ROUTING_TIMER_EXPIRED

Cause code indicating a routing timer has expired.

CAUSE_STATE_INCOMPATIBLE

Cause code indicating that the routing session is being terminated because the Connect i on stateisincompatable with the
Rout eSessi on.

@ CAUSE _UNSPECIFIED_ERROR

Cause code indicating that the routing session is being terminated for unspecified reasons.
ERROR_RESOURCE_BUSY

Error code indicating the application is too busy to handle the routing request.
ERROR_RESOURCE_OUT_OF_SERVICE

Error code indicating the application or a database upon which it relies for routing is temporary out of service and cannot handle the
routing request.

ERROR_UNKNOWN

Error code indicating the application is not giving a reason for ending the routing session.
RE_ROUTE

The Rout eSessi on. RE_ROUTE state indicates that an application has been requested to select another destination for the Call.
* ROUTE

The Rout eSessi on. ROUTE state indicates that an application has been requested to route a Call.
ROUTE CALLBACK ENDED

The Rout eSessi on. ROUTE_CALLBACK ENDED state indicates that all Rout eCal | back objects have been removed from this
routing session.

* ROUTE_END

The Rout eSessi on. ROUTE_END state indicates that the routing of a Call has terminated.
@ ROUTE_USED

The Rout eSessi on. ROUTE _USED state indicates that a destination has been selected for a Call.

Method [rndex

@ endRoute(int)

Ends a routing session.
@ getCause()

Returns the cause indicating why this route session isin its current state.
@ getRouteAddress()

Returnsthe Rout e Addr ess associated with this routing session and the one for which the application has registered to route Calls for.

@ getState()
Returns the current state of the route session.
@ selectRoute(String[])

Selects one or more possible destinations for the routing of the Call.

Variables

@ ROUTE

public static final int ROUTE

The Rout eSessi on. ROUTE state indicates that an application has been requested to route a Call.
@ ROUTE_USED

public static final int ROUTE_USED

The Rout eSessi on. ROUTE_USED state indicates that a destination has been selected for a Call. This destination is one which the
application had selected during its routing of the Call.

@ ROUTE_END

public static final int ROUTE_END
The Rout eSessi on. ROUTE_END state indicates that the routing of a Call has terminated.

@ RE_ROUTE

public static final int RE_ROUTE
The Rout eSessi on. RE_ROUTE state indicates that an application has been requested to select another destination for the Call.

@ ROUTE_CALLBACK_ENDED

public static final int ROUTE_CALLBACK_ENDED

The Rout eSessi on. ROUTE_CALLBACK_ENDED state indicates that all Rout eCal | back objects have been removed from this
routing session. There are no more routing callbacks associated with this session. Thisisthe final state for the Rout eSessi on interface.

@ CAUSE NO_ERROR

public static final int CAUSE NO ERROR
Cause code indicating no error.

-+ CAUSE_ROUTING_TIMER_EXPIRED

public static final int CAUSE_ROUTI NG TI MER_EXPI RED
Cause code indicating a routing timer has expired.

@ CAUSE_PARAMETER_NOT_SUPPORTED

public static final int CAUSE PARAMETER NOT_SUPPORTED

Cause code indicating that the routing session is being terminated because the application supplied an unsupported parameter in the
Rout eSessi on. rout eSel ect () method.

@ CAUSE_INVALID_DESTINATION

public static final int CAUSE | NVALI D_DESTI NATI ON

Cause code indicating that the routing session is being terminated because because the application supplied an invalid destination in the
Rout eSessi on. r out eSel ect () method.

9 CAUSE_STATE_INCOMPATIBLE

public static final int CAUSE STATE | NCOVPATI BLE

Cause code indicating that the routing session is being terminated because the Connect i on stateisincompatable with the
Rout eSessi on.

@ CAUSE_UNSPECIFIED_ERROR

public static final int CAUSE UNSPECI FI ED ERRCOR
Cause code indicating that the routing session is being terminated for unspecified reasons.

@ ERROR_UNKNOWN

public static final int ERROR_UNKNOAN

Error code indicating the application is not giving areason for ending the routing session. This value may be passed as an argument to the
Rout eSessi on. endRout e() method.

@ ERROR_RESOURCE_BUSY

public static final int ERROR RESOURCE BUSY

Error code indicating the application is too busy to handle the routing request. This value may be passed as an argument to the
Rout eSessi on. endRout e() method.

@ ERROR_RESOURCE_OUT_OF SERVICE

public static final int ERROR RESOURCE OUT_OF SERVI CE

Error code indicating the application or a database upon which it relies for routing is temporary out of service and cannot handle the
routing request. This value may be passed as an argument to the Rout eSessi on. endRout e() method.

MeEhods

@ getRouteAddress

public abstract Rout eAddress get Rout eAddress()

Returnsthe Rout eAddr ess associated with this routing session and the one for which the application has registered to route Calls for.
Returns:
The RouteAddress associated with this session.

o selectRoute

public abstract void selectRoute(String routeSelected[]) throws
Met hodNot Suppor t edExcepti on

Selects one or more possible destinations for the routing of the Call. This method takes an array of string destination telephone address
names, in priority order. The highest priority destination is the first element in the given array, and routing is attempted with this
destination first. Successive given destination addresses are attempted until one is found which does not fail.

A Rout eUsedEvent eventisdelivered to the application when a successful routing destination has been selected and the Call has been
routed to that destination.
Pre-conditions:

1. this.getRouteAddress().getProvider().getState() == Provider.IN_SERVICE

2. this.getState() == RouteSession.ROUTE or RouteSession.RE_ROUTE
Post-Conditions

1. this.getRouteAddress().getProvider().getState() == Provider.IN_SERVICE

2. this.getState() == RouteSession.ROUTE_USED if Call was successfully routed.

3. RouteUsedEvent is delivered for this RouteSession if a successful destination was selected.
Parameters:

routeSelected - A list of possible destinations for the call.

Throws. MethodNotSupportedException

Routing is not supported by the implementation.

o endRoute

public abstract void endRoute(int errorValue) throws MethodNot SupportedException

Ends arouting session. The application provides an integer error value argument giving the reason why it is terminating this routing
session. These error values are defined by thisinterface.

If this method is successful, the state of this Rout eSessi on movesinto the Rout eSessi on. ROUTE _END state and a
Rout eEndEvent isdelivered.
Pre-Conditions

1. this.getRouteAddress().getProvider().getState() == Provider.IN_SERVICE

Post-Conditions
1. this.getRouteAddress().getProvider().getState() == Provider.IN_SERVICE
2. this.getState() == RouteSession.ROUTE_END
3. RouteEndEvent is delivered to the application for this RouteSession
Parameters:

errorValue - Indicates the reason why the application is terminating this routing session, as defined by the constantsin this
interface.

Throws. MethodNotSupportedException

The implementation does not support this method.

- getState

public abstract int getState()
Returns the current state of the route session.
Returns:
The current state of the route session.

@ getCause

public abstract int getCause()

Returns the cause indicating why this route session isin its current state. These cause values are constant integer definitions defined by
thisinterface.

Returns:
The cause of the current route session state.

Al | Packages Thi s Package Previous Next

Al |l Packages

package javax.telephony.callcenter.capabilities

Interface [ndex

o ACDAddressCapabilities
« ACDConnectionCapabilities
o ACDManagerAddressCapabilities

« ACDManagerConnectionCapabilities

« AgentTerminal Capabilities

« CallCenterAddressCapabilities
« CallCenterCallCapabilities

« CallCenterProviderCapabilities
» RouteAddressCapabilities

Al | Packages This Package Previous Next

Interface
javax.telephony.callcenter.capabilities. ACDAddressCapabilities

public interface ACDAddressCapabilities
extends AddressCapabilities

The ACDAddressCapabilities interface extends the AddressCapabilities interface to add capabilities methods for the ACDAddress interface. Applications
query these methods to find out what actions are possible on the ACDAddress interface.

Method [ndex

2 canGetACDM anager Address()

This method returns true if the method getACDManagerAddress on the ACDAddress interface is supported.
2 canGetlL oggedOnAgents()

This method returns true if the method getL oggedOnA gents on the ACDAddress interface is supported.
@ canGetNumber Queued()

This method returns true if the method getNumberQueued on the ACDAddress interface is supported.
canGetOldestCallQueued()

This method returns true if the method getOldestCall Queued on the ACDAddress interface is supported.
2 canGetQueueWaitTime()

This method returns true if the method getQueueWaitTime on the ACDAddress interface is supported.
2 canGetRelativeQueuel oad()

This method returns true if the method getRelativeQueuel oad on the ACDAddress interface is supported.

MeFkhods

@ canGetL oggedOnAgents

public abstract bool ean canGet LoggedOnAgent s()
This method returns true if the method getL oggedOnAgents on the ACDAddress interface is supported.
Returns:
True if the method getlL oggedOnAgents on the ACDAddress interface is supported.

@ canGetNumber Queued

public abstract bool ean canGet Nunber Queued()
This method returns true if the method getNumberQueued on the ACDAddress interface is supported.
Returns:
Trueif the method getNumberQueued on the ACDAddress interface is supported.

@ canGetOldestCallQueued

public abstract bool ean canGet A dest Cal | Queued()

This method returns true if the method getOldestCall Queued on the ACDAddress interface is supported.
Returns:
True if the method getOldestCall Queued on the ACDAddress interface is supported.

@ canGetRelativeQueuel oad

public abstract bool ean canGet Rel ati veQueuelLoad()
This method returns true if the method getRel ativeQueuel oad on the ACDAddress interface is supported.
Returns:
Trueif the method getRelativeQueuel oad on the ACDAddress interface is supported.

@ canGetQueueWaitTime

public abstract bool ean canGet QueueWai t Ti me()
This method returns true if the method getQueueWaitTime on the ACDAddress interface is supported.
Returns:
True if the method getQueueWaitTime on the ACDAddress interface is supported.

@ canGetACDM anager Address

public abstract bool ean canGet ACDMVanager Address()
This method returns true if the method getACDManagerAddress on the ACDAddress interface is supported.
Returns:
Trueif the method getACDManagerAddress on the ACDAddress interface is supported.

Al | Packages This Package Previous Next

Al |l Packages This Package Previous Next

Interface
javax.telephony.callcenter.capabilities. ACDConnectionCapabilities

public interface ACDConnectionCapabilities
extends ConnectionCapabilities

The ACDConnectionCapabilities interface extends the ConnectionCapabilities interface to add capabilities methods for the ACDConnection interface. Applications
guery these methods to find out what actions are possible on the ACDConnection interface.

Method Index

canGetACDM anager Connection()

This method returns true if the method getA CDManagerConnection on the ACDConnection interface is supported.

MeFhods

@ canGetACDM anager Connection

publ i c abstract bool ean canGet ACDManager Connecti on()
This method returns true if the method getA CDM anagerConnection on the ACDConnection interface is supported.
Returns:
Trueif the method getACDManagerConnection on the ACDConnection interface is supported.

Al | Packages This Package Previous Next

Al l _Packages This Package Previous Next

Interface
javax.telephony.callcenter.capabilities. ACDManagerAddressCapabilities

public interface ACDM anager Addr essCapabilities
extends AddressCapabilities

The ACDManagerAddressCapabilities interface extends the AddressCapabilities interface to add capabilities methods for the ACDManagerAddress interface. Applications query
these methods to find out what actions are possible on the ACDAManagerddress interface.

Merhod [ndex,

@ canGetACDAddresses()
This method returns true if the method getACDA ddresses on the ACDManagerAddress interface is supported.

MeFkhods

@ canGetACDAddresses

public abstract bool ean canGet ACDAddr esses()
This method returns true if the method getACDA ddresses on the ACDManagerAddress interface is supported.
Returns:
Trueif the method getACDAddresses on the ACDManagerAddress interface is supported.

Al'l Packages This Package Previous Next

Al Packages Thi s Package Previous Next

Interface
javax.telephony.callcenter.capabilities. ACDManagerConnectionCapabilities

public interface ACDM anager ConnectionCapabilities
extends ConnectionCapabilities

The ACDM anagerConnectionCapabilities interface extends the ConnectionCapabilities interface to add capabilities methods for the ACDManagerConnection interface. Applications query
these methods to find out what actions are possible on the ACDManagerConnection interface.

Method Index

& canGetACDConnections()

This method returns true if the method getA CDConnections on the ACDManagerConnection interface is supported.

MetHods

@ canGetACDConnections

public abstract bool ean canGet ACDConnecti ons()
This method returns true if the method getA CDConnections on the ACDManagerConnection interface is supported.
Returns:
True if the method getACDConnections on the ACDManagerConnection interface is supported.

Al l Packages Thi s Package Previous Next

Al | Packages This Package Previous Next

Interface
javax.telephony.callcenter.capabilities.AgentTerminalCapabilities

public interface AgentTer minalCapabilities
extends Terminal Capabilities

The AgentTerminal Capabilities interface extends the Terminal Capabilities interface to add capabilities methods for the AgentTerminal interface. Applications
query these methods to find out what actions are possible on the AgentTerminal interface.

Merhod Index,

@ canHandleAgents()
This method returns true if the methods addAgent, removeAgent and getAgents on the AgentTerminal interface are supported.

MeEhods

@ canHandleAgents

public abstract bool ean canHandl eAgent s()
This method returns true if the methods addAgent, removeAgent and getAgents on the AgentTerminal interface are supported.
Returns:
Trueif the methods to handle agents on the AgentTerminal interface are supported.

Al Packages Thi s Package Previous Next

Al l Packages This Package Previous Next

Interface
javax.telephony.callcenter.capabilities.CallCenterAddressCapabilities

public interface CallCenter Addr essCapabilities
extends AddressCapabilities

The Call CenterAddressCapabilities interface extends the AddressCapabilities interface to add capabilities methods for the Call CenterAddress interface. Applications query
these methods to find out what actions are possible on the Call CenterAddress interface.

Metnod Index

@ canAddCallObser ver (boolean)
This method returns true if the method addCall Observer with the remain flag on the CallCenterAddress interface is supported.

MeFkods

@ canAddCallObserver

public abstract bool ean canAddCal | Gbserver (bool ean remnai n)
This method returns true if the method addCall Observer with the remain flag on the Call CenterAddress interface is supported.
Returns:
True if the method addCallObserver on the Call CenterAddress interface is supported.

Al |l Packages This Package Previous Next

Al |l Packages This Package Previous Next

Interface
javax.telephony.callcenter.capabilities.CallCenterCallCapabilities

public interface CallCenter CallCapabilities
extends CallCapabilities

The CallCenterCall Capabilities interface extends the Call Capabilities interface to add capabilities methods for the Call CenterCall interface. Applications query
these methods to find out what actions are possible on the CallCenterCall interface.

Method Index

@ canConnectPredictive()

This method returns true if the method connectPredictive on the CallCenterCall interface is supported.
@ canGetTrunks()

This method returns true if the method getTrunks on the CallCenterCall interface is supported.
= canHandleApplicationData()

This method returns true if the methods setApplicationData and getA pplicationData on the CallCenterCall interface are supported.

MeFkhods

L canConnectPredictive

publi c abstract bool ean canConnect Predictive()
This method returns true if the method connectPredictive on the CallCenterCall interface is supported.
Returns:
Trueif the method connectPredictive on the CallCenterCall interface is supported.

9@ canHandleApplicationData

publ i c abstract bool ean canHandl eAppl i cati onDat a()
This method returns true if the methods setApplicationData and getA pplicationData on the Call CenterCall interface are supported.
Returns:
Trueif the methods to handle ApplicationData on the Call CenterCall interface are supported.

@ canGetTrunks

public abstract bool ean canGet Trunks()
This method returns true if the method getTrunks on the CallCenterCall interface is supported.
Returns:
True if the method getTrunks on the CallCenterCall interface is supported.

Al'l Packages This Package Previous Next

Al l Packages This Package Previous Next

Interface
javax.telephony.callcenter.capabilities.CallCenterProviderCapabilities

public interface CallCenter Provider Capabilities
extends ProviderCapabilities

The CallCenterProviderCapabilities interface extends the ProviderCapabilities interface to add capabilities methods for the Call CenterProvider interface. Applications query
these methods to find out what actions are possible on the CallCenterProvider interface.

MetHod Indey

@ canGetACDAddresses()

This method returns true if the method getACDA ddresses on the CallCenterProvider interface is supported.
@ canGetACDM anager Addr esses()

This method returns true if the method getA CDM anagerAddresses on the CallCenterProvider interface is supported.
@ canGetRouteableAddr esses()

This method returns true if the method getRouteableAddresses on the Call CenterProvider interface is supported.

Methods

@ canGetRouteableAddresses

public abstract bool ean canGet Rout eabl eAddr esses()
This method returns true if the method getRouteabl eAddresses on the CallCenterProvider interface is supported.
Returns:
True if the method addCallObserver on the CallCenterProvider interface is supported.

@ canGetACDAddr esses

public abstract bool ean canGet ACDAddr esses()
This method returns true if the method getA CDA ddresses on the CallCenterProvider interface is supported.
Returns:
True if the method getA CDAddresses on the CallCenterProvider interface is supported.

@ canGetACDM anager Addresses

public abstract bool ean canGet ACDVanager Addr esses()
This method returns true if the method getA CDManagerAddresses on the Call CenterProvider interface is supported.
Returns:
True if the method Call CenterProvodier.getACDManagerAddresses() is supported.

Al l Packages This Package Previous Next

Al | Packages This Package Previous Next

Interface
javax.telephony.callcenter.capabilities.RouteAddressCapabilities

public interface RouteAddr essCapabilities
extends AddressCapabilities

The RouteAddressCapabilities interface extends the AddressCapabilities interface to add capabilities methods for the RouteAddress interface. Applications query
these methods to find out what actions are possible on the RouteAddress interface.

Method Index

= canRouteCalls()

This method returns true if the methods registerRouteCallback, cancel RouteCallback, getRouteCallback and getA ctiveRouteSessions on the
RouteAddress interface are supported.

MeFkhods

] canRouteCalls

publi ¢ abstract bool ean canRout eCal | s()

This method returns true if the methods registerRouteCallback, cancel RouteCallback, getRouteCallback and getA ctiveRouteSessions on the
RouteAddress interface are supported.

Returns:
Trueif the methods for routing on the RouteAddress interface are supported.

Al |l Packages This Package Previous Next

Al |l Packages

package javax.telephony.callcenter.events

Interface [ndex

o ACDAddrBusyEv

« ACDAddrEv

o ACDAddrL oggedOffEv

« ACDAddrL oggedOnEv

« ACDAddrNotReadyEv

« ACDAddrReadyEv

« ACDAddrUnknownEv

o ACDAddrWorkNotReadyEv
« ACDAddrWorkReadyEv

o AgentTermBusyEv

o AgentTermEv
o AgentTermLoggedOffEv

o AgentTermLoggedOnEv
o AgentTermNotReadyEv
o AgentTermReadyEv

« AgentTermUnknownEv

« AgentTermWorkNotReadyEv
« AgentTermWorkReadyEv
« CallCentCallAppDatakEv

» CdllCentCalEv

« CallCentConnEv

« CallCentConnlnProgresskv
« CallCentEv

« CallCentTrunkEv

« CallCentTrunkinvalidEv

« CallCentTrunkValidEv

« ReRouteEvent

« RouteCallbackEndedEvent

« RouteEndEvent

« RouteEvent

» RouteSessionEvent
« RouteUsedEvent

Al l Packages Thi s Package Previous Next

Interface
javax.telephony.callcenter.events. ACDAddrBusyEv

public interface ACDAddrBusyEv
extends ACDAddrEv
The ACDAddr BusyEv interface indicates that an Agent has moved into the Agent . BUSY state. Thisinterface extends the ACDAddr Ev interface
and is reported viathe ACDAddr essOhser ver interface for the ACDAddr ess associated with the Agent.
This interface defines no additional methods.
See Also:
Terminal, Terminal Observer, Agent, ACDAddressObserver, ACDAddrEv

Variable [ndex

Event id

Variables

@D

public static final int ID
Eventid

Al Packages This Package Previous Next

Al l Packages Thi s Package Previous Next

Interface javax.telephony.callcenter.events. ACDAddrEv

public interface ACDAddrEv
extends CallCentEv, AddrEv

The ACDAddr Ev interfacesisthe base event for al events pertaining to the ACDAddr ess interface. Thisinterface extendsthe Cal | Cent Ev
interface and the core Addr Ev interface. All event interfaces which extend this interface are reported viathe ACDAddr essCbser ver interface.

The call center package defines events interfaces which extend this interface to report state changesin Agent ' s which are associated with the
ACDAddr ess. These events are: ACDAddr BusyEv, ACDAddr LoggedO f Ev, ACDAddr LoggedOnEv, ACDAddr Not ReadyEv,
ACDAddr UnknownEv, ACDAddr Wr kNot ReadyEv, and ACDAddr Wor kReadyEv.

See Also:

Terminal, TermEv, Agent, ACDAddress, CallCentEv, ACDAddrBusyEv, ACDAddrL oggedOnEv, ACDAddrL oggedOffEv,
ACDAddrNotReadyEv, ACDAddrReadyEv, ACDAddrUnknownEv, ACDAddrWorkNotReadyEv, ACDAddr\WorkReadyEv

Method Index

@ getAgent()
Returns the Agent associated with this event.

@ getAgentAddress()

Returns the Address associated with the Agent ' s Terminal. Deprecated.
@ getAgentTerminal()

Returns the Terminal associated with the Agent . Deprecated.

@ getState()
Returns the state of the Agent . Deprecated.

@ getTrunks()
Returns an array of all Trunks currently being used for this Call. Deprecated.

MeEhods

@ getAgent

public abstract Agent getAgent()

Returnsthe Agent associated with this event.
Returns:
The associated Agent.

@ getAgentTerminal

public abstract Agent Terninal getAgent Terni nal ()

Note: getAgentTerminal() isdeprecated. JTAPI v1.2. This method has been replaced by the getAgent() method.

Returns the Terminal associated with the Agent .

Note: This method has been replaced in JTAPI v1.2 and later. Applications should use the ACDAddr Ev. get Agent () method to obtain
the Agent and then usethe Agent . get Agent Ter ni nal () method.

Returns:
The Terminal associated with the Agent.

@ getState

public abstract int getState()

Note: getState() is deprecated. JTAPI v1.2 This method has been replaced by the getAgent() method.
Returns the state of the Agent .

Note: This method has been replaced in JTAPI v1.2 and later. Applications should use the ACDAddr Ev. get Agent () method to obtain
the Agent and then usethe Agent . get St at e() method.

Returns:
The Agent's state.

@ getAgentAddress

public abstract Address get Agent Address()

Note: getAgentAddress() isdeprecated. JTAPI v1.2 This method has been replaced by the getAgent() method.
Returns the Address associated with the Agent ' s Terminal.

Note: This method has been replaced in JTAPI v1.2 and later. Applications should use the ACDAddr Ev. get Agent () method to obtain
the Agent and then usethe Agent . get Agent Addr ess() method.

Returns:
The Address associated with the Agent's Terminal.

@ getTrunks

public abstract Call CenterTrunk[] get Trunks()

Note: getTrunks() isdeprecated. JTAPI v1.2. This method has been replaced by the getAgent() method.
Returns an array of all Trunks currently being used for this Call. If there are no Trunks being used, this method returns null.

Note: This method has been replaced in JTAPI v1.2 and later. Applications should use the ACDAddr Ev. get Agent () method to obtain
the Agent and then get thetrunksviathe Cal | Cent er Cal | interface.

Returns:
An array of Trunks, null if there are none.

All

Packages Thi s Package Previous Next

Al l Packages Thi s Package Previous Next

Interface
javax.telephony.callcenter.events.ACDAddrLoggedOffEv

public interface ACDAddr L oggedOffEv
extends ACDAddrEv

The ACDAddr LoggedOF f Ev interface indicates that an Agent has moved into the Agent . LOG_OFF state. This interface extends the
ACDAddr Ev interface and is reported viathe ACDAddr essQbser ver interface for the ACDAddr ess associated with the Agent.
This interface defines no additional methods.
See Also:

Terminal, Terminal Observer, Agent, ACDAddressObserver, ACDAddrEv

Variable [ndex

Event id

Variables

@D

public static final int ID
Eventid

Al Packages This Package Previous Next

Al l Packages Thi s Package Previous Next

Interface
javax.telephony.callcenter.events. ACDAddrLoggedOnEv

public interface ACDAddr L oggedOnEv
extends ACDAddrEv

The ACDAddr LoggedOnEyv interface indicates that an Agent has moved into the Agent . LOG_ON state. This interface extends the ACDAddr Ev
interface and is reported viathe ACDAddr essCbser ver interface for the ACDAddr ess associated with the Agent.
This interface defines no additional methods.
See Also:
Terminal, Terminal Observer, Agent, ACDAddressObserver, ACDAddrEv

Variable [ndex

Event id

Variables

@D

public static final int ID
Eventid

Al Packages This Package Previous Next

Al l Packages Thi s Package Previous Next

Interface
javax.telephony.callcenter.events. ACDAddrNotReadyEv

public interface ACDAddr NotReadyEv
extends ACDAddrEv

The ACDAddr Not ReadyEv interface indicates that an Agent has moved into the Agent . NOT_READY state. This interface extends the
ACDAddr Ev interface and is reported viathe ACDAddr essQbser ver interface for the ACDAddr ess associated with the Agent.
This interface defines no additional methods.
See Also:
Terminal, Terminal Observer, Agent, ACDAddressObserver, ACDAddrEv

Variable [ndex

Event id

Variables

@D

public static final int ID
Eventid

Al Packages This Package Previous Next

Al l Packages Thi s Package Previous Next

Interface
javax.telephony.callcenter.events. ACDAddrReadyEv

public interface ACDAddr ReadyEv
extends ACDAddrEv

The ACDAddr Ready Ev interface indicates that an Agent has moved into the Agent . READY state. This interface extends the ACDAddr Ev
interface and is reported viathe ACDAddr essCbser ver interface for the ACDAddr ess associated with the Agent.
This interface defines no additional methods.
See Also:
Terminal, Terminal Observer, Agent, ACDAddressObserver, ACDAddrEv

Variable [ndex

Event id

Variables

@D

public static final int ID
Eventid

Al Packages This Package Previous Next

Al l Packages Thi s Package Previous Next

Interface
javax.telephony.callcenter.events. ACDAddrUnknownEv

public interface ACDAddr UnknownEv
extends ACDAddrEv

The ACDAddr UnknownEv interface indicates that an Agent has moved into the Agent . UNKNOWN state. This interface extends the ACDAddr Ev
interface and is reported viathe ACDAddr essCbser ver interface for the ACDAddr ess associated with the Agent.
This interface defines no additional methods.
See Also:
Terminal, Terminal Observer, Agent, ACDAddressObserver, ACDAddrEv

Variable [ndex

Event id

Variables

@D

public static final int ID
Eventid

Al Packages This Package Previous Next

Al | Packages Thi s Package Previous Next

Interface
javax.telephony.callcenter.events. ACDAddrWorkNotReadyEv

public interface ACDAddrWorkNotReadyEv
extends ACDAddrEv
The ACDAddr Wr kNot Ready Ev interface indicates that an Agent has moved into the Agent . WORK _NOT_READY state. Thisinterface extends the
ACDAddr Ev interface and is reported viathe ACDAddr essCbser ver interface for the ACDAddr ess associated with the Agent.
Thisinterface defines no additional methods.
See Also:
Terminal, TerminalObserver, Agent, ACDAddressObserver, ACDAddrEv

Variable [Hdex

Event id

Variables

@D

public static final int ID
Event id

Al | Packages This Package Previous Next

Al l Packages Thi s Package Previous Next

Interface
javax.telephony.callcenter.events. ACDAddrWorkReadyEv

public interface ACDAddr WorkReadyEv
extends ACDAddrEv

The ACDAddr Wor kReadyEv interface indicates that an Agent has moved into the Agent . WORK _READY state. This interface extends the
ACDAddr Ev interface and is reported viathe ACDAddr essQbser ver interface for the ACDAddr ess associated with the Agent.
This interface defines no additional methods.
See Also:
Terminal, Terminal Observer, Agent, ACDAddressObserver, ACDAddrEv

Variable [ndex

Event id

Variables

@D

public static final int ID
Eventid

Al Packages This Package Previous Next

Al l Packages Thi s Package Previous Next

Interface
javax.telephony.callcenter.events.AgentTermBusyEv

public interface AgentTermBusyEv
extends AgentTermEv

The Agent Ter nBusyEv interface indicates that an Agent has moved into the Agent . BUSY state. Thisinterface extendsthe Agent Ter nEv
interface and is reported viathe Agent Ter mi nal Cbser ver interface for the Termina associated with the Agent.
This interface defines no additional methods.
See Also:
Terminal, Terminal Observer, Agent, AgentTerminal Observer, AgentTermEv

Variable [ndex

Event id

Variables

@D

public static final int ID
Eventid

Al Packages This Package Previous Next

Al l Packages Thi s Package Previous Next

Interface javax.telephony.callcenter.events.AgentTermEv

public interface AgentTermEv
extends CallCentEv, TermEv

The Agent Ter nEv interfacesis the base event for all events pertaining to the Agent Ter mi nal interface. Thisinterface extendsthe
Cal | Cent Ev interface and the core Ter nEv interface. All event interfaces which extend this interface are reported via the
Agent Ter m nal Cbser ver interface.

The call center package defines events interfaces which extend thisinterface to report state changesin the Agent . These events are;
Agent Ter nBusyEv, Agent Ter nLoggedOf f Ev, Agent Ter nLoggedOnEv, Agent Ter mNot ReadyEv, Agent Ter nlnknownEv,
Agent Ter mAbr kNot ReadyEv, and Agent Ter mAor kReadyEv.

See Also:

Terminal, TermEv, Agent, AgentTerminal, CallCentEv, AgentTermBusyEv, AgentTermL oggedOnEv, AgentTermL oggedOffEv,
AgentTermNotReadyEv, AgentTermReadyEv, AgentTermUnknownEv, AgentTermWorkNotReadyEv, AgentTermWorkReadyEv

Method [ndex

@ getACDAddr ess()
Returns the ACDAddr ess the agent currently is or was logged into. Deprecated.

@ getAgent()
Returnsthe Agent associated with the Agent Ter m nal .
@ getAgentAddress()

Returns the Address associated with the Agent ' s Terminal. Deprecated.

® getAgent| D()
Returnsthe ID of the Agent . Deprecated.

@ getState()
Returns the state of the Agent . Deprecated.

MeEHhods

@ getAgent

public abstract Agent getAgent()

Returnsthe Agent associated with the Agent Ter ni nal .
Returns:
The associated Agent.

@ getACDAddress

public abstract ACDAddress get ACDAddress()

Note: getACDAddress() is deprecated. JTAPI v1.2 This method has been replaced by the getAgent() method.
Returns the ACDAddr ess the agent currently is or was logged into.

Note: This method has been replaced in JTAPI v1.2 and later. Applications should use the Agent Ter nEv. get Agent () method to
obtain the Agent and then usethe Agent . get ACDAddr ess() method.

Returns:
The ACDAddress currently or formerly associated with the Agent.

@ getAgentiD

public abstract String getAgentl D)

Note: getAgentl D() is deprecated. JTAPI v1.2 This method has been replaced by the getAgent() method.
Returnsthe ID of the Agent .

Note: This method has been replaced in JTAPI v1.2 and later. Applications should use the Agent Ter nEv. get Agent () method to

obtain the Agent and then usethe Agent . get Agent | D() method.
Returns:

The Agent ID.

@ getState

public abstract int getState()

Note: getState() is deprecated. JTAPI v1.2 This method has been replaced by the getAgent() method.
Returns the state of the Agent .

Note: This method has been replaced in JTAPI v1.2 and later. Applications should use the Agent Ter nEv. get Agent () method to
obtain the Agent and then usethe Agent . get St at e() method.

Returns:
The Agent's state.

- getAgentAddress

public abstract Address get Agent Address()

Note: getAgentAddress() isdeprecated. JTAPI v1.2 This method has been replaced by the getAgent() method.

Returns the Address associated with the Agent ' s Terminal.

Note: This method has been replaced in JTAPI v1.2 and later. Applications should use the Agent Ter nEv. get Agent () method to
obtain the Agent and then use the Agent . get Agent Addr ess() method.

Returns:

The Address associated with the Agent's Terminal.

All

Packages This Package Previous Next

Al l Packages Thi s Package Previous Next

Interface
javax.telephony.callcenter.events.AgentTermLoggedOffEv

public interface Agent T er mL oggedOffEv
extends AgentTermEv

The Agent Ter mLoggedO f Ev interface indicates that an Agent has moved into the Agent . LOG_OFF state. Thisinterface extends the
Agent Ter mEv interface and is reported viathe Agent Ter mi nal Cbser ver interface for the Terminal associated with the Agent.

This interface defines no additional methods.
See Also:
Terminal, Terminal Observer, Agent, AgentTermina Observer, AgentTermEv

Variable [ndex

Event id

Variables

@D

public static final int ID
Eventid

Al Packages This Package Previous Next

Al l Packages Thi s Package Previous Next

Interface
javax.telephony.callcenter.events.AgentTermLoggedOnEyv

public interface Agent T ermL oggedOnEv
extends AgentTermEv

The Agent Ter mLoggedOnEv interface indicates that an Agent has moved into the Agent . LOG_| N state. This interface extends the
Agent Ter mEv interface and is reported viathe Agent Ter m nal Cbser ver interface for the Terminal associated with the Agent.

This interface defines no additional methods.
See Also:
Terminal, Terminal Observer, Agent, AgentTermina Observer, AgentTermEv

Variable [ndex

Event id

Variables

@D

public static final int ID
Eventid

Al Packages This Package Previous Next

Al l Packages Thi s Package Previous Next

Interface
javax.telephony.callcenter.events.AgentTermNotReadyEv

public interface AgentTer mNotReadyEv
extends AgentTermEv

The Agent Ter mNot ReadyEv interface indicates that an Agent has moved into the Agent . NOT_READY state. This interface extends the
Agent Ter mEv interface and is reported viathe Agent Ter mi nal Cbser ver interface for the Terminal associated with the Agent.

This interface defines no additional methods.
See Also:
Terminal, Terminal Observer, Agent, AgentTermina Observer, AgentTermEv

Variable [ndex

Event id

Variables

@D

public static final int ID
Eventid

Al Packages This Package Previous Next

Al l Packages Thi s Package Previous Next

Interface
javax.telephony.callcenter.events.AgentTermReadyEv

public interface AgentTermReadyEv
extends AgentTermEv

The Agent Ter nReadyEv interface indicates that an Agent has moved into the Agent . READY state. This interface extends the Agent Ter nEv
interface and is reported viathe Agent Ter mi nal Cbser ver interface for the Termina associated with the Agent.
This interface defines no additional methods.
See Also:
Terminal, Terminal Observer, Agent, AgentTerminal Observer, AgentTermEv

Variable [ndex

Event id

Variables

@D

public static final int ID
Eventid

Al Packages This Package Previous Next

Al l Packages Thi s Package Previous Next

Interface
javax.telephony.callcenter.events.AgentTermUnknownEv

public interface AgentTermUnknownEv
extends AgentTermEv

The Agent Ter mnknownEv interface indicates that an Agent has moved into the Agent . UNKNOWN state. This interface extends the
Agent Ter mEv interface and is reported viathe Agent Ter m nal Cbser ver interface for the Terminal associated with the Agent.

This interface defines no additional methods.
See Also:
Terminal, Terminal Observer, Agent, AgentTermina Observer, AgentTermEv

Variable [ndex

Event id

Variables

@D

public static final int ID
Eventid

Al Packages This Package Previous Next

Al |l Packages This Package Previous Next

Interface
javax.telephony.callcenter.events.AgentTermWorkNotReadyEv

public interface AgentTermWor kNotReadyEv
extends AgentTermEv

The Agent Ter mAor kNot Ready Ev interface indicates that an Agent has moved into the Agent . WORK_NOT _READY state. This interface extends the
Agent Ter nEv interface and is reported viathe Agent Ter mi nal Qbser ver interface for the Terminal associated with the Agent.
This interface defines no additional methods.
See Also:
Terminal, Terminal Observer, Agent, AgentTerminal Observer, AgentTermEv

Variable [Hdex

Event id

Variables

@D

public static final int ID
Event id

Al Packages Thi s Package Previous Next

Al l Packages Thi s Package Previous Next

Interface
javax.telephony.callcenter.events.AgentTermWorkReadyEv

public interface AgentTermW or kReadyEv
extends AgentTermEv

The Agent Ter mAr kReadyEv interface indicates that an Agent has moved into the Agent . WORK_READY state. Thisinterface extends the
Agent Ter mEv interface and is reported viathe Agent Ter mi nal Cbser ver interface for the Terminal associated with the Agent.

This interface defines no additional methods.
See Also:
Terminal, Terminal Observer, Agent, AgentTermina Observer, AgentTermEv

Variable [ndex

Event id

Variables

@D

public static final int ID
Eventid

Al Packages This Package Previous Next

Al l Packages Thi s Package Previous Next

Interface
javax.telephony.callcenter.events.CallCentCallAppDataEv

public interface CallCentCallAppDataEv
extends CallCentCallEv

TheCal | Cent Cal | AppDat aEv event interfaces indicates that the application data associated with the Call has changed. This interface extends
the Cal | Cent Cal | Ev interface and isreported viathe Cal | Cent er Cal | Gbser ver interface.
TheCal | Cent Cal | AppDat aEv. get Appl i cat i onDat a() method returns the new application data.
See Also:
Cadll, CallCenterCall, CallCenterCallObserver, CallCentCallEv

Variable [ndex

Event id.

Method [rndex

@ getApplicationData()

Returns the new application data for this call.

Variables

@D

public static final int ID
Event id.

Mefhods

@ getApplicationData

public abstract Object getApplicationData()
Returns the new application data for this call. This method returns null if the application data has been cleared from the call.
Returns:

The data object, null if it has been cleared.

Al l Packages Thi s Package Previous Next

Al l Packages Thi s Package Previous Next

Interface javax.telephony.callcenter.events.CallCentCallEv

public interface CallCentCallEv
extends CallCentEv, CallEv
TheCal | Cent Cal | Ev interfaceisthe base event interface for all call center package Call-related events. Each Call-related event defined in this

package must extend this interface. This interface extends both the core Cal | Ev and the Cal | Cent Ev interfaces. All events which extend this
interface are reported viathe Cal | Cent er Cal | Cbser ver interface.

Additional Call Information

This interface supports methods which return additional information regarding the telephone call. Specifically, it returns the calling address,
calling terminal, called address, and last redirected address information. Thisinformation is returned by theget Cal | i ngAddr ess(),
get Cal | i ngTermi nal (), get Cal | edAddress(),andget Last Redi r ect edAddr ess() methods on thisinterface, respectively.

The call center package defines the following interfaces which extend thisinterface: Cal | Cent ConnEv, Cal | Cent AppDat aEv, and
Cal | Cent TrunkEv
See Also:

Call, Address, Terminal, CallEv, CallCenterCall Observer, CallCenterCall, CallCenterTrunk, CallCentEv, CallCentConnEv,
CallCentTrunkEv, CallCentAppDatakEv

Method [rndex

@ getCalledAddress()

Returns the called Address associated with this Call.
@ getCallingAddr ess()

Returns the calling Address associated with this call.
@ getCallingTerminal()

Returns the calling Terminal associated with this Call.
@ getl astRedirectedAddress()

Returns the last redirected Address associated with this Call.

@ getTrunks()
Returns an array of al Trunks currently being used for this Call. Deprecated.

MeFhods

@ getcallingAddress

public abstract Address getCallingAddress()
Returns the calling Address associated with this call. The calling Address is defined as the Address which placed the telephone call.

If the calling address is unknown or not yet known, this method returns null.

Returns:
The calling Address.

- getCallingTerminal

public abstract Terminal getCallingTerm nal ()

Returns the calling Terminal associated with this Call. The calling Terminal is defined as the Termina which placed the telephone call.

If the calling Terminal is unknown or not yet know, this method returns null.
Returns:

The calling Terminal.
@ getCalledAddress

public abstract Address get Call edAddress()

Returns the called Address associated with this Call. The called Addressis defined as the Address to which the call has been originally
placed.

If the called address is unknown or not yet known, this method returns null.
Returns:
The called Address.

@ geil astRedirectedAddress

public abstract Address getlLastRedirectedAddress()

Returnsthe last redirected Address associated with this Call. The last redirected Addressis the Address at which the current telephone call
was placed immediately before the current Address. Thisis common if aCall isforwarded to several Addresses before being answered.

If the the last redirected address is unknown or not yet known, this method returns null.
Returns

The last redirected Address for this telephone Call.
@ getTrunks

public abstract Call CenterTrunk[] get Trunks()

Note: getTrunks() isdeprecated. JTAPI v1.2
Returns an array of al Trunks currently being used for this Call. If there are no Trunks being used, this method returns null.
Note: This method has been replaced in JTAPI v1.2 and later withthe Cal | Cent er Cal | . get Tr unks() method.
Returns:

An array of Trunks, null if there are none.

Al |l Packages Thi s Package Previous Next

Al l Packages Thi s Package Previous Next

Interface
javax.telephony.callcenter.events.CallCentConnEv

public interface CallCentConnEv
extends CallCentCallEv, ConnEv

The Cal | Cent ConnEv isthe base event interface for all call center Connection events. Each Connection-related event in this package must
extend thisinterface. Thisinterface extends both the ConnEv interface and the Cal | Cent Cal | Ev interface. Events which extend this interface
arereported viathe Cal | Cent er Cal | Gbser ver interface.

Currently, this package definesthe Cal | Cent Connl nPr ogr essEv event interface which extends the core event to provide additional call
center-related information when the Connection moves into this state.
See Also:

CallCenterCallObserver, CallCentConnlnProgressEv

Al |l Packages Thi s Package Previous Next

Al |l Packages Thi s Package Previous Next

Interface
javax.telephony.callcenter.events.CallCentConnInProgressEv

public interface CallCentConnl nProgresskEv
extends Call CentConnEv

TheCal | Cent Connl nPr ogr essEv indicates that the Connection has moved into the Connect i on. | NPROGRESS state. This interface extends
theCal | Cent ConnEv interface and isreported viathe Cal | Cent er Cal | Obser ver interface.

The call center package extends the core Connl nPr ogr essEv event interface to provide additional information to the application for call
center-specific purposed.
See Also:

ConnlinProgressEv, CallCenterCallObserver, Call CentConnEv

Variable [Hdex

Event id.

Variables

@D

public static final int ID
Eventid.

Al |l Packages Thi s Package Previous Next

Al l Packages Thi s Package Previous Next

Interface javax.telephony.callcenter.events.CallCentEv

public interface CallCentEv
extends Ev

The Cal | Cent Ev interface isthe base event interface for al call center package events. This interface extends the core Ev interface. All call
center package events must extend thisinterface.

Thisinterface contains a single method get Cal | Cent er Cause() which returns the call center package-specific cause value for the event.

The call center package defines the following interfaces which directly extend thisinterface: ACDAddr Ev, Agent Ter nEv, and
Cal | CenterCal | Ev.
See Also:

Ev, ACDAddrEv, AgentTermEv, CallCenterCallEv

Variable [ndex

@ CAUSE NO_AVAILABLE _AGENTS

This cause indicates no agents were available to handle the call.

MeFtnod lndex

@ getCallCenter Cause()

Returns the call center package cause value for this event.

Variables

@ CAUSE_NO_AVAILABLE_AGENTS

public static final int CAUSE NO AVAI LABLE AGENTS
This cause indicates no agents were available to handle the call.

Mefhods

- getCallCenter Cause

public abstract int getCall CenterCause()
Returnsthe call center package cause value for this event. This method may also return the Ev. CAUSE_NORMAL constant or the

Ev. CAUSE_UNKNOWN constant.
Returns:
The call center package cause for the event.

Al |l Packages Thi s Package Previous Next

Al l Packages Thi s Package Previous Next

Interface
javax.telephony.callcenter.events.CallCentTrunkEv

public interface CallCentTrunkEv
extends CallCentCallEv

The Cal | Cent Tr unkEv interface isthe base event interface for al Cal | Cent er Tr unk-related eventsin the call center package. Every
Cal | Cent er Tr unk-related event must extend this interface. This event extends the Cal | Cent Cal | Ev interface and all events which extend
thisinterface are reported viathe Cal | Cent er Cal | Qbser ver interface.

This interface contains a single method, get Tr unk () , which returnsthe Cal | Cent er Tr unk associated with this event.

The call center package defines two event interfaces which extends this interface. They arethe Cal | Cent Tr unkVal i dEv interface and the
Cal | Cent Trunkl nval i dEv interface. These interfaces report a state change in the Cal | Cent er Tr unk.

See Also:
Call, CallObserver, CallCenterCallObserver, CallCenterTrunk, CallCentCallEv, CallCentTrunkValidEv, CallCentTrunklnvalidEv

Method [rndex

@ getTrunk()
Returnsthe Cal | Cent er Tr unk associated with this event.

MeEhods

@ getTrunk

public abstract Call CenterTrunk get Trunk()

Returnsthe Cal | Cent er Tr unk associated with this event.
Returns:
The associated CallCenterTrunk.

Al |l Packages Thi s Package Previous Next

Al l Packages Thi s Package Previous Next

Interface
javax.telephony.callcenter.events.CallCentTrunkinvalidEv

public interface CallCentTrunklInvalidEv
extends CallCentTrunkEv

The Cal | Cent Tr unkl nval i dEv interface indicates that a Trunk has moved into the Cal | Cent er Tr unk. | NVALI D_TRUNK state. This
interface extends the Cal | Cent Tr unkEv interface and isreported viathe Cal | Cent er Cal | Gbser ver interface.
This interface defines no additional methods.
See Also:
Call, CallObserver, CallCenterTrunk, CallCenterObserver, CallCentTrunkEv

Variable [ndex

Event id

Variables

@D

public static final int ID
Eventid

Al Packages This Package Previous Next

Al l Packages Thi s Package Previous Next

Interface
javax.telephony.callcenter.events.CallCentTrunkValidEv

public interface CallCentTrunkValidEv
extends CallCentTrunkEv
TheCal | Cent Tr unkVal i dEv interface indicates that a Trunk has moved into the Cal | Cent er Tr unk. VALI D_TRUNK state. Thisinterface
extendsthe Cal | Cent Tr unkEv interface and is reported viathe Cal | Cent er Cal | Qbser ver interface.
This interface defines no additional methods.
See Also:
Call, CallObserver, CalCenterTrunk, CallCenterObserver, CallCentTrunkEv

Variable [ndex

Event id

Variables

@D

public static final int ID
Eventid

Al Packages This Package Previous Next

Al l Packages Thi s Package Previous Next

Interface javax.telephony.callcenter.events.ReRouteEvent

public interface ReRouteEvent
extends RouteSessionEvent

The ReRout eEvent event interface indicatesthe Rout eSessi on interface has moved into the Rout eSessi on. RE_ROUTE state and the
Provider is requesting the application select another route for a Call. Thisinterface extends the Rout eSessi onEvent interface and is reported
viathe Rout eCal | back interface.

See Also:
RouteSession, RouteCallback, RouteSessionEvent

Al |l Packages This Package Previous Next

Al |l Packages Thi s Package Previous Next

Interface
javax.telephony.callcenter.events.RouteCallbackEndedEvent

public interface RouteCallback EndedEvent

The Rout eCal | backEndedEvent event interface indicates the Rout eSessi on interface has moved into the
Rout eSessi on. ROUTE_CALLBACK ENDED state and the registration of arouting callback has ended. This event isreported viathe
Rout eCal | back interface.

See Also:
RouteSession, RouteCallback

Merhod [ndex

@ getRouteAddress()
Returnsthe Rout eAddr ess that is associated with the Rout eSessi on associated with this event.

MeEhods

@ getRouteAddress

public abstract Rout eAddress get Rout eAddress()

Returns the Rout eAddr ess that is associated with the Rout eSessi on associated with this event.
Returns:

The RouteAddress associated with the RouteSession.

Al |l Packages This Package Previous Next

Al l Packages Thi s Package Previous Next

Interface javax.telephony.callcenter.events.RouteEndEvent

public interface RouteEndEvent
extends RouteSessionEvent

The Rout eEndEvent event interface indicates the Rout eSessi on interface has moved into the Rout eSessi on. ROUTE_END state and the
routing of the Call hasterminated. This interface extends the Rout eSessi onEvent interface and is reported viathe Rout eCal | back
interface.

The reason for the termination of routing may be determined viathe Rout eSessi onEvent . get Rout eSessi on() . get Cause() method.
See Also:

RouteSession, RouteCallback, RouteSessionEvent

Al |l Packages Thi s Package Previous Next

Al l Packages Thi s Package Previous Next

Interface javax.telephony.callcenter.events.RouteEvent

public interface RouteEvent
extends RouteSessionEvent

The Rout eEvent event interface indicates the Rout eSessi on interface has moved into the Rout eSessi on. ROUTE state and the Provider is
reguesting the application route a Call. This interface extends the Rout eSessi onEvent interface and is reported viathe Rout eCal | back
interface.

See Also:
RouteSession, RouteCallback, RouteSessionEvent

Variable [Hdex

* SELECT_ACD

Route Selection Algorithm: Select aroute to an ACDAddress.
@ SELECT EMERGENCY

Route Selection Algorithm: Select an emergency route.
@ SELECT_LEAST_COST

Route Selection Algorithm: Select aleast cost route.
@ SELECT NORMAL

Route Selection Algorithm: Select anormal route.
@ SELECT USER DEFINED

Route Selection Algorithm: Select a user defined route.

MeFtnod lndex

@ getCallingAddress()

Returnsthe calling Address.
@ getCallingTerminal()

Returnsthe calling Terminal.
@ getCurrentRouteAddress()

Returnsthe originally requested destination for the call.
@ getRouteSelectAlgorithm()

Returns the route select algorithm being used.
getSetupl nformation()

Returnsthe ISDN call setup message when available.

Variables

@ SELECT NORMAL

public static final int SELECT NORMAL
Route Selection Algorithm: Select a normal route.

@ SELECT _LEAST cosT

public static final int SELECT_ LEAST_COST
Route Selection Algorithm: Select aleast cost route.

@ SELECT EMERGENCY

public static final int SELECT EMERGENCY
Route Selection Algorithm: Select an emergency route.

@ sELECT ACD

public static final int SELECT_ACD
Route Selection Algorithm: Select aroute to an ACDAddress.

@ SELECT USER_DEFINED

public static final int SELECT USER DEFI NED
Route Selection Algorithm: Select a user defined route.

MeEhods

@ getCurrentRouteAddress

public abstract RouteAddress get Current Rout eAddress()

Returnsthe originally requested destination for the call.
Returns:
The originally request destination for the call.

@ getcallingAddress

public abstract Address get CallingAddress()

Returnsthe calling Address.
Returns:
The calling Address.

@ getCallingTerminal

public abstract Terminal getCallingTerm nal ()
Returnsthe calling Terminal.
Returns:
The calling Terminal.

@ getRouteSelectAlgorithm

public abstract int getRouteSel ect Al gorithn()
Returns the route select algorithm being used.
Returns;
The route selection algorithm being used.

- getSetupl nformation

public abstract String getSetuplnformation()
Returnsthe ISDN call setup message when available.
Returns:
The ISDN call setup message.

Al |l Packages This Package Previous Next

Al l Packages Thi s Package Previous Next

Interface
javax.telephony.callcenter.events.RouteSessionEvent

public interface RouteSessionEvent

The Rout eSessi onEvent interfaceisthe base event interface for all events pertaining to the Rout eSessi on interface. Events which extend
this interface are not part of the JTAPI observer mechanism. All events which extend this interface are reported viathe Rout eCal | back
interface.

The call center package defines event interface which extend this interface to report changes in the state of the Rout eSessi on interface. These
interfaces are: Rout eUsedEvent , Rout eEvent , Rout eEndEvent , Rout eCal | backEndedEvent , and ReRout eEvent

See Also:
RouteSession, RouteCallback, RouteUsedEvent, RouteEvent, ReRouteEvent, RouteEndEvent, RouteCall backEndedEvent

MeFtnod lndex

@ getRouteSession()
Returnsthe Rout eSessi on associated with this event.

MeEHhods

@ getRouteSession

public abstract RouteSessi on get RouteSession()
Returnsthe Rout eSessi on associated with this event.
Returns:
The RouteSession associated with this event.

Al |l Packages Thi s Package Previous Next

Al l Packages Thi s Package Previous Next

Interface
javax.telephony.callcenter.events.RouteUsedEvent

public interface RouteUsedEvent
extends RouteSessionEvent

The Rout eUsedEvent event interface indicates the Rout eSessi on interface has moved into the Rout eSessi on. ROUTE_USED state and
the Call hasterminated at a destination as aresult of routing by the application. This interface extends the Rout eSessi onEvent interfaceand is
reported viathe Rout eCal | back interface.

See Also:
RouteSession, RouteCallback, RouteSessionEvent

Method [rndex

@ getCallingAddress()

Returns the calling Address.
@ getCallingTerminal()

Returnsthe calling Terminal.

& getDomain()
Returns true if the call was routed out of the Provider's domain, false otherwise.

@ getRouteUsed()
FOR JTAPI 1.2 return an Addr ess asthefina destination (was the final destination Terminal.)

Mefhods

@ getRouteUsed

public abstract Address get RouteUsed()

FOR JTAPI 1.2 return an Addr ess asthefina destination (was the final destination Terminal.)
Returns:
The final destination Address.

- getCallingTerminal

public abstract Terminal getCallingTerm nal ()

Returnsthe calling Terminal.
Returns:
The calling Terminal .

@ geicallingAddress

public abstract Address getCallingAddress()
Returns the calling Address.
Returns:
The calling Address.

@ getDomain

public abstract bool ean get Domai n()
Returnstrueif the call was routed out of the Provider's domain, false otherwise.
Returns:
Trueif the call was routed out of the Provider's domain, false otherwise.

Al |l Packages Thi s Package Previous Next

Al l Packages

package javax.telephony.callcontrol

Interface [ndex

« CallControlAddress

« CallControl AddressObserver
« CallControlCall

« CallControl CallObserver

« CallControlConnection

o CallControlTermina

« CallControl Termina Connection

« CallControl Termina Observer

Clasg ndex

o CdlControl Forwarding

Al l Packages Thi s Package Previous Next

Interface javax.telephony.callcontrol.CallControlAddress

public interface CallControlAddress
extends Address

Introduction

The Cal | Cont r ol Addr ess interface extends the core Addr ess interface. It provides additional features on the Address. Applications may
query an Address object using thei nst anceof operator to see whether it supports thisinterface.

Address Forwarding

This interface supports methods which permit applications to modify and query the forwarding characteristics of an Address. The forwarding
characteristics determine how incoming telephone calls to this Address should be handled, if any special handling is desired. A switching domain
will honor those instructions to the extent that other possibly higher priority instructions allow.

Each Address may have zero or more forwarding instructions. Each instruction describes how the switching domain should handle incoming
telephone callsto an Address under different circumstances. Examples of forwarding instructions are "forward al callsto x9999" or "forward all
callsto x7777 when no one answers." Each forwarding instruction is represented by an instance of the Cal | Cont r ol For war di ng class. A
switching domain will honor forwarding instructions to the extent that other (possibly higher priority) instructions allow.

Applications assign alist of forwarding instructions viathe the Cal | Cont r ol Addr ess. set For war di ng() method. To obtain the current,
effective forwarding instructions, applications invoke the Cal | Cont r ol Addr ess. get For war di ng() method. To cancel all forwarding
instructions, applications use the Cal | Cont r ol Addr ess. cancel Forwar di ng() method.

Do Not Disturb and Message Waiting

The Cal | Cont r ol Addr ess interface defines two additional attributes: do-not-disturb and message-waiting.

The do-not-disturb feature gives the means to notify the telephony platform that an Address does not want to receive incoming telephone calls.
That is, if thisfeature is activated, the underlying telephony platform will not alert this Address to incoming telephone calls. Applications use the
Cal | Cont r ol Addr ess. set DoNot Di st ur b() method to activate or deactivate this feature and the

Cal | Cont r ol Addr ess. get DoNot Di st ur b() method to return the current state of this attribute.

Note that the Cal | Cont r ol Ter ni nal interface also has a do-not-disturb attribute. This gives the ability to control the do not disturb property at
either the Address level (e.g. a phone number) or at the Terminal level (e.g. an individua phone.)

The message-waiting attribute indicates whether there are messages waiting for a human user of the Address. These messages may either be
maintained by an application or some telephony platform. Applications inform the telephony hardware of the message waiting status, and typically
the hardware displays a visible indicator (e.g. an LED) to users. Applicationsusethe Cal | Cont r ol Addr ess. set MessageWi ti ng()
method to activate or deactivate this feature and the Cal | Cont r ol Addr ess. get MessageWai ti ng() method to return the current state of
this attribute.

Observers and Events

All events pertaining to the Cal | Cont r ol Addr ess interface are reported viathe Addr essCbser ver . addr essChangedEvent ()
method. The application observer object must also implement the Cal | Cont r ol Cal | Gbser ver interface to expressinterest in the call control
package events.

The following are the events associated with thisinterface:

Cal | Ct| Addr DoNot Di st ur bEv Indicates the do-not-disturb feature of this Address has changed.
Cal | Ct | Addr For war dEv Indicates the forwarding characteristics of this Address has changed.
Cal | Ct | Addr MessageWi ti ngEv Indicates the message waiting characteristics of this Address has changed.

See Also:

CallControl Terminal, Call Control Forwarding, CallControl AddressObserver, CalCtlAddrDoNotDisturbEv, CallCtlAddrForwardEyv,
CallCtlAddrM essageWaitingEv

Method Index

@ cancelForwarding()

Cancels dl of the forwarding instructions on this Address.
@ getDoNotDisturb()

Returnstrueif the do-not-disturb feature is activated, false otherwise.
@ getForwarding()

Returns an array of forwarding instructions currently effective for this Address.
@ getM essageW aiting()

Returnstrue if the message waiting is activated, false otherwise.
@ setDoNotDistur b(boolean)

Specifies whether the do-not-disturb feature should be activated or deactivated for this Address.
@ setForwar ding(CallControl Forwarding[])

Sets the forwarding characteristics for this Address.
@ setM essageW aiting(bool ean)

Specifies whether the message-waiting indicator should be activated or deactivated for this Address.

Mefhods

- setForwarding

public abstract void setForwardi ng(Call Control Forwarding i nstructions[]) throws
Met hodNot Suppor t edExcepti on, Invali dStateException, Invali dArgunent Exception

Sets the forwarding characteristics for this Address. This forwarding command supplants al previous forwarding instructionsiif it
succedes, otherwise the forwarding stete at the time of the command remains unchanged. This method takes an array of
Cal | Cont r ol For war di ng objects. Each object describes a different forwarding. This method waits until al forwarding instructions
have been set or until an error occurs and an exception is thrown.
Pre-conditions:

1. (this.getProvider()).getState() == Provider.IN_SERVICE
Post-conditions:

1. (this.getProvider()).getState() == Provider.IN_SERVICE

2. this.getForwarding() == instructions

3. CallCtlIAddrForwardEv is delivered for this Address
Parameters:

instructions - An array of Address forwarding instructions

Throws: MethodNotSupportedException

This method is not supported by the given implementation.
Throws: InvalidStateException

The Provider is not "in service".

Throws: InvalidArgumentException

Aninvalid set of forwarding instructions were given as a parameter.
See Also:
CallCtlIAddrForwardEv

- getForwarding

public abstract Call Control Forwarding[] getForwarding() throws
Met hodNot Suppor t edExcepti on

Returns an array of forwarding instructions currently effective for this Address. If there are no effective forwarding instructions, this
method returns null.

Returns:
An array of Address forwarding instructions, null if there are none.
Throws: MethodNotSupportedException

This method is not supported by the given implementation.

@ cancel Forwarding

public abstract void cancel Forwardi ng() throws Met hodNot Support edExcepti on,
| nval i dSt at eExcepti on

Cancels all of the forwarding instructions on this Address. When this method completes, the
Cal | Cont r ol Addr ess. get For war di ng() method will return null. This method waits until all forwarding instructions have been
cancelled or until an error occurs and an exception is thrown.
Pre-conditions:
1. (this.getProvider()).getState() == Provider.IN_SERVICE
Post-conditions:
1. (this.getProvider()).getState() == Provider.IN_SERVICE
2. this.getForwarding == null
3. CalCtlIAddrForwardEv is delivered for this Address.
Throws: MethodNotSupportedException

This method is not supported by the given implementation.
Throws: InvalidStateException

The Provider isnot "in service".
See Also:
CalCtlAddrForwardEv

- getDoNotDisturb

publ i c abstract bool ean get DoNot Di sturb() throws Mt hodNot SupportedException

Returnstrue if the do-not-disturb feature is activated, false otherwise.
Returns:

Trueif do-not-disturb feature is activated, false if it is deactivated.
Throws: MethodNotSupportedException

This method is not supported by the given implementation.
@ stDoNotDisturb
public abstract void set DoNot Di sturb(bool ean enabl e) throws
Met hodNot Support edExcepti on, |nvali dStateException
Specifies whether the do-not-disturb feature should be activated or deactivated for this Address. This feature only affects whether or not

callswill be accepted at this Address. Note that the do-not-disturb feature on all Terminals associated with this Address are independent of
this Terminal's do-not-disturb setting. If ‘enablée’ is true, do-not-disturb is activated if not already activated. If 'enable’ isfalse,
do-not-disturb is deactivated if not already deactivated.
Pre-conditions:

1. (this.getProvider()).getState() == Provider.IN_SERVICE
Post-conditions:

1. (this.getProvider()).getState() == Provider.IN_SERVICE

2. this.getDoNotDisturb() == enable

3. CalCtlIAddrDoNotDisturbEv is delivered for this Address
Parameters:

enable - True to activate do-not-disturb, false to deactivate.

Throws: MethodNotSupportedException

This method is not supported by the given implementation.
Throws: InvalidStateException

The Provider isnot "in service'.
See Also:
CallCtlAddrDoNotDisturbEv

@ getM essageWaiting

public abstract bool ean get MessageWaiting() throws MethodNot SupportedExcepti on

Returnstrue if the message waiting is activated, false otherwise.
Returns;

True if message-waiting is activated, falseif it is deactivated.
Throws: MethodNotSupportedException

This method is not supported by the given implementation.

@ v essageWaiting

public abstract void set MessageWi ti ng(bool ean enabl e) throws
Met hodNot Suppor t edException, |nvalidStateException

Specifies whether the message-waiting indicator should be activated or deactivated for this Address. If 'enabl€e’ is true, message-waiting is
activated if not already activated. If 'enable’ isfalse, message-waiting is deactivated if not already deactivated.
Pre-conditions:

1. (this.getProvider()).getState() == Provider.IN_SERVICE
Post-conditions:

1. (this.getProvider()).getState() == Provider.IN_SERVICE

2. this.getMessageWaiting() == enable

3. CalCtlIAddrMessageWaitingEv is delivered for this Address
Parameters:

enable - True to activate message-waiting, false to deactivate.

Throws: MethodNotSupportedException

This method is not supported by the given implementation.
Throws: InvalidStateException

The Provider isnot "in service'.
See Also:
CallCtlAddrM essageWaitingEv

Al |l Packages Thi s Package Previous Next

Al l Packages Thi s Package Previous Next

Interface
javax.telephony.callcontrol.CallControlAddressObserver

public interface CallControl Addr essObser ver
extends AddressObserver

TheCal | Cont r ol Addr essCbser ver interface reportsal eventsfor the Cal | Cont r ol Addr ess interface. Applicationsimplement this
interface to receive Cal | Cont r ol Addr ess-related events. All events are reported viathe

Addr essCbser ver. addr essChangedEvent () method. Thisinterface, therefore, allows applications to signal to the implementation that
they are interested in call control package events. Thisinterface defines no additional methods.

All events must extend the Cal | Ct | Addr Ev event interface, which in turn, extends the core Addr Ev interface.

The following are those events which are associated with this interface:

Cal | Ct| Addr DoNot Di st ur bEv Indicates the do not disturb characteristics of this Address has changed.
Cal | Ct | Addr For war dEv Indicates the forwarding characteristics of this Address has changed.
Cal | Ct| Addr MessageWai ti ngEv Indicates the message waiting characteristics of this Address has changed.

See Also:

AddressObserver, AddrEv, CallControl Address, CallCtlIAddrEv, CallCtlAddrDoNotDisturbEv, CallCtlAddrForwardEyv,
CallCtlAddrM essageWaitingEv

Al |l Packages This Package Previous Next

Al l Packages Thi s Package Previous Next

Interface javax.telephony.callcontrol.CallControlCall

public interface CallControlCall
extends Call

Introduction
TheCal | Cont r ol Cal | interface extendsthe core Cal | interface. Thisinterface provides additional methods on a Call.
Additional Call Information

This interface supports methods which return additional information regarding the Call. Specifically, it returns the calling address, calling
terminal, called address, and last redirected address information.

The calling address, asreturned by the Cal | Contr ol Cal | . get Cal | i ngAddr ess() method isthe Address which originally placed the Call.
The calling terminal, as returned by the Cal | Cont rol Cal | . get Cal | i ngTer m nal () method isthe Terminal which originally placed the
Call. The called Address, asreturned by the Cal | Cont r ol Cal | . get Cal | edAddr ess() method is the Address to which the Call was
originaly placed. The last redirected address, asreturned by the Cal | Cont r ol Cal | . get Last Redi r ect edAddr ess() method isthe
Address to which this Call was placed before the current destination Address. For example, if a Call was forwarded from one Address to another,
then the first Addressisthe last redirected Address for this call.

Each of these methods returns nul | if their values are unknown at the present time. During the lifetime of a Call, an implementation may learn
this additional information, and return different values for some or al of these methods as a result.

Conferencing Telephone Calls

The conferencing feature supported by this interface permits two telephone calls to be "merged”. That is, the two Calls are merged into asingle
Call with the union of al of the participants of the two Calls being placed on the single Call.

Applicationsinvokethe Cal | Control Cal | . conf er ence() method to perform the conferencing feature. This method is given the "second"
Call asan argument. All participants are moved from the second Call to the Call on which the method isinvoked. The second Call moves into the
Cal | . | NVALI D state as aresult.

In order for the conferencing feature to happen, there must be a common participant to both Calls, as represented by a single Terminal and two
Terminal Connections, one on each of the two Calls. These two Terminal Connections are known as the conference controllers. In the real-world,
one of the two telephone calls must be on hold with respect to the controlling Terminal, and hence, the Terminal Connection on the second Call
must bein the Cal | Cont r ol Ter mi nal Connect i on. HELD state. The two conference controlling TerminalConnections are merged into one
as aresult of this method.

Applications may control which Terminal Connection acts as the conference controller viathe

Cal | Control Cal | . set Conf erenceControl | er () method. TheCal | Control Cal | . get Conf er enceControl | er () method
returns the current conference controller, nul | if thereis none. If no conference controller is set, the implementation chooses a suitable
Terminal Connection when the conferencing feature is invoked.

Transferring Telephone Calls

The transfer feature supported by this interface permits one Call to be "moved" to another Call. That is, al of the participants from one Call are
moved to another Call, except for the transferring participant which drops off from both Calls.

ApplicationsinvoketheCal | Control Cal | .t ransfer () method to perform the transfer feature. There are two overloaded versions of this
method. The first method takes a second Call as an argument. This method acts similarly to Cal | Cont r ol Cal | . conf er ence() , except the
two Terminal Connections on each Call with acommon Terminal are removed from both Calls. The second version takes a string telephone address
as an argument. This method removes the transfer controller participant while placing the telephone call to the designated address. This latter
version of the transfer feature is often known as a single-step transfer.

In order for the transfer feature to happen, there must be a participant which acts as the transfer controller. The transfer controller isa

Terminal Connection around which the transfer is performed. In the first version of the Cal | Cont rol Cal | . t r ansf er () method, the transfer
controller must be present on each of the two Calls and share a common Terminal. In the second version, the transfer controller only appliesto the
Call object on which the method is invoked (since there is no second Call involved). In both cases, the transfer controller participant is no longer
part of any Call once the transfer feature is complete.

Applications may control which Terminal Connection acts as the transfer controller viathe

Cal |l Control Cal | . set Transfer Control | er () method. TheCal | Control Cal | . get Transf er Control | er () method returns
the current transfer controller, nul | if thereisnone. If no transfer controller is set, the implementation chooses a suitable Terminal Connection
when the conferencing feature is invoked.

Consultation Calls

Consultation Calls are specia types of telephony calls created (often temporarily) for a specific purpose. Consultation calls are created if a user
wants to "consult" with another party briefly while currently on a Call, or are created for the purpose of conferencing or transferring with a Call.
Consequently, consultation calls are always associated with another existing Call.

Applicationsinvokethe Cal | Control Cal | . consul t () method to perform the consultation feature. The instance on which the method is
invokeis awaysthe "idle" Call on which the consultation takes place. There are two overloaded versions of this method. The first method takes a
Terminal Connection and a string telephone address as arguments. This consultation telephone call is associated with the Call of the

Terminal Connection argument. This method places a telephone call from the same originating endpoint specified by the Terminal Connection
argument to the designated telephone address string. The second version of this method only takes a Termina Connection as an argument, and
permits applicationsto use the Cal | Cont r ol Connecti on. addToAddr ess() method to dial the destination address string.

Additional CallControlCall Methods

TheCal | Control Cal | . addPart y() method adds asingle party to a Call given some telephone address string. The

Cal | Control Cal | . drop() disconnectsall partiesfrom the Call and movesitintotheCal | . | NVALI D state. The

Cal | Control Cal | . of f Hook() method takes an originating Address and Terminal pair "off hook" and permits applications to dial
destination address digits one-by-one.

Observers and Events

All events pertaining to the Cal | Cont r ol Cal | interface arereported viathe Cal | Gbser ver . cal | ChangedEvent () method. The
application observer object must also implement the Cal | Cont r ol Cal | Chser ver interface to expressinterest in the call control package
events. Applications receive events pertaining to the Cal | Cont r ol Connecti on and Cal | Cont r ol Ter m nal Connect i on interfacesvia
this observer aswell.

All Cal | Cont r ol Cal | -related events must extend the Cal | Ct | Cal | Ev interface. There are no specific events pertaining to the
Cal | Control Cal | interface, however.
See Also:

Call, CallObserver, CallControl CallObserver, CallCtlCallEv

Method Index

@ addParty(String)
Adds an additional party to an existing Call.
@ conference(Call)
Merges two Callstogether, resulting in the union of the participants of both Calls being placed on asingle Call.
@ consult(Terminal Connection)
Creates a consultation between this Call and an active Call.
& consult(Terminal Connection, String)
Creates a consultation between this Call and an active Call.

@ drop()

Dropsthe entire Call.
@ getCalledAddress()

Returns the called Address associated with this Call.
getCallingAddress()

Returns the calling Address associated with this call.
@ getCallingTerminal()

Returns the calling Terminal associated with this Call.
@ getConferenceController ()

Returns the Terminal Connection which currently acts as the conference controller.
getConferenceEnable()

Return trueif conferencing is enabled, false otherwise.
@ getl astRedirectedAddr ess()

Returns the last redirected Address associated with this Call.
@ getTransfer Controller()

Returns the Terminal Connection which currently acts as the transfer controller.
getTransferEnable()

Return trueif transferring is enabled, fal se otherwise.
@ offH ook (Address, Terminal)

Takes the originating end of a Call off-hook.
@ setConferenceContr oller (Terminal Connection)

Sets the Terminal Connection which acts as the conference controller for the Call.
setConferenceEnable(bool ean)

Controls whether the Call is permitted or able to perform the conferencing feature.
@ setTransfer Contr oller (Terminal Connection)

Sets the Terminal Connection which acts as the transfer controller for the Call.
@ setTransfer Enable(boolean)

Controls whether the Call is permitted or able to perform the transferring feature.
transfer (Call)

This method moves all participants from one Call to another, with the exception of a selected common participant.
& transfer (String)

This overloaded version of this method transfers all participants currently on this Call, with the exception of the transfer controller
participant, to another telephone address.

MeEhods

@ getCallingAddress

public abstract Address getCallingAddress()

Returns the calling Address associated with this call. The calling Address is the Address which originally placed the telephone call. If the
calling address is unknown or not yet known, this method returns null.

Returns:
The calling Address.

@ getCallingTerminal

public abstract Term nal getCallingTerminal ()

Returns the calling Terminal associated with this Call. The calling Terminal isthe Termina which originally placed the telephone call. If
the calling Terminal is unknown or not yet known, this method returns null.

Returns
The calling Terminal.

@ getCalledAddress

public abstract Address get Call edAddress()

Returns the called Address associated with this Call. The called Addressis the Address to which the call had been originally placed. If the
called address is unknown or not yet known, this method returns null.

Returns:
The called Address.

] getL astRedirectedAddress

public abstract Address getlLast RedirectedAddress()

Returns the | ast redirected Address associated with this Call. The last redirected Address is the Address at which the current Call was
placed immediately before the current Address. Thisis common if a Call isforwarded to several Addresses before being answered. If the
last redirected address is unknown or not yet known, this method returns null.

Returns:
The last redirected Address for this telephone Call.

@ addParty

public abstract Connection addParty(String newParty) throws |nvali dStateException,
I nval i dPart yExcepti on, Met hodNot Support edException, Privil egeViol ati onExcepti on,

Resour ceUnavai | abl eExcepti on

Adds an additional party to an existing Call. Thisis sometimes called a"single-step conference" because a party is conferenced into a Call
directly. The telephone address string provided as the argument must be complete and valid.

States of the Existing Connections

The Call must have at |east two Connectionsin the Cal | Cont r ol Connect i on. ESTABLI SHED state. An additional restriction
requires that at most one other Connection may be in either the Cal | Cont r ol Connect i on. QUEUED,
Cal | Contr ol Connecti on. OFFERED, or Cal | Cont r ol Connecti on. ALERTI NG state.

Some telephony platforms impose restrictions on the number of Connectionsin a particular state. For instance, it is common to restrict the
number of "alerting" Connections to at most one. As aresult, this method requires that at most one other Connectionsisin the "queued”,
"offering", or "alerting" state. (Note that the first two states correspond to the core Connection "in progress' state). Although some
systems may not enforce this requirement, for consistency, JTAPI specifies implementations must uphold the conservative requirement.

The New Connection

This method creates and returns a new Connection representing the new party. This Connection must at least bein the
Cal | Cont r ol Connecti on. | DLE state. Its state may have progressed beyond "idl€" before this method returns, and should be
reflected by an event. This new Connection will progress as any normal destination Connection on a Call. Typical scenarios for this
Connection are described by the Cal | . connect () method.
Pre-conditions:
1. (this.getProvider()).getState() == Provider.IN_SERVICE
this.getState() == Call.ACTIVE
Let c[] = call.getConnections() where c.length >= 2
c[i].getCallControl State() == CallControl Connection.ESTABLISHED for at least two i
c[j].getCallControl State() == CallControl Connection.QUEUED, Call Control Connection.OFFERED, or

o s w DN

CallControlConnection. ALERTING for at most one ¢[j]
Post-conditions:
1. Let connection be the Connection created and returned
2. (this.getProvider()).getState() == Provider.IN_SERVICE
3. this.getState() == Cal.ACTIVE
4. connection.getCallControl State() at least CallControl Connection.IDLE
5. ConnCreatedEv is delivered for connection
Parameters:
newParty - The telephone address of the party to be added.
Returns:
The new Connection associated with the added party.
Throws: InvalidStateException

Either the Provider is not "in service", the Call is not "active" or the proper conditions on the Connections does not exist. as
designated by the pre-conditions for this method.

Throws:. InvalidPartyException

The destination address string is not valid and/or complete.
Throws. MethodNotSupportedException

This method is not supported by the implementation.
Throws: PrivilegeViolationException

The application does not have the proper authority to invoke this method.
Throws. ResourceUnavailableException

An internal resource necessary for the successful invocation of this method is not available.
See Also:

ConnCreatedEv
@ drop
public abstract void drop() throws InvalidStateException,

Met hodNot Support edException, Privil egeViol ati onExcepti on,
Resour ceUnavai | abl eExcepti on

Drops the entire Call. This method is equivalent to using the Connect i on. di sconnect () method on each Connection which is part
of the Call. Typically, each Connection on the Call will moveinto the Cal | Cont r ol Connect i on. DI SCONNECTED state, each
Terminal Connection will moveintothe Cal | Cont r ol Ter i nal Connect i on. DROPPED state, and the Call will move into the
Cal | . | NVALI D state.

There are some Connections for which the application does not possess the proper authority to disconnect. In this case, this method
performs no action on these Connections. These Connections may disconnect naturally as aresult of disconnecting other Connections,
however. This method returns when it can successfully disconnect as many methods as it can. The application is notified via events
whether the entire Call was successfully dropped.
Pre-conditions:

1. (this.getProvider()).getState() == Provider.IN_SERVICE

2. this.getState() == Call. ACTIVE
Post-conditions:

1. (this.getProvider()).getState() == Provider.IN_SERVICE
Let c[] = this.getConnections() before this method is invoked
If c[i].getCall Control State == Call Control Connection.DISCONNECTED, for all i, then this.getState() == Call.INVALID
Call CtlConnDisconnectedEv/ConnDisconnectedEv is delivered for all disconnected Connections
CallCtITermConnDroppedEv/TermConnDroppedEv is delivered for al dropped Terminal Connections
CallinvalidEv is delivered if all Connections were disconnected

o ok w DN

Throws:. InvalidStateException

Either the Provider was not "in service" or the Call was not "active".
Throws. MethodNotSupportedException

This method is not supported by the implementation.
Throws: PrivilegeViolationException

The application does not have the proper authority to invoke this method and it can drop none of the Connections.
Throws. ResourceUnavailableException

An internal resource necessary for the successful invocation of this method is not available.
See Also:
ConnDisconnectedEv, TermConnDroppedEv, CalllnvalidEv, Call CtlConnDisconnectedEv, CallCtl TermConnDroppedEv

o offHook

public abstract Connection of f Hook(Address ori gaddress,
Terminal origterminal) throws
I nval i dSt at eExcepti on, Met hodNot Support edException, Privil egeViol ati onExcepti on,
Resour ceUnavai | abl eExcepti on

Takes the originating end of a Call off-hook. This method permits applications to simply take the originating terminal of a Call off-hook
so that users may manually dial telephone number digits or applications may supply digits with the

Cal | Cont r ol Connecti on. addToAddr ess() method. Thisisin contrast totheCal | . connect () method which requires the
complete destination address string.

This method takes the originating Address and Terminal as arguments. This Call must bein the Cal | . | DLE state. This method creates
and returns a Connection to the originating Addressin the Cal | Cont r ol Connecti on. | NI TI ATED state. This method also creates a
Terminal Connection inthe Cal | Cont r ol Ter mi nal Connect i on. TALKI NG state and associated with the new Connection and
originating Terminal.
Pre-conditions:
1. (this.getProvider()).getState() == Provider.IN_SERVICE
2. this.getState() == Call.IDLE
Post-conditions:
(this.getProvider()).getState() == Provider.IN_SERVICE
this.getState() == Call. ACTIVE
L et connection be the Connection created and returned
L et terminal connection be the Termina Connection created
connection.getCall Control State() == CallControl Connection.INITIATED
Let tc[] = c.getTermina Connections() where tc.length == 1

=

tc[0] == terminalconnection
tc[0].getCall Control State() == Call Control Terminal Connection. TALKING
tc[0] element of origterminal .getTerminal Connections()

© © N o g~ wDN

=
©

connection element of origaddress.getConnections()

=
=

. connection element of this.getConnections()

[EnY
N

. ConnCreatedEV is delivered for connection

(=Y
w

. TermConnCreatedEyv is delivered for terminal connection
CallActiveEv is delivered for this Call
. CalCtlConnInitiatedEv/ConnConnectedEv is delivered for connection
16. CalCtlITermConnTakingEv/TermConnActiveEv is delivered for terminal connection
Parameters:

=
o &

origaddress - The originating Address object.
origterminal - The originating Terminal object.

Returns:
The Connection associated with the originating end of the telephone call.
Throws: InvalidStateException

Either the Provider was not "in service" or the Call was not "idle".
Throws. MethodNotSupportedException

This method is not supported by the implementation.
Throws: PrivilegeViolationException

The application does not have the proper authority to invoke this method
Throws: ResourceUnavailableException

An internal resource necessary for the successful invocation of this method is not available.
See Also:
ConnCreatedEv, TermConnCreatedEv, CallActiveEv, CallCtlConnlnitiatedEv, CallCtITermConnTalkingEv

o conference

public abstract void conference(Call otherCall) throws lnvali dStateException,
| nval i dAr gunrent Excepti on, Met hodNot Support edException, PrivilegeViol ati onException,

Resour ceUnavai | abl eExcepti on

Merges two Calls together, resulting in the union of the participants of both Calls being placed on asingle Call. This method takes a Call
as an argument, referred to hereafter as the "second" Call. All of the participants from the second call are moved to the Call on which this
method isinvoked.

The Conference Controller

In order for the conferencing feature to happen, there must be a common participant to both Calls, as represented by a single Terminal and
two Terminal Connections, one on each of the two Calls. These two Terminal Connections are known as the conference controllers. In the
real-world, one of the two Calls must be on hold with respect to the controlling Terminal, and hence, the Termina Connection on the
second Call must beinthe Cal | Cont r ol Ter ni nal Connect i on. HELD state. The two conference controlling Termina Connections
are merged into one as aresult of this method.

Applications may control which Terminal Connection acts as the conference controller viathe

Cal | Control Cal |l . set ConferenceController() method. TheCal | Control Cal | . get Conf erenceControl | er()
method returns the current conference controller, nul | if thereis none. If no conference controller is set, the implementation chooses a
suitable Terminal Connection when the conferencing feature is invoked.

The Telephone Call Argument

All of the participants from the second Call, passed as the argument to this method, are "moved" to the Call on which this method was
invoked. That is, new Connections and Terminal Connections are created on this Call which are found on the second Call. Those
Connections and Terminal Connections on the second Call are removed from the Call and the Call movesintothe Cal | . | NVALI D state.

The conference controller Terminal Connections are merged into one on this Call. That is, the existing Terminal Connection controller on
this Call isleft unchanged, while the Terminal Connection on the second Call is removed from that Call.

Other Shared Participants

There may exist Address and Terminals which are part of both telephone call in addition to the designated conference controller. In these
instances, those participants which are shared between both Calls are merged into one. That is, the Connections and Terminal Connections
on this Call are left unchanged. The corresponding Connections and Termina Connections on the second Call are removed from that Call.
Pre-conditions:

1. Let tcl be the conference controller on this Call

2. Let connectionl = tcl.getConnection()

3. Let tc2 be the conference controller on otherCall

4. (this.getProvider()).getState() == Provider.IN_SERVICE

. this.getState() == Call.ACTIVE
. tcl.getTerminal () == tc2.getTerminal ()
. tcl.getCallControl State() == Call Control Terminal Connection. TALKING
. tc2.getCallControl State() == CallControl Terminal Connection.HELD
9. this!= otherCall
Post-conditions:
1. (this.getProvider()).getState() == Provider.IN_SERVICE
. this.getState() == Call. ACTIVE
. otherCall.getState() == INVALID
. Let ¢[] be the Connections to be merged from otherCall

00 N O O

. Let tc[] be the Termina Connections to be merged from otherCall

. Let new(c) be the set of new Connections created on this Call

. Let new(tc) be the set of new Terminal Connections created on this Call

. hew(c) element of this.getConnections()

. new(c).getCall State() == c.getCall State()

. new(tc) element of (this.getConnections()).getTerminal Connections()

. hew(tc).getCall State() == tc.getCall State()

. c[i].getCallControl State() == CallControl Connection.DISCONNECTED for al i
. tc[i].getCallControl State() == Call Control Terminal Connection.DROPPED for all i
. CallnvalidEv isdelivered for otherCall

. CallCtlConnDisconnectedEv/ConnDisconnectedEv is delivered for al cfi]

. CallCtlITermConnDroppedEv/TermConnDroppedEv is delivered for al tc[i]

. ConnCreatedEv is delivered for al new(c)

. TermConnCreatedEv is delivered for all new(tc)

19. Appropriate events are delivered for al new(c) and new(tc)

© 00 N O O b WDN

el e
0w N UM WNERER O

Parameters:
otherCall - The second Call which to merge with this Call object.
Throws: InvalidArgumentException

The Call object provided is not valid for the conference
Throws: InvalidStateException

Either the Provider is not "in service", the Call is not "active", or the conference controllers are not in the proper state.
Throws. MethodNotSupportedException

This method is not supported by the implementation.
Throws: PrivilegeViolationException

The application does not have the proper authority to invoke this method.
Throws: ResourceUnavailableException

An internal resource necessary for the successful invocation of this method is not available.
See Also:

ConnCreatedEv, TermConnCreatedEv, ConnDisconnectedEv, TermConnDroppedEv, CalllnvaidEy,
CallCtlConnDisconnectedEv, CalCtlTermConnDroppedEv

- transfer

public abstract void transfer(Call otherCall) throws |nvalidStateException,
[nval i dAr gunent Exception, InvalidPartyException, MethodNot SupportedException,

Privil egeViol ati onExcepti on, ResourceUnavail abl eExcepti on

This method moves all participants from one Call to another, with the exception of a selected common participant. This method takes a
Call as an argument, referred to hereafter as the "second" Call. All of the participants, with the exception for the selected common
participant, from the second call are moved to the Call on which this method is invoked.

The Transfer Controller

In order for the transfer feature to happen, there must be a participant which acts as the transfer controller. The transfer controller isa
Terminal Connection around which the transfer is placed. This transfer controller must be present on each of the two Calls and share a
common Terminal. The transfer controller participant is no longer part of any Call once this transfer feature is complete. The transfer

controllers on each of the two Calls must be in either of the Cal | Cont r ol Ter i nal Connecti on. TALKI NGor

Cal | Cont r ol Ter mi nal Connect i on. HELD state.

Applications may control which Terminal Connection acts as the transfer controller viathe

Cal |l Control Cal | . set Transfer Control | er() method. TheCal | Control Cal | . get TransferControll er()
method returns the current transfer controller, nul | if thereis none. If no transfer controller is set, the implementation chooses a suitable
Terminal Connection when the transfer feature is invoked.

The Telephone Call Argument

All of the participants from the second Call, passed as the argument to this method, are "moved" to the Call on which this method is
invoked, with the exception of the transfer controller. That is, new Connections and Terminal Connections are created on this Call which
are found on the second Call. Those Connections and Terminal Connections on the second Call are removed from the Call and the Call
movesinto theCal | . | NVALI D state.

The transfer controller Terminal Connections are dropped from both Calls. They move into the
Cal | Control Ter mi nal Connect i on. DROPPED state.

Other Shared Participants

There may exist Address and Terminals which are part of both Callsin addition to the designated transfer controller. In these instances,
those participants which are shared between both Calls are merged into one. That is, the Connections and Terminal Connections on this
Cdll are left unchanged. The corresponding Connections and Termina Connections on the second Call are removed from that Call.
Pre-conditions:
1. Lettcl bethetransfer controller on this Call
. Let tc2 be the transfer controller on otherCall
. this!= otherCall
. (this.getProvider()).getState() == Provider.IN_SERVICE
. this.getState() == Call.ACTIVE
. otherCall.getState() == Call. ACTIVE
. tcl.getCallControl State() == Call Control Terminal Connection. TALKING or CallControl Terminal Connection.HELD
8. tc2.getCallControl State() == CallControl Terminal Connection.TALKING or CallControl Terminal Connection.HELD
Post-conditions:
1. (this.getProvider()).getState() == Provider.IN_SERVICE
. this.getState() == Call.ACTIVE
. otherCall.getState() == Call.INVALID
. tcl.getCallControl State() == Call Control Terminal Connection.DROPPED
. tc2.getCallControl State() == CallControl Terminal Connection.DROPPED
. Let ¢[] be the Connections to be transferred from otherCall
. Let tc[] be the Terminal Connections to be transferred from otherCall
. Let new(c) be the set of new Connections created on this Call
. Let new(tc) be the set of new Termina Connections created on this Call
. new(c) element of this.getConnections()
. new(c).getCallState() == c.getCall State()
. nhew(tc) element of (this.getConnections()).getTerminal Connections()

N O ok W0ODN

© 00 N O U A WDN

I =
N P O

13. new(tc).getCall State() == tc.getCall State()
14. c[i].getCallControl State() == Call Control Connection.DISCONNECTED for all i
15. tc[i].getCallControl State() == Call Control Termina Connection.DROPPED for all i
16. CallnvalidEv isdelivered for otherCall
17. CalCtITermConnDroppedEv/TermConnDroppedEyv is delivered for tcl, tc2
18. CallCtlConnDisconnectedEv/ConnDisconnectedEv is delivered for all c[i]
19. CalCtITermConnDroppedEv/TermConnDroppedEyv is delivered for all tc[i]
20. ConnCreatedEv isdelivered for al new(c)
21. TermConnCreatedEv is delivered for all new(tc)
22. Appropriate events are delivered for all new(c) and new(tc)
Parameters:
otherCall - The other Call which to transfer to this Call.
Throws: InvalidArgumentException

The Terminal Connection controlling the transfer is not valid or does not exist or the other Call is not valid.
Throws: InvalidStateException

Either the Provider is not "in service", the Call are not "active', or the transfer controllers are not "talking" or "held".
Throws:. InvalidPartyException

The other Call given as the argument is not avalid Call to conference with.
Throws. MethodNotSupportedException

This method is not supported by the implementation.
Throws: PrivilegeViolationException

The application does not have the proper authority to invoke this method.
Throws. ResourceUnavailableException

An internal resource necessary for the successful invocation of this method is not available.
See Also:

ConnCreatedEv, TermConnCreatedEv, ConnDisconnectedEv, TermConnDroppedEv, CalllnvalidEv,
CadllCtlConnDisconnectedEv, CallCtITermConnDroppedEv

o transfer

public abstract Connection transfer(String address) throws
| nval i dAr gunrent Exception, lnvali dStateException, lnvalidPartyException,

Met hodNot Support edException, Privil egeViol ati onExcepti on,

Resour ceUnavai | abl eExcepti on

This overloaded version of this method transfers all participants currently on this Call, with the exception of the transfer controller
participant, to another telephone address. Thisis often called a"single-step transfer” because the transfer feature places another telephone
call and performs the transfer at one time. The telephone address string given as the argument to this method must be valid and complete.

The Transfer Controller

The transfer controller for this version of this method represents the participant on this Call around which the transfer is taking place and
who drops off the Call once the transfer feature has completed. The transfer controller is a Terminal Connection which must be in the
Cal | Cont r ol Ter m nal Connecti on. TALKI NG state.

Applications may control which Terminal Connection acts as the transfer controller viathe

Cal | Control Cal | . set Transfer Control | er () method. TheCal | Control Cal | . get TransferControl |l er()
method returns the current transfer controller, nul | if thereisnone. If no transfer controller is set, the implementation chooses a suitable
Terminal Connection when the transfer feature is invoked.

When the transfer feature is invoked, the transfer controller movesinto the Cal | Cont r ol Ter ni nal Connect i on. DROPPED state. If
it isthe only Terminal Connection associated with its Connection, then its Connection moves into the

Cal | Cont r ol Connecti on. DI SCONNECTED state as well.
The New Connection

This method creates and returns a new Connection representing the party to which the Call was transferred. Note that this Connections
may benul | inthe case the Call has been transferred outside of the Provider's domain and can no longer be tracked. This Connection
must at least beinthe Cal | Cont r ol Connect i on. | DLE state. Its state may have progressed beyond "idle" before this method
returns, and should be reflected by an event. This new Connection will progress as any normal destination Connection on a telephone call.
Typical scenarios for this Connection are described by the Cal | . connect () method.
Pre-conditions:

1. Let tc bethe transfer controller on this Call

2. (this.getProvider()).getState() == Provider.IN_SERVICE

3. this.getState() == Call. ACTIVE

4. tc.getCallControl State() == CallControl Terminal Connection. TALKING
Post-conditions:

1. Let newconnection be the Connection created and returned

2. Let connection == tc.getConnection()
. (this.getProvider()).getState() == Provider.IN_SERVICE
. this.getState() == Call. ACTIVE
. tc.getCallControl State() == Call Control Terminal Connection.DROPPED

. If connection.getTerminal Connections().length == 1, then connection.getCall Control State() ==
CallControl Connection.DISCONNECTED

. newconnection is an element of this.getConnections(), if not null.
8. newconnection.getCallControl State() at least CallControl Connection.IDLE, if not null.
9. ConnCreatedEv is delivered for newconnection
10. CdlCtlTermConnDroppedEv/TermConnDroppedEv is delivered for tc
11. CallCtlConnDisconnectedEv/ConnDisconnectedEv is delivered for connection if no other Terminal Connections

o O~ W

~

Parameters:

dialedDigits - The destination tel ephone address string to where the Call is being transferred.
Returns:

The new Connection associated with the destination or null.
Throws: InvalidArgumentException

The Termina Connection provided as controlling the transfer is not valid or part of this Call.
Throws:. InvalidStateException

Either the Provider is not "in service", the Call is not "active", or the transfer controller is not "talking".
Throws: InvalidPartyException

The destination address is not valid and/or compl ete.
Throws: MethodNotSupportedException

This method is not supported by the implementation.
Throws: PrivilegeViolationException

The application does not have the proper authority to invoke this method.
Throws: ResourceUnavailableException

Aninternal resource necessary for the successful invocation of this method is not available.
See Also:
ConnCreatedEv, ConnDisconnectedEv, TermConnDroppedEv, Call CtlConnDisconnectedEv, Call Ctl TermConnDroppedEv

o setConferenceController

public abstract void set ConferenceControl |l er(Term nal Connection tc) throws
| nval i dAr gunent Excepti on, Invali dStateException, MethodNot SupportedException,
Resour ceUnavai | abl eExcepti on

Sets the Terminal Connection which acts as the conference controller for the Call. The conference controller represents the participant in
the Call around which a conference takes place.

Typically, when two Calls are conferenced together, a single participant is part of both Calls. This participant is represented by a
Terminal Connection on each Call, each of which shares the same Terminal.

If the designated Terminal Connection is not part of this Call, an exception is thrown. If the Terminal Connection leaves the Call in the
future, the implementation resets the conference controller to nul | .
Pre-conditions:

1. Let connectiong[] = this.getConnections()

2. (this.getProvider()).getState() == Provider.IN_SERVICE

3. this.getState() == Call ACTIVE

4. tc element of connectiong[i].getTerminal Connections() for all i

5. tc.getCallControl State() != CallControl Terminal Connection.DROPPED
Post-conditions:

1. (this.getProvider()).getState() == Provider.IN_SERVICE
. this.getState() == Call.ACTIVE
. Let connectiong[] = this.getConnections()
. tc element of connectiong[i].getTerminal Connections() for all i
. tc.getCallControl State() != Call Control Terminal Connection.DROPPED
6. tc == this.getConferenceController()

a ~ W DN

Parameters:
tc - The Termina Connection to use as the conference controller
Throws: InvalidArgumentException

The Termina Connection provided is not associated with this Call.
Throws: InvalidStateException

Either the Provider isnot "in service" or the Call is not "active".
Throws:. MethodNotSupportedException

This method is not supported by the implementation.
Throws: ResourceUnavailableException

An internal resource necessary for the successful invocation of this method is not available.

< getConferenceController

public abstract Term nal Connection get ConferenceController()

Returns the Terminal Connection which currently acts as the conference controller. The conference controller represents the participant in
the telephone around which a conference takes place.

When aCall isinitialy created, the conference controller is set to nul | . This method returns non-null only if the application has
previously set the conference controller. If the current conference controller leaves the Call, the conference controller isreset to nul | .
Pre-conditions:

1. (this.getProvider()).getState() == Provider.IN_SERVICE

2. this.getState() != Cal.INVALID
Post-conditions:

1. (this.getProvider()).getState() == Provider.IN_SERVICE

2. this.getState() != Call.INVALID

3. Let tc = this.getConferenceController()
4. Let connectiong]] = this.getConnections()
5. tc element of connectiong[i].getTerminal Connections() for al i, if tcis not null
6. tc.getCallControl State() != CallControl Terminal Connection.DROPPED, if tc is not null
Returns:
The current Terminal Connection acting as the conference controller, null if oneis not set.

@ stTransferController
public abstract void setTransferControll er(Term nal Connection tc) throws

| nval i dAr gunent Excepti on, Invali dStateException, MethodNot SupportedException,
Resour ceUnavai | abl eExcepti on

Sets the Terminal Connection which acts as the transfer controller for the Call. The transfer controller represents the participant in the Call
around which atransfer takes place.

If the designated Terminal Connection is not part of this Call, an exception is thrown. If the Terminal Connection leaves the Call in the
future, the implementation resets the transfer controller tonul | .
Pre-conditions:
1. Let connectiong[] = this.getConnections()
2. (this.getProvider()).getState() == Provider.IN_SERVICE
3. this.getState() == Call. ACTIVE
4. tc element of connectiong[i].getTerminal Connections() for al i
5. tc.getCallControl State() != Call Control Terminal Connection.DROPPED
Post-conditions:
1. (this.getProvider()).getState() == Provider.IN_SERVICE
. this.getState() == Call. ACTIVE
. Let connectiong]] = this.getConnections()
. tc element of connectiong[i].getTerminal Connections() for al i
. tc.getCallControl State() != Call Control Terminal Connection.DROPPED
6. tc == this.getTransferController()
Parameters:

a b~ W0DN

tc - The Termina Connection to use as the transfer controller
Throws: InvalidArgumentException

The Terminal Connection provided is not associated with this Call.
Throws: InvalidStateException

Either the Provider is not "in service", Call was not "active", or the Terminal Connection argument was "dropped".
Throws. MethodNotSupportedException

This method is not supported by the implementation.
Throws: ResourceUnavailableException

Aninternal resource necessary for the successful invocation of this method is not available.

@ getTransfer Controller

publ i c abstract Term nal Connection getTransferController()

Returns the Terminal Connection which currently acts as the transfer controller. The transfer controller represents the participant in the
Call around which atransfer takes place.

When a Call isinitially created, the transfer controller is set to nul | . This method returns non-null only if the application has previously
set the transfer controller. If the current transfer controller |eaves the telephone call, the transfer controller isreset tonul | .

Pre-conditions:

1. (this.getProvider()).getState() == Provider.IN_SERVICE

2. this.getState() != Call.INVALID
Post-conditions:

1. (this.getProvider()).getState() == Provider.IN_SERVICE
. this.getState() '= Call.INVALID
. Let tc = this.getTransferController()
. Let connectiong]] = this.getConnections()
. tc element of connectiong[i].getTerminal Connections() for al i, if tcis not null

6. tc.getCallControl State() != CallControl Terminal Connection.DROPPED, if tc is not null
Returns:

The current Terminal Connection acting as the transfer controller, null if one is not set.

a ~ W DN

o setConfer enceEnable

public abstract void set ConferenceEnabl e(bool ean enabl e) throws
I nval i dAr gunent Excepti on, I nvalidStateException, MethodNot SupportedExcepti on,

Privil egeVi ol ati onExcepti on

Controls whether the Call is permitted or able to perform the conferencing feature. The boolean argument provided indicates whether
conferencing should be turned on (true) or off (false). This method throws an exception if the boolean argument is true and the
implementation does not support the conferencing feature. This method must be invoked when the Call isinthe Cal | . | DLE state.
Pre-conditions:

1. (this.getProvider()).getState() == Provider.IN_SERVICE

2. this.getState() == Call.IDLE
Post-conditions:

1. (this.getProvider()).getState() == Provider.IN_SERVICE

2. this.getState() == Call.IDLE

3. enable = this.getConferenceEnabl ()
Parameters:

enable - True turns conferencing on, false turns conferencing off.

Throws: InvalidArgumentException

Conferencing cannot be turned on as requested by a true argument.
Throws: InvalidStateException

Either the Provider is not "in service" or the Call isnot "idle".
Throws. MethodNotSupportedException

This method is not supported by the implementation.
Throws: PrivilegeViolationException

The application does not have the proper authority to invoke this method.
@ getConferenceEnable

public abstract bool ean get ConferenceEnabl e()

Return true if conferencing is enabled, fal se otherwise. Applications may use this method initially to obtain the default value set by the
implementation and may attempt to change this value using the Cal | Cont r ol Cal | . set Conf er enceEnabl e() method.

Returns:
Trueif conferencing is enabled, false otherwise.

o setTransfer Enable

public abstract void set Transfer Enabl e(bool ean enabl e) throws
| nval i dAr gunent Exception, I nvalidStateException, MethodNot SupportedExcepti on,

Privil egeVi ol ati onExcepti on

Controls whether the Call is permitted or able to perform the transferring feature. The boolean argument provided indicates whether
transferring should be turned on (true) or off (false). This method throws an exception if the boolean argument is true and the
implementation does not support the transferring feature. This method must be invoked when the Call isinthe Cal | . | DLE state.
Pre-conditions:

1. (this.getProvider()).getState() == Provider.IN_SERVICE

2. this.getState() == Call.IDLE
Post-conditions:

1. (this.getProvider()).getState() == Provider.IN_SERVICE

2. this.getState() == Call.IDLE

3. enable = this.getConferenceEnabl &)
Parameters:

enable - True turns transferring on, false turns transferring off.

Throws: InvalidArgumentException

Transferring cannot be turned on as requested by the true argument.
Throws: InvalidStateException

Either the Provider is not "in service" or the Call isnot "idle".
Throws. MethodNotSupportedException

This method is not supported by the implementation.
Throws: PrivilegeViolationException

The application does not have the proper authority to invoke this method.
- getTransfer Enable

public abstract bool ean get Transf er Enabl e()

Return trueif transferring is enabled, false otherwise. Applications may use this method initially to obtain the default value set by the
implementation and may attempt to change thisvalue using the Cal | Cont r ol Cal | . set Tr ansf er Enabl e() method.

Returns:
Trueif transferring is enabled, false otherwise.

o consult

public abstract Connection[] consult(Terninal Connection tc,
String dialedDigits) throws
| nval i dSt at eExcepti on, |nvali dArgunment Excepti on, Met hodNot Support edExcepti on,
Resour ceUnavai | abl eException, PrivilegeViolationException, InvalidPartyException

Creates a consultation between this Call and an active Call. A consultation Call isanew, idle Call which is associated with a particular
existing Call and often created for a particular purpose. For example, the consultation Call may be used simply to "consult" with another
party or to conference or transfer with its associated Call. This method establishes a special relationship between the two Calls which
extends down to the telephony platform level. Most often, this feature is directly provided by the underlying telephony platform.

This Call Object

The instance on which this method isinvoked is used as the Call on which the consultation takes place. This Call must beinCal | . | DLE
and is created with the Pr ovi der . cr eat eCal | () method.

The TerminalConnection Argument

The Termina Connection argument provides two pieces of information. The first piece of information is the other active Call to which this
idle Call is associated. The Call associated with the Terminal Connection argument must bein the Cal | . ACTI VE state.

The second piece of information given by the Termina Connection argument is the originating endpoint from which to place a telephone
call onthisidle Call. That is, the Address and Terminal associated with the Termina Connection argument are used as the originating
endpoint for the telephone call. The state of the Terminal Connection must be Cal | Cont r ol Ter mi nal Connect i on. TALKI NGand
this method first movesit into the Cal | Cont r ol Ter mi nal Connect i on. HELDin order to place atelephone call on thisidle Call.

The Destination Address String

A telephone call is placed to the destination telephone address string given as the second argument to this method. This address string
must be valid and compl ete.

The Consultation Purpose

As mentioned above, the purpose of creating a consultation Call is often to perform atransfer or conference action on these two Calls. If
the methods Cal | Contr ol Cal | . set Conf er enceEnabl e() andCal | Control Cal | . set Transf er Enabl e() are
supported asindicated by the Cal | Cont r ol Cal | Capabi | iti es interface, applications must specify the purpose of the consultation
Cdl by first telling the telephony platform if the intend to perform atransfer and/or conference action.

IftheCal | Control Cal | . set Conf erenceEnabl e() andtheCal | Control Cal | . set Transf er Enabl e() methods are
not supported as indicated by this interface's capabilities, applications permit the telephony platform to use the static, default values
reported by the Cal | Cont r ol Cal | . get Conf er enceEnabl e() andtheCal | Control Cal | . get Transf er Enabl e()
methods.

The Telephone Call

A telephone call is placed on this Call and an array of two Connections are returned representing the originating and destination
participants of the Call. The Call progressesin the same way asif the Call was placed usingthe Cal | . connect () method. The
description of that method describes different scenarios under which the state of the call progresses.
Pre-conditions:

1. this.getProvider().getState() == Provider.IN_SERVICE

2. this.getState() == Call.IDLE

3. tc.getCallControl State() == Call Control Terminal Connection. TALKING

4. (tc.getCall()).getState() == Cal.ACTIVE
Post-conditions:

1. Let connectiong[] be the two Connections created and returned
this.getProvider().getState() == Provider.IN_SERVICE
this.getState() == Call. ACTIVE
tc.getCallControl State() == Call Control Termina Connection.HELD
(tc.getCall()).getState() == Call.ACTIVE
Let ¢[] = this.getConnections() such that c.length ==
c[0].getCallControl State() at |east CallControl Connection.IDLE
c[1].getCallControl State() at |east CallControl Connection.IDLE
€ == connection
CallActiveEv is delivered for this Call
. ConnCreatedEv are delivered for both connectiong]i]

12. CdlCtITermConnHeldEv is delivered for tc

Parameters:

© © N o g DN

el
= O

tc - The controlling Terminal Connection for the consultation call.

dialedDigits - The destination tel ephone address string to which a telephone call is being placed.
Returns:

The two new Connectionsin the Call.
Throws: ResourceUnavailableException

An internal resource necessary for the successful invocation of this method is unavailable.

Throws: PrivilegeViolationException

The application does not have the proper authority to place a consultation telephone call.
Throws: InvalidArgumentException

The Terminal Connection given is not avalid originating endpoint for a Call.
Throws: InvalidPartyException

The destination address string is not valid and/or complete.
Throws: InvalidStateException

Either the Provider isnot "in service", the Call isnot "idle", the other Call is not "active", or the Terminal Connection is not
"talking".

Throws. MethodNotSupportedException

The implementation does not support this method.
See Also:
CdlActiveEv, ConnCreatedEv, CallCtITermConnHeldEv

o consult

public abstract Connection consult(Term nal Connection tc) throws
| nval i dSt at eExcepti on, |nvali dArgunment Excepti on, Met hodNot Support edExcepti on,

Resour ceUnavai | abl eException, Privil egeViol ati onExcepti on

Creates a consultation between this Call and an active Call. A consultation call is anew, idle Call which is associated with a particular
existing Call and often created for a particular purpose. For example, the consultation call may be used simply to "consult” with another
party or to conference or transfer with its associated Call. This method establishes a special relationship between the two Calls which
extends down to the telephony platform level. Most often, this feature is directly provided by the underlying telephony platform.

This overloaded version of this method has a single difference with the other version of theCal | Cont r ol Cal | . consul t () method.
This method does not take a destination telephone address string as an argument.

This method creates and returns a single Connection whichisinthe Cal | Cont r ol Connecti on. | NI TI ATED state. Applications may
usethe Cal | Cont r ol Connecti on. addToAddr ess() method to dia the destination address digits.
Pre-conditions:

1. (this.getProvider()).getState() == Provider.IN_SERVICE

2. this.getState() == Call.IDLE

3. tc.getCallControl State() == Call Control Terminal Connection. TALKING

4. (tc.getCal()).getState() == Cal.ACTIVE
Post-conditions:

1. Let connection be the connection created and returned
. (this.getProvider()).getState() == Provider.IN_SERVICE
. this.getState() == Call.IDLE
. tc.getCallControl State() == CallControl Terminal Connection.HELD
. (tc.getCal()).getState() == Cal.ACTIVE
. connection ==
Let ¢ = this.getConnections() such that c.length ==
. ¢[0].getCallControl State() == CallControl Connection.INITIATED
. ConnCreatedEv is delivered for connection
. CallCtlConninitiatedEv/ConnConnectedEv is delivered for connection

11. CdlActiveEv isdelivered for this Call

Parameters:

© 0N O A WN

=
o

tc - The controlling Terminal Connection for the consultation call.
Returns

The Connection in the "initiated" state.
Throws. ResourceUnavailableException

An internal resource necessary for the successful invocation of this method is unavailable.
Throws: PrivilegeViolationException

The application does not have the proper authority to place a consultation telephone call.
Throws: InvalidArgumentException

The Termina Connection given is not avalid originating endpoint for a Call.
Throws: InvalidStateException

Either the Provider isnot "in service", the Call isnot "idle", the other Call is not "active", or the Terminal Connection is not
"talking".

Throws. MethodNotSupportedException

The implementation does not support this method.
See Also:
CadlActiveEv, ConnCreatedEv, ConnConnectedEv, Call CtlConnlnitiatedEv

Al |l Packages Thi s Package Previous Next

Al l Packages Thi s Package Previous Next

Interface
javax.telephony.callcontrol.CallControlCallObserver

public interface CallControlCallObserver
extends CallObserver

TheCal | Cont r ol Cal | Gbser ver interface reports al eventsfor the Cal | Cont r ol Cal | interface. It also reports events for the

Cal | Cont r ol Connecti on andtheCal | Cont r ol Ter mi nal Connect i on interfaces. Applications implement this interface to receive
these events. All events are reported viathe Cal | Cbser ver . cal | ChangedEvent () method. Thisinterface, therefore, allows applicationsto
signal to the implementation that they are interested in call control package events. This interface defines no additional methods.

All events must extend the Cal | Ct | Cal | Ev event interface, which in turn, extends the core Cal | Ev interface.

TheCal | Cont r ol Connect i on state events defined in this package are: Cal | Ct | ConnOf f er edEv, Cal | Ct | ConnQueuedEv,

Call Ct |l ConnAl ertingEv,Call Ctl ConnlnitiatedEv,Call C| ConnbDi al i ngEv, Cal | Ct| ConnNet wor kReachedEv,

Cal I Ct1 ConnNet wor kAl erti ngEv,Cal | Ct| ConnFai | edEv, Cal | Ct | ConnEst abl i shedEv, Cal | Ct | ConnUnknownEv, and
Cal | Ct1 ConnbDi sconnect edEv.

TheCal | Cont r ol Ter mi nal Connect i on state events defined in this package are: Cal | Ct | Ter nConnBr i dgedEv,
Cal I Ct| Ter nConnDr oppedEv, Cal | Ct | Ter mConnHel dEv, Cal | Ct | Ter nConnl nUseEv, Cal | Ct | Ter nConnRi ngi ngEv,
Cal I Ct| Ter nConnTal ki ngEv,and Cal | Ct | Ter mConnUnknownEv.

See Also:

CadllObserver, CalEv, Connection, Terminal Connection, CallCtlCallEv, CalCtlConnEv, CallCtlConnAlertingEv, CallCtlConnDialingEv,
CadllCtlConnDisconnectedEv, CallCtlConnEstablishedEv, CallCtlConnFailedEv, CallCtlConnlnitiatedEv,
CallCtlConnNetworkAlertingEv, Call CtlConnNetworkReachedEv, Call CtlConnOfferedEv, CallCtlConnQueuedEy,
CdlCtlConnUnknownEyv, CallCtlTermConnEv, CallCtITermConnRingingEv, CallCtITermConnTalkingEv, CallCtl TermConnHeldEyv,
CalCtlTermConnBridgedEv, CallCtlTermConnlnUseEv, CallCtlTermConnDroppedEv, CallCtl TermConnUnknownEv

Al |l Packages This Package Previous Next

All Packages This Package Previous Next

Interface javax.telephony.callcontrol.CallControlConnection

public interface CallControlConnection
extends Connection

Introduction

The Cal | Cont r ol Connect i on interface extends the core Connect i on interface and provides additional features and greater detail about the
Connection state. Applications may query a Connection object using thei nst anceof operator to see whether it supports this interface.

CallControlConnection State

This interface defines states for the Connection which provide greater detail beyond the states defined in the Connect i on interface. The states defined
by thisinterface are related to the states defined in the core package in certain, specific ways, as defined below. Applications may obtain the

Cal | Contr ol Connecti on stateviatheget Cal | Cont r ol St at e() method defined on this interface. This method returns one of the integer state
constants defined in thisinterface.

Below isadescription of each Cal | Cont r ol Connect i on state in real-world terms. These real-world descriptions only serve to provide amore
intuitive understanding of what is going on. Several methods in this specification state pre-conditions based upon the Cal | Cont r ol Connect i on state.
Some of these states are identical to those defined in the core package.

This state has the same definition as in the core package. It isthe initial
Cal | Control Connection. | DLE Cal | Contr ol Connecti on statefor all new Connections. Connections typically do not
stay in this state for long, but quickly transition to another state.

This state indicates than an incoming call is being offered to the Address associated with the
Cal | Contr ol Connecti on. OFFERED Connection. Typically, applications must either accept or reject this offered call before the
called party is alerted to the incoming telephone call.

This state indicates that a Connection is queued at the particular Address associated with the
Cal | Cont rol Connect i on. QJEUED Connection. For example, some telephony platforms permit the "queueing” of incoming
telephone call to an Address when the Addressis busy.

This state indicates that an outgoing telephone call has reached the network. Applications may
not receive further events about this leg of the telephone call, depending upon the ability of the
telephone network to provide additional progress information. Applications must decide
whether to treat this as a connected telephone call.

This state indicates that an outgoing telephone call is aerting at the destination end, which was
previously only known to have reached the network. Typically, Connections transition into this
state from the Cal | Cont r ol Connect i on. NETWORK_REACHED state. This state results
from additional progress information being sent from the telephone network.

This state has the same definition as in the core package. It implies that the Addressis being
notified of anincoming call.

This state indicates the originating end of atelephone call has begun the process of placing a

Cal | Control Connect i on. NETWORK_REACHED

Cal | Control Connecti on. NETWORK_ALERTI NG

Cal | Cont rol Connecti on. ALERTI NG

Cal | Control Connection. | NI TI ATED telephone call, but the dialing of the destination telephone address has not yet begun.
Typicaly, atelephone associated with the Address has gone "off-hook™.
Cal | Cont r ol Connecti on. DI ALl NG This state indicates the originating end of atelephone call has begun the process of dialing a

destination telephone address, but has not yet completed dialing.

This state is similar to that of Connect i on. CONNECTED. It indicates that the endpoint has
reached itsfinal, active state in the telephone call.

This state has the same definition as in the core package. It implies the Connection object is no
longer part of the telephone call.

This state has the same definition as in the core package. It indicates that a particular leg of a
telephone call has failed for some reason, perhaps because the party was busy.

This state has the same definition as in the core package. It indicates the implementation is
Cal | Control Connecti on. UNKNOMN unable to determine the current call control package state of the Connection object. Typically,
methods are invalid on this object when it isin this state.

Cal | Cont r ol Connecti on. ESTABLI SHED

Cal | Cont r ol Connecti on. DI SCONNECTED

Cal | Cont rol Connecti on. FAI LED

State Transitions

Similar to the Connect i on state transition diagram, the Cal | Cont r ol Connect i on state must transition according to rulesillustrated in the finite
state diagram below. An implementation must guarantee that Cal | Cont r ol Connect i on state must abide by this transition diagram.

Note there is ageneral left-to-right progression of the state transitions. The asterisk next to a state transition, as in the core package, implies atransition
to/from another state, except where noted.

IMITIATED

FAILED
{ewceot DISCONNMECTED

ALERTIMNG ESTA BLISHED

DISCOMMECTED
{emcert IDLE)

=ILELIED

METWORE_REACHED MEDW ORK_ALERTIMNG ESTA BLISHED

Core vs. CallControl Package States

There is a strong relationship between the Cal | Cont r ol Connect i on states and the Connect i on states. If an implementation supports the call
control package, it must ensure this relationship is properly maintained.

Since the states defined in the Cal | Cont r ol Connect i on interface provide more detail to the states defined in the Connect i on interface, each state
inthe Connect i on interface corresponds to a state defined in the Cal | Cont r ol Connect i on interface. Conversely, each

Cal | Cont r ol Connect i on state corresponds to exactly one Connect i on state. This arrangement permits applications to view either the core state
or the call control state and still see a consistent view.

The following table outlines the relationship between the core package Connection states and the call control package Connection states.

If the call control package stateis... then the core package state must be...
Cal | Control Connection. | DLE Connection. | DLE

Cal | Cont r ol Connecti on. QUEUED Connecti on. | NPROGRESS

Cal | Contr ol Connecti on. OFFERED Connecti on. | NPROGRESS

Cal | Cont r ol Connecti on. ALERTI NG Connecti on. ALERTI NG

Cal | Control Connection. | NI TI ATED Connect i on. CONNECTED

Cal | Contr ol Connecti on. DI ALI NG Connect i on. CONNECTED

Cal | Cont r ol Connect i on. NETWORK REACHED Connect i on. CONNECTED

Cal | Control Connecti on. NETWORK_ALERTI NG Connect i on. CONNECTED

Cal | Cont r ol Connecti on. ESTABLI SHED Connect i on. CONNECTED

Cal | Cont rol Connecti on. DI SCONNECTED Connect i on. DI SCONNECTED
Cal | Cont r ol Connecti on. FAI LED Connecti on. FAI LED
Cal | Cont r ol Connecti on. UNKNOMN Connect i on. UNKNOWN

Observers and Events

All events pertaining to the Cal | Cont r ol Connect i on interface are reported viathe Cal | Gbser ver . cal | ChangedEvent () method. The
application observer object must also implement the Cal | Cont r ol Cal | Gbser ver interface to expressinterest in the call control package events.

Observers which are registered on a Call receive events when the Cal | Cont r ol Connect i on state changes. Note that when the
Cal | Cont rol Connect i on state changes, it sometimes resultsin the Connect i on state changing (according to the table above). In these instances,
both the proper call control and core package events are delivered to the observer.

TheCal | Cont r ol Connect i on state events defined in this package are: Cal | Gt | ConnOf f er edEv, Cal | Ct | ConnQueuedEv,

Call &l ConnAl ertingEv,Call Ctl ConnlnitiatedEv,Call Ctl| ConnbDi al i ngEv, Cal | Ct | ConnNet wor kReachedEv,

Cal | G| ConnNet wor kAl erti ngEv, Cal | Ct | ConnFai | edEv, Cal | Ct | ConnEst abl i shedEv, Cal | Ct | ConnUnknownEv, and
Cal | Ct1 ConnDi sconnect edEv.

See Also:

Connection, CallObserver, CallControl CallObserver, CallCtlCallEv, CallCtlConnEv, CallCtlConnAlertingEv, CallCtlConnDiadingEyv,
CallCtlConnDisconnectedEv, Call CtlConnEstablishedEv, CallCtlConnFailedEv, CallCtlConnlnitiatedEv, CallCtlConnNetworkAlertingEv,
CallCtlConnNetworkReachedEv, CallCtlConnOfferedEv, CallCtlConnQueuedEv, Call CtlConnUnknownEv

Variable Index

@ ALERTING

TheCal | Cont r ol Connect i on. ALERTI NGstate has the same definition asin the core package.
@ DIALING

TheCal | Cont r ol Connecti on. DI ALl NGstate indicates the originating end of atelephone call has begun the process of dialing a
destination telephone address, but has not yet completed.

@ DISCONNECTED

TheCal | Cont r ol Connect i on. DI SCONNECTED state has the same definition as in the core package.
@ ESTABLISHED

The Cal | Cont r ol Connect i on. ESTABLI SHED stateis similar to that of Connect i on. CONNECTED.
@ FAILED

TheCal | Cont r ol Connect i on. FAI LED state has the same definition as in the core package.
2|DLE

TheCal | Cont r ol Connect i on. | DLE state has the same definition as in the core package.
INITIATED

TheCal | Cont rol Connecti on. | NI TI ATED state indicates the originating end of atelephone call has begun the process of placing a
telephone call, but the dialing of the destination telephone address has not yet begun.

NETWORK_ALERTING

TheCal | Cont r ol Connect i on. NETWORK_ALERTI NG state indicates that an outgoing telephone call is aerting at the destination end,
which was previously only known to have reached the network.

2 NETWORK _REACHED
TheCal | Cont r ol Connect i on. NETWORK _REACHED state indicates that an outgoing telephone call has reached the network.
@ OFFERED

TheCal | Cont r ol Connect i on. OFFERED state indicates than an incoming call is being offered to the Address associated with the
Connection.

OFFERING

The Cal | Cont r ol Connect i on. OFFERI NG state has been deprecated in JTAPI v1.2. Deprecated.
2 QUEUED

TheCal | Cont r ol Connect i on. QUEUED state indicates that a Connection is queued at the particular Address associated with the
Connection.

2 UNKNOWN
TheCal | Cont r ol Connect i on. UNKNOWN state has the same definition as in the core package.

Method [ndex

» accept()
Accepts atelephone call incoming to an Address.
@ addToAddress(String)
Appends additional address information onto an existing Connection.
@ getCallControl State()

Returns the current call control state of the Connection.
@ park(String)

Parks a Connection at a destination telephone address.
& redirect(String)

Redirects an incoming telephone call at an Address to another telephone address.
reject()

Rejects atelephone call incoming to an Address.

Variables

@ DLE

public static final int |IDLE
TheCal | Cont r ol Connect i on. | DLE state has the same definition as in the core package. It istheinitial Cal | Cont r ol Connecti on
state for all new Connections. Connections typically do not stay in this state for long, quickly transitioning to another state.

@ OFFERED

public static final int OFFERED
TheCal | Cont r ol Connect i on. OFFERED state indicates than an incoming call is being offered to the Address associated with the
Connection. Typically, applications must either accept or reject this offered call before the called party is aerted to the incoming telephone call.

@ QUEUED

public static final int QUEUED

TheCal | Cont r ol Connect i on. QUEUED state indicates that a Connection is queued at the particular Address associated with the
Connection. A queued call is not active on a call. For example, some telephony platforms permit the "queueing” of incoming telephone call to an
Address when the Addressiis busy.

@ ALERTING

public static final int ALERTING

TheCal | Cont r ol Connect i on. ALERTI NG state has the same definition asin the core package. It means that the Addressis being notified
of anincoming call.

@ INITIATED

public static final int IN TIATED

TheCal | Cont rol Connecti on. | NI TI ATED state indicates the originating end of atelephone call has begun the process of placing a
telephone call, but the dialing of the destination telephone address has not yet begun. Typically, a telephone associated with the Address has gone
"off-hook".

@ DiALING

public static final int D ALI NG

TheCal | Cont r ol Connect i on. DI ALl NGstate indicates the originating end of atelephone call has begun the process of dialing a
destination telephone address, but has not yet completed.

@ NETWORK_REACHED

public static final int NETWORK REACHED

TheCal | Cont r ol Connect i on. NETWORK _REACHED state indicates that an outgoing telephone call has reached the network. Applications
may not receive further events about this leg of the telephone call, depending upon the ability of the telephone network to provide additional
progress information. Applications must decide whether to treat this as a connected telephone call.

L] NETWORK_ALERTING

public static final int NETWORK_ALERTI NG

TheCal | Cont r ol Connect i on. NETWORK_ALERTI NG state indicates that an outgoing telephone call is aerting at the destination end,
which was previously only known to have reached the network. Typically, Connections transition into this state from the

Cal | Cont r ol Connect i on. NETWORK REACHED state. This state results from additional progress information being sent from atelephone
network that was capable of transmitting that information.

@ ESTABLISHED

public static final int ESTABLI SHED

TheCal | Cont r ol Connecti on. ESTABLI SHED state is similar to that of Connect i on. CONNECTED. It indicates that the endpoint has
reached its final, active state in the telephone call.

& DISCONNECTED

public static final int D SCONNECTED

TheCal | Cont r ol Connect i on. DI SCONNECTED state has the same definition as in the core package. It indicates that the Connection
object isno longer part of the telephone call.

@ FAILED

public static final int FAILED

TheCal | Cont r ol Connect i on. FAI LED state has the same definition as in the core package. It indicates that a Connection is no longer able
to participatein acal. Itisafina state in the life of a Connection. It indicates that a particular leg of atelephone call has failed for some reason,
perhaps because the party was busy.

@ UNKNOWN

public static final int UNKNOMW
TheCal | Cont r ol Connect i on. UNKNOWN state has the same definition as in the core package. It indicates that the state of the Connection is
not known to its Provider. Typicaly, methods are invalid on this object when it isin this state.

@ OFFERING
public static final int OFFERI NG

Note: OFFERING isdeprecated. Snce JTAPI v1.2.

TheCal | Cont r ol Connect i on. OFFERI NG state has been deprecated in JTAPI v1.2. It has the same meaning as the new
Cal | Cont r ol Connect i on. OFFERED state. This constant has been replaced to be more tense-consistent with the event name.

MeEhods

- getCallControl State

public abstract int getCall Control State()
Returns the current call control state of the Connection. The return value will be one of integer state constants defined above.
Returns:
The current call control state of the Connection.

@ accept
public abstract void accept() throws InvalidStateException,

Met hodNot Suppor t edException, PrivilegeViol ationException,
Resour ceUnavai | abl eExcepti on

Accepts atelephone call incoming to an Address. Telephone callsinto an Address may first be offered to that address for acceptance before the
standard notion of "alerting” takes place. This method is valid on a Connectionin the Cal | Cont r ol Connect i on. OFFERED state. If
successful, this method moves the Connection into the Cal | Cont r ol Connect i on. ALERTI NG state. This method waits until the telephone
call has been accepted or an error occurs and an exception is thrown.
Pre-conditions:

1. ((this.getCdl()).getProvider()).getState() == Provider.IN_SERVICE

2. this.getCallControl State() == Call Control Connection.OFFERED
Post-conditions:

1. ((this.getCal()).getProvider()).getState() == Provider.IN_SERVICE

2. this.getCallControl State() == Call Control Connection. ALERTING

3. CalCtlConnAlertingEv/ConnAlertingEv is delivered for this Connection
Throws: InvalidStateException

Either the Provider is not "in service" or the Connection is not "offered".
Throws: MethodNotSupportedException

This method is not supported by the implementation.
Throws:; PrivilegeViolationException

The application does not have the proper authority to invoke this method.
Throws: ResourceUnavailableException

An internal resource necessary for the successful invocation of this method is not available.
See Also:
ConnAlertingEv, CallCtlConnAlertingEv

'reject

public abstract void reject() throws InvalidStateException,
Met hodNot Suppor t edException, PrivilegeViol ati onExcepti on,
Resour ceUnavai | abl eExcepti on

Rejects atelephone call incoming to an Address. Telephone callsinto an Address may first be offered to that address for acceptance before the
standard notion of "alerting" takes place. This method is valid on a Connection in the Cal | Cont r ol Connect i on. OFFERED state. If
successful, this method moves the Connection into the Cal | Cont r ol Connect i on. DI SCONNECTED state. This method waits until the
telephone call has been rejected or an error occurs and an exception is thrown.
Pre-conditions:

1. ((this.getCdl()).getProvider()).getState() == Provider.IN_SERVICE

2. this.getCallControl State() == Call Control Connection.OFFERED
Post-conditions:

1. ((this.getCdl()).getProvider()).getState() == Provider.IN_SERVICE

2. this.getCallControl State() == Call Control Connection.DISCONNECTED

3. CallCtlConnDisconnectedEv/ConnDisconnectedEv is delivered for this Connection

Throws:. InvalidStateException

Either the Provider is not "in service" or the Connection is not "offered".
Throws: MethodNotSupportedException

This method is not supported by the implementation.
Throws:; PrivilegeViolationException

The application does not have the proper authority to invoke this method.
Throws: ResourceUnavailableException

Aninternal resource necessary for the successful invocation of this method is not available.
See Also:
ConnDisconnectedEv, CallCtlConnDisconnectedEv

] redirect

public abstract Connection redirect(String destinati onAddress) throws
I nval i dSt at eException, lnvalidPartyException, MethodNot SupportedExcepti on,
Privil egeViol ati onExcepti on, ResourceUnavail abl eException

Redirects an incoming telephone call at an Address to another telephone address. This method is very similar to the transfer feature, however,
applications may invoke this method before first answering the telephone call. This method redirects the telephone call to another telephone
address string provided as the argument to this method. This telephone address string must be valid and complete.

This Connection must either beinthe Cal | Cont r ol Connect i on. OFFERED state or the Cal | Cont r ol Connect i on. ALERTI NG state.
If successful, this method moves the Connection to the Cal | Cont r ol Connect i on. DI SCONNECTED state. Additionally, any
Terminal Connections associated with this Connection will move to the Cal | Cont r ol Ter mi nal Connect i on. DROPPED state.

A new Connection is created and returned corresponding to the new destination leg of the telephone call. Note that this Connection may be nul |
in the case the Call has been redirected outside of the Provider's domain and can no longer be tracked. The new Connection (if not null) must at
least beinthe Cal | Cont r ol Connect i on. | DLE state. The Connection may progress beyond this state before this method returns, which
should be reflected by the proper events. This Connection behaves similarly to the destination Connection as described in Cal | . connect ()
and undergoes similar possible state change scenarios.
Pre-conditions:
1. ((this.getCall()).getProvider()).getState() == Provider.IN_SERVICE
2. this.getCallControl State() == Call Control Connection.OFFERED or CallControl Connection. ALERTING
3. dedtinationAddress must be avalid and complete telephone address
Post-conditions:
1. Let newconnection be the new Connection created and returned
. ((this.getCall()).getProvider()).getState() == Provider.IN_SERVICE
. this.getCallControl State() == CallControl Connection.DISCONNECTED
. newconnection element of (this.getCall()).getConnections()
. newconnection.getCallControl State() at least CallControl Connection.IDLE
. Let tc[] = this.getTerminal Connections() before this method is invoked
. tc[i].getCallControl State() == CallControl Terminal Connection.DROPPED, for all i.
. CalICtlConnDisconnected/ConnDisconnectedEv is delivered for this Connection
. CallCtITermConnDroppedEv/TermConnDroppedEv is delivered for all tc[i]
. ConnCreatedEv is delivered for newconnection

© 00 N O O~ WDN

=
o

Parameters:

desintationAddress - The Connection is redirected to this telephone address
Returns:

The Connection associated with the new leg of the Call.
Throws: InvalidStateException

Either the Provider isnot "in service" or the Connection is not "offered" or "aerting".
Throws: InvalidPartyException

The destination address to which this call isredirected is not valid and/or complete.

Throws; MethodNotSupportedException

This method is not supported by the implementation.
Throws: PrivilegeViolationException

The application does not have the proper authority to invoke this method.
Throws: ResourceUnavailableException

Aninternal resource necessary for the successful invocation of this method is not available.
See Also:
ConnCreatedEv, ConnDisconnectedEv, TermConnDroppedEyv, CallCtlConnDisconnectedEv, Call CtlTermConnDroppedEv

@ addToAddress

public abstract void addToAddress(String additional Address) throws
I nval i dSt at eExcepti on, Met hodNot Support edException, PrivilegeViolationException,
Resour ceUnavai | abl eExcepti on
Appends additional address information onto an existing Connection. This method is used when part of a telephone address string has been dialed
and additional addressing information is needed in order to complete the dialing process and place the telephone call. The additional addressing
information is provided as the argument to this method.
This Connection must either bein the Cal | Cont r ol Connect i on. DI ALI NGstate or the Cal | Cont r ol Connecti on. | NI TI ATED
state. If successful, this moves the Connection into one of two states. If the information provided completes the addressing information, as
determined by the telephony platform, the Connection movesinto the Cal | Cont r ol Connect i on. ESTABLI SHED state and the telephone
cal is placed. If additional addressing information is still required, the Connection movesinto the Cal | Cont r ol Connecti on. DI ALI NG
state if not already there.
Pre-conditions:
1. ((this.getCall()).getProvider()).getState() == Provider.IN_SERVICE
2. this.getCallControl State() == CallControl Connection.DIALING or CallControlConnection.INITIATED
Post-conditions Outcome 1: The addressing information is complete.
1. ((this.getCall()).getProvider()).getState() == Provider.IN_SERVICE
2. this.getCallControl State() == CallControl Connection.ESTABLISHED
3. CallCtlConnEstablishedEv is delivered for this Connection
Post-conditions Outcome 2: The addressing information is not complete.
1. ((this.getCdl()).getProvider()).getState() == Provider.IN_SERVICE
2. this.getCallControl State() == CallControl Connection.DIALING
3. CallCtIConnDialingEv is delivered for this Connection
Parameters:
additional Address - The additional addressing information.
Throws: InvalidStateException
Either the Provider isnot "in service" or the Connection is not "initiated" or "diaing".
Throws: MethodNotSupportedException
This method is not supported by the implementation.
Throws: PrivilegeViolationException
The application does not have the proper authority to invoke this method.
Throws: ResourceUnavailableException
Aninternal resource necessary for the successful invocation of this method is not available.
See Also:
CallCtlConnDialingEv, CallCtlConnEstablishedEv
- park
public abstract Connection park(String destinati onAddress) throws
I nval i dSt at eExcepti on, Met hodNot Support edException, PrivilegeViolationException,
I nval i dPart yExcepti on, Resour ceUnavai |l abl eExcepti on

Parks a Connection at a destination telephone address. This method is similar to the transfer feature, except the Connection at the new destination
Addressisin aspecia queued state. Parking a Connection at a destination Address drops the Connection from the Call and creates and returns a
new Connection at the specified destination addressin the Cal | Cont r ol Connect i on. QUEUED state.

The new destination telephone address string is given as an argument to this method and must be a valid and compl ete tel ephone address. The
Cal | Control Term nal . pi ckup() method permits applications to "unpark" the new Connection.

The Connection must bein the Cal | Cont r ol Connect i on. ESTABLI SHED state. If this method is successful, this Connection movesto the
Cal | Cont r ol Connect i on. DI SCONNECTED state. All of its associated Termina Connections move to the
Cal | Cont r ol Ter mi nal Connect i on. DROPPED state.
Pre-conditions:

1. ((this.getCdll()).getProvider()).getState() == Provider.IN_SERVICE

2. this.getCallControl State() == CallControl Connection.ESTABLISHED

3. destinationAddress must be avalid and complete telephone address.
Post-conditions:
. Let newconnection be the new Connection created and returned
. ((this.getCall()).getProvider()).getState() == Provider.IN_SERVICE
. newconnection element of (this.getCall()).getConnections()
. newconnection.getCall Control State() == Call Control Connection.QUEUED
. this.getCallControl State() == Call Control Connection.DISCONNECTED
. Let tc[] = this.getTerminal Connections() before this method is invoked
. tc[i].getCallControl State() == CallControl Terminal Connection.DROPPED, for al i
. ConnCreatedEv is delivered for newconnection
. CalCtlIConnQueuedEv/ConnlnProgressEv is delivered for newconnection
. CallCtlConnDisconnected/ConnDisconnectedEv is delivered for this Connection

11. CalCtlITermConnDroppedEv/TermConnDroppedEv is delivered for al tcfi]
Parameters:
destinationAddress - The telephone address string at which this connection is to be parked.
Returns:
The new Connection which is parked at the new destination Address.

Throws: InvalidStateException

© 0 N O O~ WDN P

[
o

Either the Provider was not "in service" or the Connection was not "established".
Throws. MethodNotSupportedException

This method is not supported by the implementation.
Throws: InvalidPartyException

The party to which to party the Connection isinvalid.
Throws: PrivilegeViolationException

The application does not have the proper authority to invoke this method.
Throws: ResourceUnavailableException

An internal resource necessary for the successful invocation of this method is not available.
See Also:

ConnCreatedEv, ConnlnProgressev, ConnDisconnectedEv, TermConnDroppedEv, CallCtlConnQueuedEyv,
CallCtlConnDisconnectedEv, CallCtlITermConnDroppedEv

All

Packages Thi s Package Previous Next

Al l Packages Thi s Package Previous Next

Interface javax.telephony.callcontrol.CallControlTerminal

public interface CallControl Terminal
extends Terminal

Introduction

TheCal | Cont r ol Ter m nal interface extendsthe core Ter m nal interface with features like the ability to pickup acall at aterminal and the
ability to specify that thisterminal should not be disturbed. Applications may query a Terminal object using thei nst anceof operator to see
whether it supports this interface.

Do Not Disturb

TheCal | Cont r ol Ter ni nal interface defines the do not disturb attribute. The do not disturb attribute indicates to the telephony platform that
this Terminal does not want to be bothered with incoming telephone calls. That is, if this feature is activated, the underlying telephone platform
will not ring this Terminal for incoming telephone calls. Applicationsusethe Cal | Cont r ol Ter mi nal . set DoNot Di st ur b() method to
activate or deactivate this feature and the Cal | Cont r ol Ter mi nal . get DoNot Di st ur b() method to return the current state of this attribute.

Note that the Cal | Cont r ol Addr ess interface also carries the do not disturb attribute. This attribute associated with each are maintained
independently. Maintaining a separate do not distrub attribute at terminal and address allows for control over the do not disturb feature at either the
terminal or address level.

Picking Up Telephone Calls

The pickup feature permits applications to answer telephone calls which are not ringing at a particular Terminal. This feature is often used when a
call is"queued" at an Address or atelephoneisringing at a Terminal across aroom. Both the pi ckup() and the pi ckupFr omGr oup()
methods defined on this interface provide this pickup feature to the application.

TheCal | Cont r ol Ter nmi nal . pi ckup() method has three versions and permits applications to answer a Call at a designated Address or
Terminal. The Cal | Cont r ol Ter ni nal . pi ckupFr onGr oup() method permits applications to answer a Call at some other Terminal in the
same " pickup group”.

Observers and Events

All events pertaining to the Cal | Cont r ol Ter m nal interface are reported viathe Ter m nal Gbser ver. t er mi nal ChangedEvent ()
method. The application observer object must also implement the Cal | Cont r ol Cal | Cbser ver interface to expressinterest in the call control
package events.

The following are those events associated with this interface:
Cal I Ct| Ter mDoNot Di st ur bEv Indicates the do-not-disturb attribute of this Terminal has changed.

See Also:
CallControl Address, CallControl Terminal Observer, Call Ctl TermDoNotDisturbEv

Method [ndex

@ getDoNotDisturb()

Returnstrueif the do-not-disturb feature is activated, false otherwise.
@ pickup(Address, Address)

This method "picks up" a Call at this Terminal.
@ pickup(Connection, Address)

This method "picks up" a Call at this Terminal.
@ pickup(Terminal Connection, Address)

This method "picks up" a Call at this Terminal.
@ pickupFromGroup(Address)

This method "picks up" a Call at this Terminal.
@ pickupFromGr oup(String, Address)

This method "picks up" a Call at this Terminal.
setDoNotDistur b(boolean)

Specifies whether the do-not-disturb feature should be activated or deactivated for this Terminal.

Mefhods

- getDoNotDisturb

public abstract bool ean get DoNot Di sturb() throws Met hodNot Support edException
Returnstrueif the do-not-disturb feature is activated, false otherwise.
Returns:
Trueif do-not-disturb is activated, falseif it is deactivated
Throws: MethodNotSupportedException

This method is not supported by the given implementation.

o setDoNotDisturb

public abstract void set DoNot Di sturb(bool ean enabl e) throws
Met hodNot Support edExcepti on, |nvali dStateException

Specifies whether the do-not-disturb feature should be activated or deactivated for this Terminal. This feature only affects whether or not
callswill be accepted at this Terminal. The setting of this attribute does not affect the do-not-disturb attribute associated with all
Addresses associated with this Terminal. If 'enable’ is true, do-not-disturb is activated if not already so. If 'enable’ isfalse, do-not-disturbis
deactivated if not already so.
Pre-conditions:

1. (this.getProvider()).getState() == Provider.IN_SERVICE
Post-conditions:

1. (this.getProvider()).getState() == Provider.IN_SERVICE

2. this.getDoNotDisturb() == enable

3. CalCtITermDoNotDisturbEv is delivered for this Terminal
Parameters:

enable - True to activated do-not-disturb, false to deactivate.

Throws: MethodNotSupportedException

This method is not supported by the given implementation.
Throws: InvalidStateException

The Provider is not "in service".
See Also:
CdlCtlTermDoNotDisturbEv

< pickup

publ i c abstract Term nal Connection pickup(Connection pi ckupConnecti on,
Addr ess terni nal Address) throws
| nval i dAr gunent Exception, |nvalidStateException, MethodNot SupportedException,
Privil egeViol ati onExcepti on, ResourceUnavail abl eExcepti on

This method "picks up" a Call at this Terminal. Picking up aCall is analogous to answering a Call at this Terminal (i.e.
Ter m nal Connecti on. answer ()), except the Call typically is not ringing at this Terminal. For example, this method is used to
answer a"queued” Call or aCall which isringing at another Terminal across the room.

This method takes a Connection and an Address as arguments. The Connection argument represents the destination end of the telephone
call to be picked up. This Connection must be in either the Cal | Cont r ol Connect i on. QUEUED state or the

Cal | Cont r ol Connecti on. ALERTI NGstate. The Address argument chooses the Address associated with this Terminal on which to
pick up the Call. A new TerminalConnection is created and returned which isin the

Cal | Control Ter m nal Connecti on. TALKI NG state and associated with this Terminal.

The Address and Connection Arguments

The relationship between the Address and Connection arguments affects the resulting behavior of this method. There are two different
situations: if the given Connection is associated with the given Address, and if the given Connection is not associated with the given
Address (i.e. viathe Connect i on. get Addr ess() method).

If the given Connection is associated with the given Address, thisimplies that the Connection was in the

Cal | Cont r ol Connect i on. QUEUED state, or the Terminal did not ring for some reason even though the Connection isin the
Cal | Contr ol Connecti on. ALERTI NGstate. In this case, the Connection moves to the

Cal | Contr ol Connecti on. ESTABLI SHED state and the new Terminal Connection created is associated with the Connection.

If the given Connection is not associated with the given Address, thisimplies that the call is alerting at an entirely different endpoint from
this Terminal. This scenario permits applications to pick up atelephone call which is ringing across the room. In this case, the Connection
movesto the Cal | Cont r ol Connect i on. DI SCONNECTED state. A new Connection is created and associated with the Address
argument. Itisinthe Cal | Cont r ol Connect i on. ESTABLI SHED state. The new Termina Connection created is associated with this
new Connection.
Pre-conditions:

1. (this.getProvider()).getState() == Provider.IN_SERVICE

2. (pickupConnection.getCall()).getState() == Call.ACTIVE

3. pickupConnection.getCall Control State() == Call Control Connection.QUEUED or CallControl Connection.ALERTING

4. terminaladdress element of this.getAddresses()

Post-conditions Outcome 1: If pickupConnection is associated with terminaladdress (i.e. pickupConnection.getAddress() ==
terminal address)

1. Let tc be the new Terminal Connection created and returned

tc.getCallControl State() == Call Control Terminal Connection. TALKING
pickupConnection.getCall Control State() == CallControl Connection.ESTABLISHED
tc.getConnection() == pickupConnection

TermConnCreatedEv is delivered for tc
CallCtITermConnTalkingEv/TermConnActiveEv is delivered for tc

7. CalCtlConnEstablishedEv/ConnConnectedEyv is delivered for pickupConnection

Post-conditions Outcome 2: If pickupConnection is not associated with terminaladdress (i.e. pickupConnection.getAddress() !=
terminal address)

1. Let tc be the new Terminal Connection created and returned

Let connection be the new Connection created

Let call = pickupConnection.getCall()

tc.getCallControl State() == Call Control Terminal Connection. TALKING
connection.getCall Control State() == CallControl Connection.ESTABLISHED
connection.getAddress() == terminaladdress

o o~ w DN

o o~ w DN

7. connection.getCall() == call
8. tc.getConnection() == connection
9. pickupConnection.getCall Control State() == Call Control Connection.DISCONNECTED
10. TermConnCreatedEv is delivered for tc
11. CdlCtITermConnTakingEv/TermConnActiveEv is delivered for tc
12. ConnCreatedEv is delivered for connection
13. CdllCtlConnEstablishedEv/ConnConnectedEv is delivered for connection
14. CallCtlConnDisconnectedEv/ConnDisconnectedEv is delivered for pickupConnection
Parameters:
pickupConnection - The Connection to be picked up
terminal Address - The Address associated with the Terminal
Returns:
The new Terminal Connection associated with the Terminal
Throws: InvalidArgumentException

Either the Connection or Address given as argumentsis not valid.
Throws:. InvalidStateException

Either the Provider is not "in service" or the Connection is not "queued" or "aerting".
Throws: MethodNotSupportedException

This method is not supported by the implementation.
Throws: PrivilegeViolationException

The application does not have the proper authority to invoke this method.
Throws. ResourceUnavailableException

An internal resource necessary for the successful invocation of this method is not available.
See Also:

ConnCreatedEv, TermConnCreatedEv, ConnConnectedEv, ConnDisconnectedEv, TermConnActiveEyv,
CdlCtlITermConnTalkingEv, Call CtlConnEstablishedEv, Call CtlConnDisconnectedEv

- pickup

public abstract Term nal Connection pi ckup(Term nal Connecti on pi ckTer nConn,
Addr ess term nal Address) throws
| nval i dAr gunent Excepti on, I nvalidStateException, MethodNot SupportedExcepti on,

Privil egeViol ati onExcepti on, ResourceUnavail abl eExcepti on

This method "picks up" a Call at this Terminal. Picking up a Call is analogous to answering a Call at this Terminal (i.e.
Ter m nal Connecti on. answer ()), except the Call typically is not ringing at this Terminal. For example, this method is used to
answer a"queued” Call or aCall which isringing at another Terminal across the room.

Thismethod issimilar tothe Cal | Cont r ol Ter mi nal . pi ckup(Connecti on, Address) method except an explicit
Terminal Connection is given. Since an explicit Terminal Connection is given, thisimpliesits Connection must be "alerting" since
"queued" Connections may not have any associated Terminal Connections.

Parameters:

pickTermConn - The Terminal Connection to be picked up

termina Address - The Address associated with the Terminal
Returns:

The new Terminal Connection associated with the Terminal
Throws: InvalidArgumentException

Either the Connection or Address given as argumentsis not valid.
Throws: InvalidStateException

Either the Provider is not "in service" or the Connection is not "queued”.
Throws. MethodNotSupportedException

This method is not supported by the implementation.
Throws: PrivilegeViolationException

The application does not have the proper authority to invoke this method.
Throws: ResourceUnavailableException

An internal resource necessary for the successful invocation of this method is not available.
@ pickup
public abstract Term nal Connection pickup(Address pi ckupAddress,

Addr ess terninal Address) throws
| nval i dAr gunent Exception, Ilnvali dStateException, MethodNot SupportedException,

Privil egeViol ati onException, ResourceUnavail abl eExcepti on

This method "picks up" a Call at this Terminal. Picking up aCall is analogous to answering a Call at this Terminal (i.e.
Ter m nal Connecti on. answer ()), except the Call typically is not ringing at this Terminal. For example, this method is used to
answer a"queued” Call or aCall which isringing at another Terminal across the room.

This method is similar to the Cal | Cont r ol Ter i nal . pi ckup(Connecti on, Address) method except an Addressis given
instead of an explicit Connection. This method permits the implementation to choose a suitable Connection associated with
'pickupAddress.

Parameters:

pickupAddress - The Address which isto be picked up

terminal Address - The Address associated with the Terminal
Returns:

The new Terminal Connection associated with the Terminal
Throws: InvalidArgumentException

Either the Connection or Address given as argumentsis not valid.
Throws: |nvalidStateException

Either the Provider is not "in service" or the Connection is not "queued" or "aerting".
Throws. MethodNotSupportedException

This method is not supported by the implementation.
Throws: PrivilegeViolationException

The application does not have the proper authority to invoke this method.
Throws: ResourceUnavailableException

An internal resource necessary for the successful invocation of this method is not available.
< pickupFromGroup
public abstract Term nal Connection pi ckupFronGroup(String pickupG oup,

Addr ess terninal Address) throws
| nval i dAr gunent Excepti on, Ilnvali dStateException, MethodNot SupportedException,

Privil egeViol ati onExcepti on, ResourceUnavai l abl eExcepti on

This method "picks up" a Call at this Terminal. Picking up aCall is analogous to answering a Call at this Terminal (i.e.
Ter m nal Connecti on. answer ()), except the Call typically isnot ringing at this Terminal. For example, this method is used to
answer a"queued” Call or aCall which isringing at another Terminal across the room.

This method takes two arguments: a string " pickup group” code and an Address associated with this Terminal. The Address argument

chooses the Address associated with this Terminal on which to pick up the Call. A new Termina Connection is created and returned which
isinthe Cal | Cont r ol Ter mi nal Connect i on. TALKI NG state and associated with this Terminal.

The Pickup Group Code

The application designates the Call to pick up viaastring code rather than giving a specific Connection endpoint. An administrator of the
underlying telephony platform can create groups of endpoints associated with a particular group code. From the code, the implementations
decides which particular Connection is to be picked up. Once the Connection has been determined, this method behavior similarly to the
Cal | Control Term nal . pi ckup(Connecti on, Address) method.

Parameters:

pickupGroup - The pickup group

terminal Address - The Address associated with the Terminal
Returns:

The new Terminal Connection associated with the Terminal
Throws: InvalidArgumentException

Either the Connection or Address given as argumentsis not valid.
Throws: InvalidStateException

Either the Provider is not "in service" or the Connection is not "queued" or "aerting".
Throws. MethodNotSupportedException

This method is not supported by the implementation.
Throws: PrivilegeViolationException

The application does not have the proper authority to invoke this method.
Throws: ResourceUnavailableException

An internal resource necessary for the successful invocation of this method is not available.
< pickupFromGroup
public abstract Term nal Connection pi ckupFronG oup(Address termni nal Address) throws

| nval i dAr gunent Exception, lnvalidStateException, MethodNot SupportedException,
Privil egeViol ati onExcepti on, ResourceUnavail abl eExcepti on

This method "picks up" a Call at this Terminal. Picking up aCall is analogous to answering a Call at this Terminal (i.e.
Ter m nal Connecti on. answer ()), except the Call typically isnot ringing at this Terminal. For example, this method is used to
answer a"queued” Call or a Call which isringing at another Terminal across the room.

This method takes a single argument: an Address associated with this Terminal. The Address argument chooses the Address associated
with this Terminal on which to pick up the Call. A new TerminalConnection is created and returned which isin the
Cal | Control Ter m nal Connecti on. TALKI NG state and associated with this Terminal.

The Pickup Group Code

This method does not take the pickup group code as an argument. Instead, the implementation chooses a suitable Call to be picked up.
This Call should have a Connection in either the Cal | Cont r ol Connecti on. ALERTI NG state or the

Cal | Cont r ol Connect i on. QUEUED state. The Address associated with this Connection should belong to the same pickup group as
the Address given as the argument. Once the Connection has been determined, this method behavior similarly to the

Cal | Control Term nal . pi ckup(Connecti on, Address) method.

Parameters:

terminal Address - The Address associated with the Terminal
Returns:

The new Terminal Connection associated with the Terminal
Throws: InvalidArgumentException

Either the Connection or Address given as argumentsis not valid.
Throws: InvalidStateException

Either the Provider is not "in service" or the Connection is not "queued" or "aerting".
Throws. MethodNotSupportedException

This method is not supported by the implementation.

Throws: PrivilegeViolationException

The application does not have the proper authority to invoke this method.
Throws: ResourceUnavailableException

An internal resource necessary for the successful invocation of this method is not available.

Al |l Packages Thi s Package Previous Next

Al l Packages Thi s Package Previous Next

Interface
javax.telephony.callcontrol.CallControlTerminalConnection

public interface CallControl T erminal Connection
extends Terminal Connection

Introduction

TheCal | Cont r ol Ter ni nal Connect i on interface extends the core Ter mi nal Connect i on interface with additional features and greater
detail about the Terminal Connection state. Applications may query a Terminal Connection object using thei nst anceof operator to see whether
it supports thisinterface.

CallControlTerminalConnection State

This interface defines states for the Terminal Connection which provide greater detail beyond the states defined in the Ter mi nal Connecti on
interface. These states are related to the states defined in the core package in certain, specific ways, as defined below. Applications may obtain the
Cal | Cont r ol Ter m nal Connecti on stateviatheget Cal | Cont r ol St at e() method defined on this interface. This method returns one
of the integer state constants defined in thisinterface.

Below isadescription of each Cal | Cont r ol Ter mi nal Connect i on statein real-world terms. These real-world descriptions only serve to
provide a more intuitive understanding of what is going on. Several methods in this specification state pre-conditions based upon the
Cal | Cont r ol Ter mi nal Connect i on state. Some of these states are identical to those defined in the core package.

This state has the same definition asin the core package. It istheinitial

Cal | Cont r ol Ter mi nal Connect i on state for al new Terminal Connection
objects. Terminal Connections typically do not stay in this state for long, quickly
transitioning to another state.

This state has the same definition as in the core package. It indicates that the associated
Terminal isringing and has an incoming telephone call.

This state indicates that the Terminal is actively part of a Call, istypically "off-hook",
and the party is communicating on the telephone call.

This state indicates that a Terminal is part of aCall, but is on hold. Other Terminals
Cal | Cont r ol Ter m nal Connecti on. HELD which are on the same Call and associated with the same Connection may or may not
also bein this state.

This state indicates that a Terminal is currently bridged into aCall. A Termina may
typicaly join aCall when it is bridged. A bridged Terminal is part of the telephone call,
but not active. Typically, some hardware resource is occupied while a Terminal is
bridged into a Call.

This state indicates that a Terminal hardware resource is currently in use. The terminal is

not available for the Call associated with this Terminal Connection, that is the Termina
Cal | Control Ter mi nal Connection. | NUSE may not join the call. This state is similar to the

Cal | Cont r ol Ter mi nal Connect i on. BRI DGED state except that the Terminal

may not join the Call.

This state has the same definition asin the core package. It indicates that a particular
Termina has permanently left the Call.

This state has the same definition asin the core package. It indicates that the
Cal | Cont r ol Ter mi nal Connecti on. UNKNOAN implementation is unable to determine the state of the Terminal Connection.
Terminal Connections may transition into and out of this state at any time.

Cal | Control Ter m nal Connecti on. | DLE

Cal | Control Ter m nal Connecti on. Rl NG NG

Cal | Control Ter m nal Connecti on. TALKI NG

Cal | Control Ter m nal Connecti on. BRI DGED

Cal | Control Ter m nal Connecti on. DROPPED

State Transitions

Similar to the Ter mi nal Connect i on state transition diagram, the Cal | Cont r ol Ter i nal Connect i on state must transition according to
therulesillustrated in the finite state diagram below. The implementation must guarantee that the Cal | Cont r ol Ter mi nal Connecti on state

abides by this transition diagram.

The asterisk next to a state transition, as in the core package, implies a transition to/from another state as designated by the direction of the
transition arrow.

EFILGED

BINGIMNG TR BCSHT

IMNUSE HELL:

Core vs. CallControl Package States

Thereis a strong relationship between the Ter mi nal Connect i on statesand the Cal | Cont r ol Ter ni nal Connect i on states. If an
implementation supports the call control package, it must ensure this relationship is properly maintained.

Since the states defined inthe Cal | Cont r ol Ter mi nal Connect i on interface provide more detail to the states defined in the

Ter mi nal Connect i on interface, each statein the Ter mi nal Connect i on interface corresponds to a state defined in the

Cal | Cont r ol Ter m nal Connect i on interface. Conversely, each Cal | Cont r ol Ter mi nal Connect i on state corresponds to exactly
one Ter m nal Connect i on state. This arrangement permits applications to view either the core state or the call control state and still seea
consistent view.

The following table outlines the relationship between the core package Termina Connection states and the call control package
Terminal Connection states.

If the call control package stateis... then the core package state must be...
Cal | Control Ter mi nal Connecti on. | DLE Ter m nal Connection. | DLE

Cal | Cont rol Ter mi nal Connecti on. Rl NG NG Ter m nal Connecti on. Rl NG NG
Cal | Cont rol Ter mi nal Connecti on. TALKI NG Ter m nal Connecti on. ACTI VE

Cal | Cont r ol Ter m nal Connecti on. HELD Ter m nal Connecti on. ACTI VE

Cal | Cont rol Ter mi nal Connecti on. | NUSE Ter m nal Connecti on. PASSI VE
Cal | Cont r ol Ter mi nal Connecti on. BRI DGED Ter m nal Connecti on. PASSI VE
Cal | Cont rol Ter mi nal Connect i on. DROPPED Ter m nal Connect i on. DROPPED
Cal | Cont rol Ter mi nal Connect i on. UNKNOAN Ter m nal Connect i on. UNKNOWN

Observers and Events

All events pertaining to the Cal | Cont r ol Ter mi nal Connect i on interface are reported viathe Cal | Cbser ver . cal | ChangedEvent ()
method. The application observer object must also implement the Cal | Cont r ol Cal | Gbser ver interface to express interest in the call control
package events. Applications receive Termina Connection-related eventsin the call control package when the call control state changes.

Observers which are registered on a Call receive events when the Cal | Cont r ol Ter mi nal Connect i on state changes. Note that when the
Cal | Cont r ol Ter mi nal Connect i on state changes, it sometimesresultsin the Ter mi nal Connect i on state changing (according to the
table above). In these instances, both the proper call control and core package events are delivered to the observer.

TheCal | Cont r ol Ter mi nal Connect i on state events defined in this package are: Cal | Ct | Ter nConnBr i dgedEv,
Cal I Ct| Ter nConnDr oppedEv, Cal | Ct | Ter mConnHel dEv, Cal | Ct | Ter nConnl nUseEv, Cal | Ct | Ter nConnRi ngi ngEv,
Cal | Ct | Ter nConnTal ki ngEv,and Cal | Ct | Ter mConnUnknownEv.

See Also:

Terminal Connection, CallObserver, CallControl CallObserver, CallCtlCallEv, CallCtlTermConnEv, CallCtlTermConnRingingEyv,
CallCtlITermConnTalkingEv, CalCtlITermConnHeldEv, CallCtl TermConnBridgedEv, CallCtlTermConnlnUseEyv,
CallCtlTermConnDroppedEv, CallCtlTermConnUnknownEv

Variable [Hdex

BRIDGED

TheCal | Cont r ol Ter mi nal Connect i on. BRI DGED state indicates that a Terminal is currently bridged into a Call.
DROPPED

TheCal | Cont r ol Ter ni nal Connect i on. DROPPED state has the same definition as in the core package.
@ HELD

TheCal | Cont r ol Ter ni nal Connect i on. HELD state indicates that a Terminal is part of a Call, but is on hold.
®IDLE

TheCal | Cont r ol Ter ni nal Connect i on. | DLE state has the same definition as in the core package.
® INUSE

TheCal | Cont r ol Ter mi nal Connect i on. | NUSE state indicates that a Terminal is part of a Call, but is not active.
* RINGING

TheCal | Cont r ol Ter mi nal Connecti on. RI NG NG state has the same definition as in the core package.
@ TALKING

TheCal | Cont r ol Ter mi nal Connecti on. TALKI NGstate indicates that a Terminal is actively part of aCall, istypically
"off-hook", and the party is communicating on the telephone call.

UNKNOWN
TheCal | Cont r ol Ter ni nal Connect i on. UNKNO/N state has the same definition as in the core package.

Method [rndex

= getCallControl State()

Returns the call control state of the Terminal Connection.
@ hold()

Places a Terminal Connection on hold with respect to the Call of which it is a part.

® join()
Makes a currently bridged Termina Connection active on a Call.
» leave()
Places a currently active TerminalConnection in a bridged state on a Call.
» unhold()

Takes a Terminal Connection off hold with respect to the Call of which it isa part.

Variables

@ DLE

public static final int IDLE

TheCal | Cont r ol Ter ni nal Connect i on. | DLE state has the same definition as in the core package. It isthe initial
Cal | Cont r ol Ter m nal Connect i on state for all new Terminal Connections. Terminal Connections typically do not stay in this state
for long, but quickly transition to another state.

@ RINGING

public static final int R NG NG

TheCal | Cont r ol Ter m nal Connecti on. RI NG NG state has the same definition as in the core package. It indicates that the
associated Terminal is ringing and has an incoming telephone call.

@ TALKING

public static final int TALKI NG

TheCal | Cont r ol Ter mi nal Connect i on. TALKI NGstate indicates that a Terminal is actively part of aCall, istypically
"off-hook", and the party is communicating on the telephone call.

@ HELD

public static final int HELD

TheCal | Cont r ol Ter mi nal Connect i on. HELD state indicates that a Terminal is part of a Call, but is on hold. Other Terminals
which are on the same Call and associated with the same Connection may or may not also bein this state.

@ BRIDGED

public static final int BRI DGED

TheCal | Cont r ol Ter mi nal Connect i on. BRI DGED state indicates that a Terminal is currently bridged into aCall. A Terminal
may typically join atelephone call when it isbridged. A bridged Termina is part of the telephone call, but not active. Typically, some
hardware resource is occupied while a Terminal is bridged into a Call.

@ NnUSE

public static final int |NUSE

TheCal | Cont r ol Ter mi nal Connect i on. | NUSE state indicates that a Terminal is part of a Call, but is not active. It may not Call,
however the resource on the Terminal is currently in use. This state is similar to the
Cal | Control Ter mi nal Connecti on. BRI DCED state however, the Terminal may not join the Call.

@ DROPPED

public static final int DROPPED

TheCal | Cont r ol Ter m nal Connect i on. DROPPED state has the same definition as in the core package. It indicates that a
particular Termina has permanently left the Call.

@ UNKNOWN

public static final int UNKNOMW

TheCal | Cont r ol Ter mi nal Connect i on. UNKNO/N state has the same definition as in the core package. It indicates that the
implementation is unable to determine the state of the Terminal Connection. Terminal Connections may transition into and out of this state
at any time.

Mefhods

- getCallControlState

public abstract int getCall Control State()
Returnsthe call control state of the Terminal Connection. The return values will be one of the integer state constants defined above.
Returns:
The current call control state of the Termina Connection.

@ hold

public abstract void hold() throws InvalidStateException,
Met hodNot Suppor t edExcepti on, Privil egeViol ati onExcepti on,
Resour ceUnavai | abl eExcepti on

Places a Termina Connection on hold with respect to the Call of which it isapart. Many Terminals may be on the same Call and
associated with the same Connection. Any one of them may go "on hold" at any time, provided they are active in the Call. The
Terminal Connection must bein the Cal | Cont r ol Ter m nal Connect i on. TALKI NGstate. This method returns when the
Terminal Connection has moved to the Cal | Cont r ol Ter mi nal Connect i on. HELD state, or until an error occurs and an exception
isthrown.
Pre-conditions:

1. (this.getTerminal()).getProvider()).getState() == Provider.IN_SERVICE

2. this.getCallControl State() == CallControl Terminal Connection. TALKING
Post-conditions:

1. (this.getProvider()).getState() == Provider.IN_SERVICE

2. this.getCallControl State() == CallControl Terminal Connection.HEL D

3. CalCtlITermConnHeldEv is delivered for this Termina Connection

Throws: InvalidStateException

Either the Provider is not "in service" or the Terminal Connection is not "talking"”.
Throws. MethodNotSupportedException

This method is not supported by the implementation.
Throws: PrivilegeViolationException

The application does not have the proper authority to invoke this method.
Throws: ResourceUnavailableException

An internal resource necessary for the successful invocation of this method is not available.
See Also:
CallCtITermConnHeldEv

o unhold

public abstract void unhold() throws Invali dStateException,
Met hodNot Support edException, Privil egeViol ati onExcepti on,
Resour ceUnavai | abl eExcepti on

Takes a Terminal Connection off hold with respect to the Call of which it isa part. Many Terminals may be on the same Call and
associated with the same Connection. Any one of them may go "on hold" at any time, provided they are active in the Call. The

Terminal Connection must beinthe Cal | Cont r ol Ter m nal Connect i on. HELD state. This method returns successfully when the
Terminal Connection movesinto the Cal | Cont r ol Ter m nal Connect i on. TALKI NGstate or until an error occurs and an exception
isthrown.

Pre-conditions:

1. ((this.getTerminal()).getProvider()).getState() == Provider.IN_SERVICE

2. this.getCallControl State() == Call Control Termina Connection.HEL D
Post-conditions:

1. ((this.getTerminal()).getProvider()).getState() == Provider.IN_SERVICE

2. this.getCallControl State() == Call Control Terminal Connection. TALKING

3. CadlCtlITermConnTalkingEv is delivered for this Terminal Connection
Throws: InvalidStateException

Either the Provider is not "in service" or the Terminal Connection is not "held".
Throws. MethodNotSupportedException

This method is not supported by the implementation.
Throws: PrivilegeViolationException

The application does not have the proper authority to invoke this method.
Throws: ResourceUnavailableException

An internal resource necessary for the successful invocation of this method is not available.
See Also:
CallCtlTermConnTakingEv

'join

public abstract void join() throws InvalidStateException,
Met hodNot Support edException, Privil egeViol ati onExcepti on,
Resour ceUnavai | abl eExcepti on

Makes a currently bridged Terminal Connection active on a Call. Other Terminals, which share the same Address as this Terminal, may be
active on the same Call. This situation is known as bridging. The TerminalConnection must bein the

Cal | Control Ter m nal Connecti on. BRI DGED state. This method returns which the Terminal Connection has moved to the

Cal | Cont r ol Ter mi nal Connecti on. TALKI NGstate or until an error occurs and an exception is thrown.

Pre-conditions:

1. ((this.getTerminal()).getProvider()).getState() == Provider.IN_SERVICE

2. this.getCallControl State() == Call Control Terminal Connection.BRIDGED
Post-conditions:

1. ((this.getTerminal()).getProvider()).getState() == Provider.IN_SERVICE

2. this.getCallControl State() == Call Control Terminal Connection. TALKING

3. CalCtITermConnTakingEv/TermConnActiveEv is delivered for this Terminal Connection
Throws: InvalidStateException

Either the Provider is not "in service" or the Terminal Connection is not "bridged".
Throws: MethodNotSupportedException

This method is not supported by the implementation.
Throws: PrivilegeViolationException

The application does not have the proper authority to invoke this method.
Throws. ResourceUnavailableException

An internal resource necessary for the successful invocation of this method is not available.
See Also:
TermConnActiveEv, CalCtITermConnTalkingEv

o leave

public abstract void | eave() throws |nvalidStateException,

Met hodNot Support edException, Privil egeViol ati onExcepti on,

Resour ceUnavai | abl eExcepti on

Places a currently active TerminalConnection in a bridged state on a Call. Other Terminals, which share the same Address as this
Terminal, may remain active on the same Call. This situation where Terminals share an Address on acall isknown as bridging. The
Terminal Connection on which this method isinvoked must beinthe Cal | Cont r ol Ter mi nal Connecti on. TALKI NG state.

There are two possible outcomes of this method depending upon the number of remaining, active Terminal Connections on the Call. If
there are other active Terminal Connections, then this Terminal Connection moves into the
Cal | Cont r ol Ter m nal Connect i on. BRI DGED state and this method returns. If there are no other active Terminal Connections,
then this Terminal Connection movesinto the Cal | Cont r ol Ter m nal Connect i on. DROPPED state. Its associated Connection
movesinto the Cal | Cont r ol Connect i on. DI SCONNECTED state, i.e. the entire endpoint leaves the telephone call. This method
waits until one of these two outcomes occurs or until an error occurs and an exception is thrown.
Pre-conditions:
1. ((this.getTerminal()).getProvider()).getState() == Provider.IN_SERVICE
2. this.getCallControl State() == CallControl Terminal Connection. TALKING
Post-conditions Outcome 1: There are no other active Terminal Connections on this Call (no others which are either "held" or "talking"
1. ((this.getTerminal()).getProvider()).getState() == Provider.IN_SERVICE
. Let connection = this.getConnection()
. Let tc[] = connection.getTerminal Connections() before this method is invoked
. tc[i].getCallControl State() == Call Control Terminal Connection.DROPPED, for al i
. connection.getCall Control State() == Call Control Connection.DISCONNECTED
. CallCtITermConnDroppedEv/TermConnDroppedEv is delivered for al tc[i]
7. CadlCtlConnDisconnectedEv/ConnDisconnectedEv is delivered for connection
Post-conditions Outcome 2: There are other active Termina Connections on this Call (others which are either "held" or "talking"
1. ((this.getTerminal()).getProvider()).getState() == Provider.IN_SERVICE
2. this.getCallControl State() == CallControl Terminal Connection.BRIDGED
3. CalCtlITermConnBridgedEv/TermConnPassiveEyv is delivered for this Terminal Connection
Throws: InvalidStateException

o O~ WD

Either the Provider is not "in service" or the Terminal Connection is not "talking".
Throws. MethodNotSupportedException

This method is not supported by the implementation.
Throws: PrivilegeViolationException

The application does not have the proper authority to invoke this method.
Throws: ResourceUnavailableException

An internal resource necessary for the successful invocation of this method is not available.
See Also:

TermConnPassiveEv, TermConnDroppedEv, ConnDisconnectedEv, Call CtITermConnBridgedEv, CallCtlITermConnDroppedEy,
CallCtlConnDisconnectedEv

Al l

Packages Thi s Package Previous Next

Al l Packages Thi s Package Previous Next

Interface
javax.telephony.callcontrol.CallControlTerminalObserver

public interface CallControl Ter minalObser ver
extends Terminal Observer

TheCal | Cont r ol Ter ni nal Gbser ver interfacereportsal eventsfor the Cal | Cont r ol Ter ni nal interface. Applicationsimplement this
interface to receive Cal | Cont r ol Ter m nal -related events. All events are reported viathe

Ter mi nal Cbserver.term nal ChangedEvent () method. Thisinterface, therefore, allows applications to signal to the implementation
that they are interested in call control package events. This interface defines no additional methods.

All events must extend the Cal | Ct | Ter nEv event interface, which in turn, extends the core Ter nEv interface.
The following are those events which are associated with this interface:

Cal I Ct| Ter nDoNot Di st ur bEv Indicatesthe Do Not Disturb characteristics of this Terminal has changed.

See Also:
Terminal Observer, TermEv, CallControl Terminal, CallCtlTermEv, CallCtlTermDoNotDisturbEv

Al l Packages Thi s Package Previous Next

Al l Packages Thi s Package Previous Next

Class javax.telephony.callcontrol.CallControlForwarding

j ava. | ang. Obj ect

+----javax. tel ephony. call control. Call Control Forwar di ng

public class CallControlForwar ding
extends Object

TheCal | Control Forwardi ng cl ass represents a forwarding instruction. This instruction tells how the
pl atform shoul d forward i ncom ng tel ephone calls to a specific address. There are severa
attributes to a forwarding instruction.

The first attribute is its type. The forwarding instruction's type tells the platformwhen to
forward the call. There are currently three types of instructions: telling the platformto al ways
forward incomng calls, telling the platformto forward incom ng calls when the address is busy,
and telling the platformto forward i ncom ng calls when no one answers.

The second attribute of a forwarding instruction is its filter. The filter indicates which type of
incomng calls this forwarding instruction should apply to. This forwarding instruction can apply
to all calls, to external calls only, to internal calls only, or to a specific calling address.

Variable [ndex

@ ALL CALLS

Forwarding filter: apply instruction to all inconming calls.
@ EXTERNAL CALLS

Forwarding filter: apply instruction to calls originating fromoutside the provider domain.
e FORWARD ON BUSY

Forwardi ng type: forward calls on busy.
e FORWARD ON NOANSWER

Forwardi ng type: forward calls on no answer.
@ FORWARD UNCONDI TI ONALLY

Forwardi ng type: forward calls unconditionally.
@ | NTERNAL_CALLS

Forwarding filter: apply instruction to calls originating fromthe provider domain.
@ SPECI FI C ADDRESS

Forwarding filter: apply instruction to calls originating froma specific address.

CoONSFIruckor Index

@ Cal |l Control Forwardi ng(String)

This constructor is the default constructor, which only takes the address to apply this
forwardi ng instruction.

@ Call Control Forwarding(String, int)

This constructor takes the address to apply this forwarding instruction and the type of
forwarding for all incomng calls.

@ Call Control Forwardi ng(String, int, bool ean)

This constructor takes the address to apply this forwarding instruction, the type of
forwarding desired for this address, and a bool ean flag indicating whether this instruction
shoul d apply to internal (true) or external (false) calls.

@ Call Control Forwarding(String, int, String)

This constructor takes an address to apply the forwarding instruction for a specific
i ncom ng tel ephone call, identified by a string address.

Method [rndex

@ get Desti nati onAddress()

Returns the destination address of this forwarding instruction
getFilter()

Returns the filter of this forwarding instruction
get SpecificCaller()

If the filter for this forwarding instruction is SPECH FI C_ ADDRESS, then this method returns
that calling address to which this filter applies.

@ get Type()
Returns the type of this forwarding instruction, either unconditionally, upon no answer, or
upon busy.

Variab/

@ ALL calLs

public static final int ALL_CALLS
Forwarding filter: apply instruction to all inconming calls.

@ | NTERNAL CALLS

public static final int | NTERNAL_CALLS
Forwarding filter: apply instruction to calls originating fromthe provider domain.

@ ExTERNAL CALLS

public static final int EXTERNAL_CALLS
Forwarding filter: apply instruction to calls originating fromoutside the provider donain.

@ SPEC FI C_ADDRESS

public static final int SPECI FI C_ ADDRESS
Forwarding filter: apply instruction to calls originating froma specific address.

@ FORWARD_UNCONDI TI ONALLY

public static final int FORWARD UNCONDI Tl ONALLY
Forwardi ng type: forward calls unconditionally.

@ FORWARD ON BUSY

public static final int FORWARD ON BUSY
Forwardi ng type: forward calls on busy.

@ FORWARD ON_ NOANSVER

public static final int FORWARD ON NOANSVER
Forwardi ng type: forward calls on no answer.

CoNEFETHCEOrS

«# Cal | Control Forwar di ng

public Call Control Forwardi ng(String dest Address)

This constructor is the default constructor, which only takes the address to apply this
forwarding instruction. The forwarding instruction forwards all calls unconditionally.

« Cal | Control Forwardi ng

public Call Control Forwardi ng(String dest Address,

int type)
This constructor takes the address to apply this forwarding instruction and the type of
forwarding for all incoming calls.

«# Cal | Control Forwar di ng

public Call Control Forwardi ng(String dest Address,
int type,
bool ean internal Call s)

This constructor takes the address to apply this forwarding instruction, the type of
forwarding desired for this address, and a boolean flag indicating whether this instruction
should apply to internal (true) or external (false) calls.

«# Cal | Control Forwardi ng

public Call Control Forwardi ng(String dest Address,
int type,
String caller)

This constructor takes an address to apply the forwarding instruction for a specific
i ncom ng tel ephone call, identified by a string address. It also takes the type of
forwarding desired for this specific address.

Mefhods

- get Desti nati onAddr ess

public String getDestinationAddress()
Returns the destination address of this forwarding instruction.
Ret ur ns:

The destination address of this forwardi ng instruction.

o get Type

public int getType()

Returns the type of this forwarding instruction, either unconditionally, upon no answer, or
upon busy.

Ret ur ns:

The type of this forwarding instruction.

@ getFilter

public int getFilter()

Returns the filter of this forwarding instruction. The filter indicates which calls should
trigger this forwarding instruction. Filters include: applying this instruction to all
calls, toonly internal calls, to only external call, or for calls froma specific address.

Ret ur ns:

The filter for this forwarding instruction.

@ get Speci ficCall er

public String getSpecificCaller()

If the filter for this forwarding instruction is SPECH FI C ADDRESS, then this nmethod returns
that calling address to which this filter applies. If the filter is something other than
SPECI FI C_ADDRESS, this nethod returns null.

Ret ur ns:

The specific address for this forwarding instruction.

Al l Packages Thi s Package Previous Next

Al l Packages

package javax.telephony.callcontrol.capabilities

Interface [ndex

o CallControl AddressCapabilities
« CallControl CallCapabilities

« CallControl ConnectionCapabilities
« CallControl Terminal Capabilities
« CallControl Termina ConnectionCapabilities

Al | Packages This Package Previous Next

Interface
javax.telephony.callcontrol.capabilities.CallControlAddressCapabilities

public interface CallControlAddressCapabilities

extends AddressCapabilities

TheCal | Cont r ol Addr essCapabi | i ti es interface extends the core Addr essCapabi | i ti es interface. Thisinterface provides methods to reflect the capabilities of
the methods on the Cal | Cont r ol Addr ess interface.

TheProvi der . get Addr essCapabi | i ti es() method returns the static Address capabilities, and the Addr ess. get Capabi | i ti es() method returns the dynamic
Address capabilities. The object returned from each of these methods can be queried with thei nst anceof operator to check if it supportsthisinterface. This sameinterfaceis
used to reflect both static and dynamic Address capabilities.

See Also:
Provider, Address, AddressCapabilities

Merhod [ndex

@ canCancelForwarding()

Returns trueif the application can cancel the forwarding on this Address, false otherwise.
@ canGetDoNotDisturb()

Returns true if the application can obtain the do not disturb state, false otherwise.
= canGetForwarding()

Returnstrue if the application can obtain the current forwarding status on this Address, false otherwise.
@ canGetM essageW aiting()

Returnstrueif the application can obtain the message waiting state, false otherwise.
@ canSetDoNotDisturb()

Returns true if the application can set the do not disturb state, false otherwise.
canSetForwarding()

Returnstrueif the application can set the forwarding on this Address, false otherwise.
canSetM essageWaiting()

Returnstrue if the application can set the message waiting state, false otherwise.

MeFkhods

<@ canSetForwarding

public abstract bool ean canSet Forwar di ng()
Returnstrue if the application can set the forwarding on this Address, false otherwise.
Returns:
Trueif the application can set the forwarding on this Address, false otherwise.

<@ canGetForwarding

public abstract bool ean canGet Forwar di ng()
Returnstrue if the application can obtain the current forwarding status on this Address, false otherwise.
Returns:
True if the application can obtain the current forwarding status on this Address, false otherwise.

@ cancancel Forwarding

public abstract bool ean canCancel Forwar di ng()

Returnstrue if the application can cancel the forwarding on this Address, false otherwise.

Returns:

Trueif the application can cancel the forwarding on this Address, false otherwise.

@ canGetDoNotDisturb

public abstract bool ean canGet DoNot Di st urb()
Returnstrueif the application can obtain the do not disturb state, false otherwise.
Returns:
Trueif the application can obtain the do not disturb state, false otherwise.

- canSetDoNotDisturb

public abstract bool ean canSet DoNot Di st urb()
Returnstrue if the application can set the do not disturb state, false otherwise.
Returns:
Trueif the application can set the do not disturb state, false otherwise.

@ canGetM essageWaiting

public abstract bool ean canGet MessageWi ting()
Returnstrue if the application can obtain the message waiting state, false otherwise.
Returns:
True if the application can obtain the message waiting state, false otherwise.

@ cansetm essageWaiting

public abstract bool ean canSet MessageWi ting()
Returnstrue if the application can set the message waiting state, false otherwise.
Returns:
Trueif the application can set the message waiting state, false otherwise.

All Packages This Package Previous Next

Al l Packages This Package Previous Next

Interface
javax.telephony.callcontrol.capabilities.CallControlCallCapabilities

public interface CallControlCallCapabilities

extends CallCapabilities

TheCal | Control Cal | Capabi | i ti es interface extendsthe core Cal | Capabi | i ti es interface. Thisinterface provides methods to reflect the capabilities
of the methods on the Cal | Cont r ol Cal | interface.

TheProvi der. get Cal | Capabi li ti es() method returns the static Call capabilities, andthe Cal | . get Capabi | i ti es() method returnsthe dynamic
Call capabilities. The object returned from each of these methods can be queried with thei nst anceof operator to check if it supports thisinterface. This same
interface is used to reflect both static and dynamic Call capabilities.

See Also:
Provider, Call, CallCapabilities

Method Indeyx

@ canAddParty()
Returnstrueif the application can invoke the add party feature, false otherwise.
= canConference()

Returnstrueif the application can invoke the conference feature, false otherwise.
canConsult()

Returnstrue if the application can invoke the consult feature, false otherwise. Deprecated.
@ canConsult(Termina Connection)

Returns true if the application can invoke the overloaded consult feature which takes a Terminal Connection as an argument, false otherwise.
& canConsult(Termina Connection, String)

Returnstrue if the application can invoke the overloaded consult feature which takes a Terminal Connection and string as arguments, false otherwise.

= canDrop()
Returnstrueif the application can invoke the drop feature, false otherwise.

canOffHook()
@ canSetConferenceController()
@ canSetConferenceEnable()

Returnstrue if the application can invoke the set conferencing enabling feature, fal se otherwise.
® canSetTransfer Controller()

@ canSetTransfer Enable()

Returns true if the application can invoke the set transferring enabling feature, false otherwise.
® canTransfer()

Returnstrue if the application can invoke the transfer feature, fal se otherwise. Deprecated.
= canTransfer (Call)

Returns true if the application can invoke the overloaded transfer feature which takes a Call as an argument, false otherwise.
@ canTransfer (String)

Returnstrueif the application can invoke the overloaded transfer feature which takes a destination string as an argument, fal se otherwise.

MeFkhods

@ canDrop

public abstract bool ean canDrop()
Returnstrueif the application can invoke the drop feature, false otherwise.
Returns:
Trueif the application can invoke the drop feature, false otherwise.

9@ canOffHook

public abstract bool ean canO f Hook()

& canSetConferenceController

public abstract bool ean canSet ConferenceController()

<@ canSetTransfer Controller

public abstract bool ean canSet Transfer Control |l er()

9 canSetTransfer Enable

public abstract bool ean canSet Tr ansf er Enabl e()
Returnstrueif the application can invoke the set transferring enabling feature, false otherwise. The value returned by this method is independent of the
ability of the application to invoke the transfer feature.

Applications are not required to inform the implementation of the purpose of the consultation call and may rely upon the default value returned by the
Cal | Control Cal | . get Tr ansf er Enabl e() method.
Returns:

Trueif the application can invoke the set transferring enabling feature, false otherwise.

@ canSetConferenceEnable

public abstract bool ean canSet ConferenceEnabl e()

Returnstrueif the application can invoke the set conferencing enabling feature, false otherwise. The value returned by this method isindependent of the

ability of the application to invoke the conference feature.
Applications are not required to inform the implementation of the purpose of the consultation call and may rely upon the default value returned by the
Cal | Control Cal | . get Conf er enceEnabl e() method.
Returns:
Trueif the application can invoke the set conferencing enabling feature, false otherwise.

@ canTransfer

public abstract bool ean canTransfer()

Note: canTransfer () is deprecated. Snce JTAPI v1.2. The default behavior of this method in JTAPI v1.2 and later should invoke the canTransfer(Call)
method.

Returnstrueif the application can invoke the transfer feature, false otherwise.

Note: This method has been replaced in JTAPI 1.2 with overloaded versions. These versions permit applications to give typed argument to obtain the
capabilities for aparticular overloaded version of the Cal | Control Cal | . t ransf er () method.

Returns:
Trueif the application can invoke the transfer feature, false otherwise.

9 canTransfer

public abstract bool ean canTransfer(Call call)

Returnstrueif the application can invoke the overloaded transfer feature which takes a Call as an argument, false otherwise.

The argument provided is for typing purposes only. The particular instance of the object given isignored and not used to determine the capability outcomeis

any way.
Parameters:

call - Thisargument is used for typing information to determine the overloaded version of the transfer() method.
Returns:

True if the application can invoke the transfer feature which takes a Call as an argument, false otherwise.

9 canTransfer

public abstract bool ean canTransfer(String destination)
Returnstrueif the application can invoke the overloaded transfer feature which takes a destination string as an argument, false otherwise.
The argument provided is for typing purposes only. The particular instance of the object given isignored and not used to determine the capability outcomeis
any way.
Parameters:
destination - This argument is used for typing information to determine the overloaded version of the transfer() method.
Returns:
Trueif the application can invoke the transfer feature which takes a destination string as an argument, false otherwise.

9 canConference

public abstract bool ean canConference()
Returnstrueif the application can invoke the conference feature, false otherwise.
Returns:
True if the application can invoke the conference feature, false otherwise.

@ canAddParty

public abstract bool ean canAddParty()
Returns true if the application can invoke the add party feature, false otherwise.
Returns:
True if the application can invoke the add party feature, false otherwise.

& canConsult

public abstract bool ean canConsult ()

Note: canConsult() isdeprecated. Snce JTAPI v1.2. The default behavior of this method in JTAPI v1.2 and later should invoke the
canConsult(Terminal Connection, String) method.

Returnstrue if the application can invoke the consult feature, false otherwise.
Note: This method has been replaced in JTAPI 1.2 with overloaded versions. These versions permit applications to give typed argument to obtain the
capabilities for a particular overloaded version of theCal | Cont r ol Cal | . consul t () method.
Returns:
True if the application can invoke the consult feature, false otherwise.

9@ canConsult

public abstract bool ean canConsul t (Term nal Connection tc,
String destination)

Returnstrueif the application can invoke the overloaded consult feature which takes a Terminal Connection and string as arguments, fal se otherwise.

The arguments provided are for typing purposes only. The particular instances of the objects given are ignored and not used to determine the capability
outcomeis any way.

Parameters:
tc - Thisargument is used for typing information to determine the overloaded version of the consult() method.

destination - This argument is used for typing information to destination the overloaded version of the consult() method.
Returns:

True if the application can invoke the consult feature which takes a Terminal Connection and a string as arguments.

9 canConsult

public abstract bool ean canConsul t (Ter mi nal Connection tc)

Returnstrue if the application can invoke the overloaded consult feature which takes a Terminal Connection as an argument, false otherwise.

The arguments provided are for typing purposes only. The particular instances of the objects given are ignored and not used to determine the capability
outcomeis any way.

Parameters:

tc - Thisargument is used for typing information to determine the overloaded version of the consult() method.
Returns:
True if the application can invoke the consult feature which takes a Terminal Connection as an argument.

Al | Packages This Package Previous Next

Al l Packages Thi s Package Previous Next

Interface
javax.telephony.callcontrol.capabilities.CallControlConnectionCapabilities

public interface CallControlConnectionCapabilities
extends ConnectionCapabilities

TheCal | Cont r ol Connecti onCapabi | i ti es interface extends the core Connect i onCapabi | i ti es interface. Thisinterface provides methods to reflect the capabilities of
the methods on the interface.

ThePr ovi der . get Connect i onCapabi | i ti es() method returns the static Connection capabilities, and the Connect i on. get Capabi | i ti es() method returns the
dynamic Connection capabilities. The object returned from each of these methods can be queried with thei nst anceof operator to check if it supports thisinterface. This same
interface is used to reflect both static and dynamic Connection capabilities.

See Also:
Provider, Connection, ConnectionCapahilities

MeFhod Index

@ canAccept()
Returnstrue if the application can invoke the accept feature, false otherwise.
@ canAddT oAddress()

Returnstrueif the application can invoke the add to address feature, fal se otherwise.
» canPark()

Returnstrue if the application can invoke the park feature, false otherwise.
@ canRedirect()

Returnstrue if the application can invoke the redirect feature, false otherwise.
@ canReject()

Returnstrue if the application can invoke the reject feature, false otherwise.

Meftods

@ canRedirect

public abstract bool ean canRedirect()
Returnstrue if the application can invoke the redirect feature, false otherwise.
Returns:
Trueif the application can invoke the redirect feature, fal se otherwise.

] canAddToAddress

publ i c abstract bool ean canAddToAddress()
Returns true if the application can invoke the add to address feature, fal se otherwise.
Returns:
Trueif the application can invoke the add to address feature, false otherwise.

") canAccept

public abstract bool ean canAccept ()
Returnstrue if the application can invoke the accept feature, false otherwise.
Returns:
Trueif the application can invoke the accept feature, false otherwise.

") canReject

public abstract bool ean canReject()
Returnstrue if the application can invoke the reject feature, false otherwise.

Returns:
Trueif the application can invoke the reject feature, false otherwise.

@ canPark

publ i c abstract bool ean canPark()
Returnstrue if the application can invoke the park feature, false otherwise.
Returns:
Trueif the application can invoke the park feature, false otherwise.

Al |l _Packages Thi s Package Previous Next

All Packages This Package Previous Next

Interface
javax.telephony.callcontrol.capabilities.CallControlTerminalCapabilities

public interface CallControl Ter minalCapabilities

extends Terminal Capabilities

TheCal | Control Ter m nal Capabi | i ti es interface extendsthe core Ter mi nal Capabi | i ti es interface. Thisinterface provides methods to reflect the capabilities
of the methods on the Cal | Cont r ol Ter mi nal interface.

TheProvi der. get Ter mi nal Capabi | i ti es() method returns the static Terminal capabilities, and the Ter mi nal . get Capabi | i ti es() method returnsthe
dynamic Terminal capabilities. The object returned from each of these methods can be queried with thei nst anceof operator to check if it supports thisinterface. This same
interface is used to reflect both static and dynamic Terminal capabilities.

See Also:
Provider, Terminal, Terminal Capabilities

MeEhod Index

@ canGetDoNotDisturb()

Returnstrue if the application can obtain the do not disturb state, false otherwise.
& canPickup()
Returnstrueif the application can invoke the pickup feature, false otherwise. Deprecated.
® canPickup(Address, Address)
Returnstrueif the application can invoke the overloaded pickup feature which takes two Addresses as arguments, fal se otherwise.
canPickup(Connection, Address)
Returnstrueif the application can invoke the overloaded pickup feature which takes a Connection and an Address as arguments, false otherwise.
canPickup(Terminal Connection, Address)
Returnstrueif the application can invoke the overloaded pickup feature which takes a Terminal Connection and an Address as arguments, false otherwise.
& canPickupFromGroup()

Returnstrueif the application can invoke the pickup from group feature, false otherwise. Deprecated.
& canPickupFromGroup(Address)

Returns true if the application can invoke the pickup from group feature which takes an Address as an argument, false otherwise.
@ canPickupFromGroup(String, Address)

Returns true if the application can invoke the pickup from group feature which takes a string pickup group code and an Address as arguments, false otherwise.
@ canSetDoNotDisturb()

Returns true if the application can set the do not disturb state, false otherwise.

Methods

@ canGetDoNotDisturb

public abstract bool ean canGet DoNot Di st urb()
Returnstrueif the application can obtain the do not disturb state, false otherwise.
Returns:
Trueif the application can obtain the do not disturb state, false otherwise.

@ canSetDoNotDisturb

public abstract bool ean canSet DoNot Di st urb()
Returnstrue if the application can set the do not disturb state, false otherwise.
Returns:

Trueif the application can set the do not disturb state, false otherwise.

<@ canPickup

public abstract bool ean canPi ckup()

Note: canPickup() is deprecated. Snce JTAPI v1.2. The default behavior of this method in JTAPI v1.2 and later should invoke the canPickup(Connection, Address)
method.

Returnstrueif the application can invoke the pickup feature, false otherwise.
Note: This method has been replaced in JTAPI 1.2 with overloaded versions. These versions permit applications to give typed argument to obtain the capabilities for a
particular overloaded version of the Cal | Cont r ol Ter mi nal . pi ckup() method.
Returns:
Trueif the application can invoke the pickup feature, false otherwise.

<@ canPickup

public abstract bool ean canPi ckup(Connecti on connecti on,
Addr ess addr ess)

Returnstrueif the application can invoke the overloaded pickup feature which takes a Connection and an Address as arguments, false otherwise.

The arguments provided are for typing purposes only. The particular instances of the objects given are ignored and not used to determine the capability outcomeis any
way.
Parameters:
connection - This argument is used for typing information to determine the overloaded version of the pickup() method.
address - Thisargument is used for typing information to determine the overloaded version of the pickup() method.
Returns:
Trueif the application can invoke the pickup feature which takes a Connection and an Address as arguments, false otherwise.

@ canPickup

public abstract bool ean canPi ckup(Term nal Connection tc,
Addr ess addr ess)

Returnstrueif the application can invoke the overloaded pickup feature which takes a Terminal Connection and an Address as arguments, false otherwise.

The arguments provided are for typing purposes only. The particular instances of the objects given are ignored and not used to determine the capability outcomeis any
way.
Parameters:
tc - Thisargument is used for typing information to determine the overloaded version of the pickup() method.
address - This argument is used for typing information to determine the overloaded version of the pickup() method.
Returns:
Trueif the application can invoke the pickup feature which takes a Terminal Connection and an Address as arguments, false otherwise.

@ canPickup

public abstract bool ean canPi ckup(Address addressl,
Addr ess addr ess?2)

Returns true if the application can invoke the overloaded pickup feature which takes two Addresses as arguments, fal se otherwise.

The arguments provided are for typing purposes only. The particular instances of the objects given are ignored and not used to determine the capability outcome is any
way.
Parameters:
addressl - This argument is used for typing information to determine the overloaded version of the pickup() method.
address2 - Thisargument is used for typing information to determine the overloaded version of the pickup() method.
Returns:
Trueif the application can invoke the pickup feature which takes two Addresses as arguments, false otherwise.

@ canPickupFromGroup

publ i c abstract bool ean canPi ckupFronG oup()

Note: canPickupFromGroup() is deprecated. Snce JTAPI v1.2. The default behavior of this method in JTAPI v1.2 and later should invoke the
canPickupFromGroup(String, Address) method.

Returnstrueif the application can invoke the pickup from group feature, false otherwise.

Note: This method has been replaced in JTAPI 1.2 with overloaded versions. These versions permit applications to give typed argument to obtain the capabilities for a
particular overloaded version of the Cal | Cont r ol Ter ni nal . pi ckupFr ontGr oup() method.

Returns:

Trueif the application can invoke the pickup from group feature, false otherwise.

<@ canPickupFromGroup

public abstract bool ean canPi ckupFronG oup(String group,
Addr ess addr ess)

Returns true if the application can invoke the pickup from group feature which takes a string pickup group code and an Address as arguments, false otherwise.

The arguments provided are for typing purposes only. The particular instances of the objects given are ignored and not used to determine the capability outcomeis any

way.
Parameters:
group - Thisargument is used for typing information to determine the overloaded version of the pickupFromGroup() method.
address - This argument is used for typing information to determine the overloaded version of the pickupFromGroup() method.
Returns:

Trueif the application can invoke the pickup from group feature which takes a string pickup group code and an Address as arguments, false otherwise.

<@ canPickupFromGroup

public abstract bool ean canPi ckupFronG oup(Addr ess addr ess)
Returnstrueif the application can invoke the pickup from group feature which takes an Address as an argument, false otherwise.
The arguments provided are for typing purposes only. The particular instances of the objects given are ignored and not used to determine the capability outcome is any
way.
Parameters:
address - This argument is used for typing information to determine the overloaded version of the pickupFromGroup() method.
Returns:
Trueif the application can invoke the pickup from group feature which takes an Address as an argument, false otherwise.

Al l Packages This Package Previous Next

Al l Packages This Package Previous Next

Interface
javax.telephony.callcontrol.capabilities.CallControlTerminalConnectionCapabilities

public interface CallContr ol Ter minal ConnectionCapabilities
extends Termina ConnectionCapabilities

TheCal | Cont rol Ter mi nal Connecti onCapabi | i ti es interface extends the core Ter mi nal Connect i onCapabi | i ti es interface. Thisinterface provides methods to reflect the capabilities
of the methods on the interface.

TheProvi der . get Ter mi nal Connecti onCapabi | i ti es() method returns the static Terminal Connection capabilities, and the Ter mi nal Connect i on. get Capabi | i ti es() method
returns the dynamic Termina Connection capabilities. The object returned from each of these methods can be queried with thei nst anceof operator to check if it supports this interface. This same
interface is used to reflect both static and dynamic Terminal Connection capabilities.

See Also:
Provider, Terminal Connection, Termina ConnectionCapabilities

Method Indeyx

= canHold()

Returnstrue if the application can invoke the hold feature, false otherwise.
= canJoin()

Returnstrue if the application can invoke the join feature, false otherwise.
@ canL eave()

Returnstrue if the application can invoke the leave feature, false otherwise.
= canUnhold()

Returnstrue if the application can invoke the unhold feature, false otherwise.

Meftkods

@ canHold

public abstract bool ean canHol d()
Returnstrue if the application can invoke the hold feature, false otherwise.
Returns:
Trueif the application can invoke the hold feature, false otherwise.

@ canunhold

public abstract bool ean canUnhol d()
Returnstrue if the application can invoke the unhold feature, false otherwise.
Returns:
Trueif the application can invoke the unhold feature, false otherwise.

@ candoin

public abstract bool ean canJoin()
Returnstrue if the application can invoke the join feature, false otherwise.
Returns:
Trueif the application can invoke the join feature, false otherwise.

o canL eave

public abstract bool ean canLeave()
Returnstrue if the application can invoke the leave feature, false otherwise.
Returns:
Trueif the application can invoke the leave feature, false otherwise.

Al l Packages This Package Previous Next

Al |l Packages

package javax.telephony.callcontrol.events

Interface [ndex

« CallCtIAddrDoNotDisturbEv
« CallCtlIAddrEv

« CallCtlIAddrForwardev

« CallCtlIAddrMessageWaitingEv
» CdlCtlCallEv

« CallCtiConnAlertingEv

« CallCtlIConnDialingEv

« CallCtlConnDisconnectedEv

« CallCtIConnEstablishedEv

« CallCtIConnEv

« CallCtIConnFailedEv

« CallCtIConnlnitiatedEv

« CallCtlIConnNetworkAlertingEv
« CallCtlConnNetworkReachedEv
« CallCtlConnOfferedEv

« CallCtlConnQueuedEv

« CallCtlIConnUnknownEv

« CalCtlEv

« CallCtlITermConnBridgedEv

« CallCtlITermConnDroppedEv

« CallCtlITermConnEv

« CalCtlITermConnHeldEv

« CallCtlITermConninUseEv

« CallCtlITermConnRingingEv

« CallCtlITermConnTakingEv

« CallCtlITermConnUnknownEv
« CallCtiITermDoNotDisturbEv
« CalCtlITermEv

Al |l Packages This Package Previous Next

Interface
javax.telephony.callcontrol.events.CallCtlIAddrDoNotDisturbEv

public interface CallCtIAddr DoNotDistur bEv
extends CallCtIAddrEv

TheCal | Ct|1 Addr DoNot Di st ur bEv interface indicates the state of the do not disturb feature has changed for the Address. This interface extends the
Cal | | Addr Ev interface and isreported viathe Addr essQbser ver . addr essChangedEvent () method. The observer object must also
implement the Cal | Cont r ol Addr essObser ver interfaceto signal it isinterested in call control package events.
This interface supports a single method which returns the current state of the do not disturb feature.
See Also:

Address, AddressObserver, Call Control Address, Call Control AddressObserver, CallCtIAddrEv

Variable Index

Eventid

Method Index

@ getDoNotDisturbState()

Returnstrueif the do not disturb feature is activated, false otherwise.

Variables

@D

public static final int ID
Eventid

MeFbhods

- getDoNotDisturbState

public abstract bool ean get DoNot Di st urbState()
Returns true if the do not disturb feature is activated, false otherwise.
Returns:
Trueif the do not disturb feature is activated, fal se otherwise.

Al Packages This Package Previous Next

Al l Packages Thi s Package Previous Next

Interface javax.telephony.callcontrol.events.CallCtIAddrEv

public interface CallCtIAddr Ev
extends CallCtIEv, AddrEv

TheCal | Ct | Addr Ev interface isthe base interface for all call control package Address-related events. All events which pertain to the
Cal | Cont r ol Addr ess interface must extend this interface. Events which extend thisinterface are reported viathe

Addr essCbser ver. addr essChangedEvent () method. The observer object must also implement the

Cal | Cont r ol Addr essObser ver interfaceto signal it isinterested in call control package events. This interface extends both the
Cal | Ct | Ev and Addr Ev interfaces.

The events defined in the call control package for the Addressarethe Cal | Ct | Addr DoNot Di st ur bEv, Cal | Ct | Addr For war dEv, and
Cal | Ct| Addr MessageWi ti ngEv events.

This interface supports no additional methods.

See Also:

Address, AddressObserver, AddrEv, CallControl Address, Call Control AddressObserver, CallCtlAddrDoNotDisturbEyv,
CalCtlAddrForwardEv, Call CtlAddrM essageWaitingEv, CallCtIEv

Al Packages Thi s Package Previous Next

Al l Packages Thi s Package Previous Next

Interface
javax.telephony.callcontrol.events.CallCtlIAddrForwardEv

public interface CallCtIAddr Forwar dEv
extends CallCtIAddrEv

TheCal | Ct | Addr For war dEv interface indicates the state of the forward feature has changed for the Address. This interface extends the

Cal | Ct | Addr Ev interface and is reported viathe Addr essCbser ver . addr essChangedEvent () method. The observer object must also
implement the Cal | Cont r ol Addr essCbser ver interfaceto signal it isinterested in call control package events.

This interface supports a single method which returns the current state of the forwarding feature.

See Also:

Address, AddressObserver, CallControl Address, Call Control AddressObserver, CalCtIAddrEv

Variable [ndex

Event id

MeFtnod lndex

@ getForwarding()
Returns the current forwarding on the Address.

Variables

@D

public static final int ID
Eventid

Mefhods

- getForwarding

public abstract Call Control Forwardi ng[] getForwardi ng()

Returns the current forwarding on the Address.

Returns:
An array of CallControlForwarding objects.

Al |l Packages Thi s Package Previous Next

Al Packages Thi s Package Previous Next

Interface
javax.telephony.callcontrol.events.CallCtIAddrMessageWaitingEv

public interface CallCtlAddr M essageW aitingEv
extends CallCtIAddrEv

TheCal | Ct| Addr MessageWai t i ngEv interface indicates the state of the message waiting feature has changed for the Address. This interface extends the
Cal | Ct | Addr Ev interface and isreported viathe Addr essCbser ver . addr essChangedEvent () method. The observer object must also implement the
Cal | Cont rol Addr essCbser ver interfaceto signal itisinterested in call control package events.
This interface supports a single method which returns the current state of the message waiting feature.
See Also:

Address, AddressObserver, CallControl Address, Call Control AddressObserver, CalCtlAddrEv

Variable [Hdex

Event id

MeFtod [rndex

@ getM essageW aitingState()

Returns the current message waiting state of the Address.

Variables

@D

public static final int ID
Event id

MeFkhods

- getM essageWaitingState

publ i c abstract bool ean get MessageWiti ngState()
Returns the current message waiting state of the Address.
Returns:
The message waiting state of the Address.

Al'l Packages This Package Previous Next

Al l Packages Thi s Package Previous Next

Interface javax.telephony.callcontrol.events.CallCtICallEv

public interface CallCtICallEv
extends CallCtIEv, CalEv

TheCal | Ct | Cal | Ev interface isthe base interface for al call control package Call-related events. All events which pertain to the

Cal | Cont r ol Cal | interface must extend thisinterface. Events which extend thisinterface are reported viathe

Cal | Gbserver. cal | ChangedEvent () method. The observer object must also implement the Cal | Cont r ol Cal | Cbser ver interfaceto
signal it isinterested in call control package events. This interface extend boththe Cal | Ct | Ev and core Cal | Ev interfaces.

TheCal | Ct| ConnEv and Cal | Ct | Ter mConnEv events extend this interface. This reflects the fact that all events pertaining to the
Cal | Cont r ol Connect i on interface and the Cal | Cont r ol Ter mi nal Connect i on interface are reported viathe
Cal | Control Cal | Goser ver interface.

Additional Call Information

This interface supports methods which return additional information regarding the telephone call. Specificaly, it returns the calling address,
calling terminal, called address, and last redirected address information. Thisinformation is returned by theget Cal | i ngAddr ess(),
get Cal I i ngTermi nal (), get Cal | edAddress(),andget Last Redi r ect edAddr ess() methods on thisinterface, respectively.

See Also:

Call, Address, Terminal, CallObserver, CallEv, CalControlCall, CallControl CallObserver, CalCtlEv, CalCtlConnEyv,
CallCtITermConnEv

Method [rndex

= getCalledAddress()

Returns the called Address associated with this Call.
@ getCallingAddress()

Returns the calling Address associated with this call.
@ getCallingTerminal()

Returns the calling Terminal associated with this Call.
@ getl astRedir ectedAddr ess()

Returns the last redirected Address associated with this Call.

MeEhods

@ getcallingAddress

public abstract Address getCallingAddress()
Returns the calling Address associated with this call. The calling Address is defined as the Address which placed the telephone call.

If the calling address is unknown or not yet known, this method returns null.
Returns

The calling Address.
@ getCallingTerminal

public abstract Terminal getCallingTerm nal ()

Returnsthe calling Terminal associated with this Call. The calling Terminal is defined as the Termina which placed the telephone call.

If the calling Terminal is unknown or not yet know, this method returns null.
Returns:

The calling Terminal.
@ getCalledAddress

public abstract Address get Call edAddress()

Returns the called Address associated with this Call. The called Addressis defined as the Address to which the call has been originally
placed.

If the called address is unknown or not yet known, this method returns null.
Returns:

s The called Address.
] getL astRedirectedAddress

public abstract Address getlLastRedirectedAddress()

Returnsthe last redirected Address associated with this Call. The last redirected Addressis the Address at which the current telephone call
was placed immediately before the current Address. Thisis common if aCall isforwarded to several Addresses before being answered.

If the the last redirected address is unknown or not yet known, this method returns null.
Returns

s Thelast redirected Address for this telephone Call.

Al |l Packages Thi s Package Previous Next

Al l Packages Thi s Package Previous Next

Interface
javax.telephony.callcontrol.events.CallCtIConnAlertingEv

public interface CallCtIConnAlertingEv
extends Call CtlIConnEv

TheCal | Ct | ConnAl erti ngEv interface indicates that the call control package state of the Connection is now

Cal | Cont r ol Connecti on. ALERTI NG Thismethod Cal | Cont r ol Connecti on. get Cal | Cont r ol St at e() returnsthe current
state. Thisinterface extendsthe Cal | Ct | ConnEv interface and isreported viathe Cal | Cbser ver. cal | ChangedEvent () method. The
observer object must also implement the Cal | Cont r ol Cal | Gbser ver interfaceto signal it isinterested in call control package events.

This interface supports no additional methods.
See Also:
CadllObserver, Connection, Call Control Connection, CallControl CallObserver, CalCtlConnEv

Variable [ndex

Event id

Variables

@D

public static final int ID
Eventid

Al |l Packages Thi s Package Previous Next

Al l Packages Thi s Package Previous Next

Interface
javax.telephony.callcontrol.events.CallCtIConnDialingEv

public interface CallCtIConnDialingEv
extends Call CtlIConnEv

TheCal | &t | ConnDi al i ngEv interface indicates that the call control package state of the Connection is now

Cal | Cont r ol Connecti on. DI ALI NG Thismethod Cal | Cont r ol Connecti on. get Cal | Cont r ol St at e() returnsthe current state.
Thisinterface extendsthe Cal | Ct | ConnEv interface and isreported viathe Cal | Cbser ver. cal | ChangedEvent () method. The observer
object must also implement the Cal | Cont r ol Cal | Gbser ver interfaceto signal it isinterested in call control package events.

Thisinterface supportstheget Di gi t s() method which returns the digits which have already been dialed.
See Also:
CallObserver, Connection, Call Control Connection, CallControl CallObserver, CallCtlConnEv

Variable [ndex

Event id

Method [rndex

@ getDigits()
Returns the digits that have already been dialed.

Variables

@D
public static final int ID
Eventid
@ getDigits

public abstract String getDigits()

Returns the digits that have already been dialed.
Returns:
s The digits that have already been dialed.

Al | Packages This Package Previous Next

Al |l Packages This Package Previous Next

Interface
javax.telephony.callcontrol.events.CallCtiConnDisconnectedEv

public interface CallCtlConnDisconnectedEv
extends CallCtlConnEv

TheCal | Ct | ConnDi sconnect edEv interface indicates that the call control package state of the Connection is now

Cal | Cont r ol Connect i on. DI SCONNECTED. Thismethod Cal | Cont r ol Connecti on. get Cal | Cont r ol St at e() returnsthe current state.
Thisinterface extendsthe Cal | Ct | ConnEv interface and is reported viathe Cal | Gbser ver. cal | ChangedEvent () method. The observer object
must also implement the Cal | Cont r ol Cal | Gbser ver interfaceto signa it isinterested in call control package events.

Thisinterface supports no additional methods.
See Also:
CallObserver, Connection, CallControl Connection, CallControl CallObserver, CallCtlConnEv

Variable [ndex

Event id

variables

@D

public static final int ID
Eventid

Al |l Packages This Package Previous Next

Al |l Packages This Package Previous Next

Interface
javax.telephony.callcontrol.events.CallCtiConnEstablishedEv

public interface CallCtIConnEstablishedEv
extends CallCtlConnEv

TheCal | Ct| ConnEst abl i shedEv interface indicates that the call control package state of the Connection is now

Cal | Cont r ol Connecti on. ESTABLI SHED. Thismethod Cal | Cont r ol Connecti on. get Cal | Cont r ol St at e() returnsthe current
state. Thisinterface extendsthe Cal | Ct | ConnEv interface and isreported viathe Cal | Gbser ver. cal | ChangedEvent () method. The
observer object must also implement the Cal | Cont r ol Cal | Goser ver interfaceto signal it isinterested in call control package events.

This interface supports no additional methods.
See Also:
CallObserver, Connection, Call Control Connection, CallControl CallObserver, CallCtlConnEv

Variable [Hdex

Eventid

Variables

@D

public static final int ID
Eventid

Al |l Packages This Package Previous Next

Al l Packages Thi s Package Previous Next

Interface javax.telephony.callcontrol.events.CallCtiIConnEv

public interface CallCtIConnEv
extends CallCtlCallEv, ConnEv

TheCal | Ct | ConnEv interface isthe base interface for all call control package Connection-related events. All events which pertain to the

Cal | Cont r ol Connect i on interface must extend this interface. Events which extend this interface are reported via the

Cal | Gbserver. cal | ChangedEvent () method. The observer object must also implement the Cal | Cont r ol Cal | Cbser ver interfaceto
signal it isinterested in call control package events. This interface extends both the Cal | Ct | Cal | Ev and core ConnEv interfaces.

A number of event interfaces defined in this package extend this interface. Each of these events conveys a change in the call control package state
of the Connection. The event interfaces which extend thisinterfaceare: Cal | Ct | ConnAl erti ngEv, Cal | Ct| ConnDi al i ngEv,

Cal | ¢t |1 ConnDi sconnect edEv, Cal | Ct | ConnEst abl i shedEv, Cal | Ct| ConnFai | edEv, Cal | Ct | Connl niti at edEv,

Cal | Ct| ConnNet wor kAl erti ngEv, Cal | Ct | ConnNet wor kReachedEv, CODE>CallCtlConnOfferedEv, Cal | Ct | ConnQueuedEv,
and Cal | Ct | ConnUnknownEv

This interface supports no additional methods.
See Also:

Connection, CallObserver, ConnEv, Call Control Connection, Call Control CallObserver, CalCtlCallEv, CallCtlConnAlertingEv,
CadlCtlConnDialingEv, CallCtlConnDisconnectedEv, Call CtlConnEstablishedEv, CallCtlConnFailedEv, Call CtlConnlnitiatedEv,
CallCtlConnNetworkAlertingEv, Call CtlConnNetworkReachedEv, Call CtlConnOfferedEv, CallCtlConnQueuedEy,
CdlCtlIConnUnknownEv

Al | Packages This Package Previous Next

Al l Packages Thi s Package Previous Next

Interface
javax.telephony.callcontrol.events.CallCtIConnFailedEv

public interface CallCtIConnFailedEv
extends Call CtlIConnEv

TheCal | Ct | ConnFai | edEv interface indicates that the call control package state of the Connection is now

Cal | Cont r ol Connecti on. FAI LED. Thismethod Cal | Cont r ol Connecti on. get Cal | Control St at e() returnsthe current state.
Thisinterface extendsthe Cal | Ct | ConnEv interface and isreported viathe Cal | Cbser ver. cal | ChangedEvent () method. The observer
object must also implement the Cal | Cont r ol Cal | Gbser ver interfaceto signal it isinterested in call control package events.

This interface supports no additional methods.
See Also:
CadllObserver, Connection, Call Control Connection, CallControl CallObserver, CalCtlConnEv

Variable [ndex

Event id

Variables

@D

public static final int ID
Eventid

Al |l Packages Thi s Package Previous Next

Al l Packages Thi s Package Previous Next

Interface
javax.telephony.callcontrol.events.CallCtIConnlnitiatedEv

public interface CallCtIConnl nitiatedEv
extends Call CtlIConnEv

TheCal | Ct | Connl ni ti at edEv interface indicates that the call control package state of the Connection is now

Cal | Cont r ol Connecti on. | NI TI ATED. Thismethod Cal | Cont r ol Connecti on. get Cal | Control St at e() returnsthe current
state. Thisinterface extendsthe Cal | Ct | ConnEv interface and isreported viathe Cal | Cbser ver. cal | ChangedEvent () method. The
observer object must also implement the Cal | Cont r ol Cal | Gbser ver interfaceto signal it isinterested in call control package events.

This interface supports no additional methods.
See Also:
CadllObserver, Connection, Call Control Connection, CallControl CallObserver, CalCtlConnEv

Variable [ndex

Event id

Variables

@D

public static final int ID
Eventid

Al |l Packages Thi s Package Previous Next

Al | Packages This Package Previous Next

Interface
javax.telephony.callcontrol.events.CallCtiConnNetworkAlertingEv

public interface CallCtlConnNetwor kAlertingEv
extends CallCtIConnEv

TheCal | Ct | ConnNet wor kAl er t i ngEv interface indicates that the call control package state of the Connection is now

Cal | Cont r ol Connecti on. NETWORK_ALERTI NG. Thismethod Cal | Cont r ol Connecti on. get Cal | Contr ol St at e() returnsthe current state.
Thisinterface extendsthe Cal | Ct | ConnEv interface and is reported viathe Cal | Cbser ver . cal | ChangedEvent () method. The observer object must
also implement the Cal | Cont r ol Cal | Cbser ver interfaceto signal itisinterested in call control package events.

This interface supports no additional methods.
See Also:
CallObserver, Connection, Call Control Connection, CallControl CallObserver, CallCtlConnEv

Variable Index

Eventid

Variables

@D

public static final int ID
Event id

Al | Packages This Package Previous Next

Al | Packages This Package Previous Next

Interface
javax.telephony.callcontrol.events.CallCtiConnNetworkReachedEv

public interface CallCtIConnNetwor kReachedEv
extends CallCtlConnEv

The Cal | Ct | ConnNet wor kReachedEv interface indicates that the call control package state of the Connection is now

Cal | Cont r ol Connect i on. NETWORK_REACHED. This method Cal | Cont r ol Connecti on. get Cal | Cont r ol St at e() returnsthe current state. This
interface extendsthe Cal | Ct | ConnEv interface and is reported viathe Cal | Cbser ver . cal | ChangedEvent () method. The observer object must also
implement the Cal | Cont r ol Cal | Obser ver interfaceto signal it isinterested in call control package events.

Thisinterface supports no additional methods.
See Also:
CallObserver, Connection, Call Control Connection, CallControl CallObserver, Call CtlConnEv

Variable [Hdex

Event id

Vvariables

@D

public static final int ID
Event id

Al'l Packages This Package Previous Next

Al l Packages Thi s Package Previous Next

Interface
javax.telephony.callcontrol.events.CallCtIConnOfferedEv

public interface CallCtIConnOfferedEv
extends Call CtlIConnEv

TheCal | &t | ConnO f er edEv interface indicates that the call control package state of the Connection is now

Cal | Cont r ol Connecti on. OFFERI NG Thismethod Cal | Cont r ol Connecti on. get Cal | Cont r ol St at e() returnsthe current
state. Thisinterface extendsthe Cal | Ct | ConnEv interface and isreported viathe Cal | Cbser ver. cal | ChangedEvent () method. The
observer object must also implement the Cal | Cont r ol Cal | Cbser ver interfaceto signal it isinterested in call control package events.

This interface supports no additional methods.
See Also:
CadllObserver, Connection, Call Control Connection, CallControl CallObserver, CalCtlConnEv

Variable [ndex

Event id

Variables

@D

public static final int ID
Eventid

Al |l Packages Thi s Package Previous Next

Al l Packages Thi s Package Previous Next

Interface
javax.telephony.callcontrol.events.CallCtIConnQueuedEv

public interface CallCtIConnQueuedEv
extends Call CtlIConnEv

TheCal | Ct | ConnQueuedEyv interface indicates that the call control package state of the Connection is now

Cal | Cont r ol Connecti on. QUEUED. Thismethod Cal | Cont r ol Connecti on. get Cal | Contr ol St at e() returnsthe current state.
Thisinterface extendsthe Cal | Ct | ConnEv interface and isreported viathe Cal | Cbser ver. cal | ChangedEvent () method. The observer
object must also implement the Cal | Cont r ol Cal | Gbser ver interfaceto signal it isinterested in call control package events.

Thisinterface supportsthe get Nunber | nQueue() method which returns the number of Connections being queue along with this Connection at
the same Address.
See Also:

CallObserver, Connection, Call Control Connection, CallControl Call Observer, CallCtlConnEv

Variable [ndex

Event id

MeFtnod lndex

2 getNumber InQueue()

Returns the number of Connections which are queued at the Address of this Connection.

Variables

@D

public static final int ID
Eventid

Mefhods

- getNumber InQueue

public abstract int getNunberlnQueue()

Returns the number of Connections which are queued at the Address of this Connection.
Returns:
The number of queued Connections.

Al |l Packages Thi s Package Previous Next

Al l Packages Thi s Package Previous Next

Interface
javax.telephony.callcontrol.events.CallCtIConnUnknownEv

public interface CallCtIConnUnknownEv
extends Call CtlIConnEv

TheCal | Ct | ConnUnknownEv interface indicates that the call control package state of the Connection is now

Cal | Cont r ol Connect i on. UNKNOMN. This method Cal | Cont r ol Connecti on. get Cal | Cont r ol St at e() returnsthe current state.
Thisinterface extendsthe Cal | Ct | ConnEv interface and isreported viathe Cal | Cbser ver. cal | ChangedEvent () method. The observer
object must also implement the Cal | Cont r ol Cal | Gbser ver interfaceto signal it isinterested in call control package events.

This interface supports no additional methods.
See Also:
CadllObserver, Connection, Call Control Connection, CallControl CallObserver, CalCtlConnEv

Variable [ndex

Event id

Variables

@D

public static final int ID
Eventid

Al |l Packages Thi s Package Previous Next

Al l Packages Thi s Package Previous Next

Interface javax.telephony.callcontrol.events.CallCtlIEv

public interface CallCtIEv
extends Ev

TheCal | Ct | Ev isthe base event for al eventsin the call control package. Each event in this package must extend thisinterface. Thisinterface
extends the core Ev interface.

Thisinterface containsthe get Cal | Cont r ol Cause() method which returnsacall control package specific cause for the event. Cause codes
pertaining to this package are defined in thisinterface as well.
In the call control package, this interface is extended by the following interfaces: Cal | Ct | Cal | Ev, Cal | Ct | Addr Ev,and Cal | Ct | Ter nEv.
See Also:

Ev, CdlCtICallEv, CdlCtlIAddrEv, CalCtl TermEv

Variable [ndex

@ CAUSE_ALTERNATE

Cause code indicating that the call was put on hold and another retrieved in an atomic operation, typically on single line telephones.
@ CAUSE_BUSY

Cause code indicating that the call encountered a busy endpoint.
@ CAUSE CALL BACK

Cause code indicating the event is related to the callback feature.
@ CAUSE CALL_NOT_ANSWERED

Cause code indicating that the call was not answered before atimer elapsed.
@ CAUSE_CALL_PICKUP

Cause code indicating that the call was redirected by the call pickup feature.
@ CAUSE CONFERENCE

Cause code indicating the event is related to the conference feature.
CAUSE DO NOT DISTURB

Cause code indicating the event is related to the do not disturb feature.
CAUSE_PARK

Cause code indicating the event is related to the park feature.
CAUSE REDIRECTED

Cause code indicating the event is related to the redirect feature.
CAUSE REORDER TONE

Cause code indicating that the call encountered a reorder tone.
CAUSE_TRANSFER

Cause code indicating the event is related to the transfer feature.
CAUSE TRUNKS BUSY

Cause code indicating that the call encountered the "al trunks busy" condition.

@ CAUSE_UNHOLD

Cause code indicating the event is related to the unhold feature.

Method [ndex

@ getCallControlCause()

Returnsthe call control package cause associated with the event.

Variables

@ CAUSE ALTERNATE

public static final int CAUSE ALTERNATE
Cause code indicating that the call was put on hold and another retrieved in an atomic operation, typically on single line telephones.

@ cause BusY

public static final int CAUSE BUSY
Cause code indicating that the call encountered a busy endpoint.

@ CAUSE CALL BACK

public static final int CAUSE CALL_BACK
Cause code indicating the event is related to the callback feature.

@ CAUSE_CALL_NOT_ANSWERED

public static final int CAUSE_CALL_NOT_ANSWERED
Cause code indicating that the call was not answered before atimer elapsed.

@ CAUSE_CALL_PICKUP

public static final int CAUSE CALL_PI CKUP
Cause code indicating that the call was redirected by the call pickup feature.

@ CAUSE_CONFERENCE

public static final int CAUSE CONFERENCE
Cause code indicating the event is related to the conference feature.

@ CAUSE DO _NOT DISTURB

public static final int CAUSE DO NOT_DI STURB
Cause code indicating the event is related to the do not disturb feature.

@ CAUSE PARK

public static final int CAUSE_PARK
Cause code indicating the event is related to the park feature.

9 CAUSE_REDIRECTED

public static final int CAUSE REDI RECTED
Cause code indicating the event is related to the redirect feature.

@ CAUSE_REORDER_TONE

public static final int CAUSE_REORDER TONE
Cause code indicating that the call encountered areorder tone.

9 CAUSE_TRANSFER

public static final int CAUSE TRANSFER
Cause code indicating the event is related to the transfer feature.

- CAUSE_TRUNKS BUSY

public static final int CAUSE TRUNKS BUSY
Cause code indicating that the call encountered the "al trunks busy" condition.

@ CAUSE_UNHOLD

public static final int CAUSE_UNHOLD
Cause code indicating the event is related to the unhold feature.

MeEhods

< getCallControlCause

public abstract int getCall Control Cause()

Returnsthe call control package cause associated with the event. The cause values are integer constants defined in thisinterface. This
method may also returns the Ev. CAUSE_NORMAL and the Ev. CAUSE UNKNOWN values as defined in the core package.

Returns:
s The call control package cause of the event.

Al l Packages Thi s Package Previous Next

Al'l Packages This Package Previous Next

Interface
javax.telephony.callcontrol.events.CallCtITermConnBridgedEv

public interface CallCtITermConnBridgedEv
extends CallCtITermConnEv

TheCal | Ct| Ter mConnBr i dgedEv interface indicates that the call control package state of the Terminal Connection is now

Cal | Cont rol Ter mi nal Connect i on. BRI DGED. Thismethod Cal | Cont r ol Ter m nal Connecti on. get Cal | Control St at e() returns
the current state. Thisinterface extendsthe Cal | Ct | Ter nConnEv interface and isreported viathe Cal | Gbser ver . cal | ChangedEvent ()
method. The observer object must also implement the Cal | Cont r ol Cal | Cbser ver interfaceto signa itisinterested in call control package events.

This interface supports no additional methods.
See Also:
CallObserver, Termina Connection, Call Control Terminal Connection, Call Control CallObserver, CallCtl TermConnEv

Variable Index

Eventid

Variables

@D

public static final int ID
Eventid

Al Packages This Package Previous Next

Al |l Packages This Package Previous Next

Interface
javax.telephony.callcontrol.events.CallCtiITermConnDroppedEv

public interface CallCtITermConnDroppedEv
extends CallCtITermConnEv

The Cal | Ct | Ter nConnDr oppedEv interface indicates that the call control package state of the Terminal Connection is now

Cal | Cont r ol Ter ni nal Connect i on. DROPPED. This method Cal | Cont r ol Ter mi nal Connecti on. get Cal | Control St at e() returnsthe
current state. This interface extendsthe Cal | Ct | Ter mConnEv interface and isreported viathe Cal | Gbser ver. cal | ChangedEvent () method.
The observer object must also implement the Cal | Cont r ol Cal | Obser ver interfaceto signa it isinterested in call control package events.

Thisinterface supports no additional methods.
See Also:
CallObserver, Terminal Connection, CallControl Terminal Connection, CallControl CallObserver, CallCtI TermConnEv

Variable [ndex

Event id

Vvariables

@D

public static final int ID
Event id

Al | Packages This Package Previous Next

Al l Packages Thi s Package Previous Next

Interface
javax.telephony.callcontrol.events.CallCtITermConnEv

public interface CallCtITermConnEv
extends CallCtlCallEv, TermConnEv

TheCal | Ct | Ter mConnEyv interfaceis the base interface for al call control package Termina Connection-related events. All events which
pertaintothe Cal | Cont r ol Ter m nal Connect i on interface must extend this interface. Events which extend this interface are reported via
theCal | Gbserver. cal | ChangedEvent () method. The observer object must also implement the Cal | Cont r ol Cal | Cbser ver
interfaceto signal it isinterested in call control package events. Thisinterface extendsboththeCal | Ct | Cal | Ev and core Ter nConnEv
interfaces.

A number of event interfaces defined in this package extend this interface. Each of these events conveys a change in the call control package state
of the Terminal Connection. The event interfaces which extend thisinterface are: Cal | Ct | Ter nConnBr i dgedEv,

Cal | Ct| Ter nConnDr oppedEv, Cal | Ct | Ter mConnHel dEv, Cal | Ct | Ter nConnl nUseEv, Cal | Ct | Ter nConnRi ngi ngEv,

Cal | ¢t | Ter nConnTal ki ngEv, and Cal | Ct | Ter mConnUnknownEv

This interface supports no additional methods.

See Also:

Terminal Connection, CallObserver, TermConnEv, CallControl Terminal Connection, CallControl CallObserver, CallCtICallEv,
CdlCtlTermConnBridgedEv, CallCtlTermConnDroppedEv, CallCtlTermConnHeldEv, CallCtl TermConnlnUseEyv,
CallCtITermConnRingingEv, CallCtITermConnTalkingEv, CalCtlTermConnUnknownEv

Al |l Packages Thi s Package Previous Next

Al l Packages Thi s Package Previous Next

Interface
javax.telephony.callcontrol.events.CallCtITermConnHeldEv

public interface CallCtITermConnHeldEv
extends CallCtITermConnEv

TheCal | Ct | Ter mConnHel dEv interface indicates that the call control package state of the Terminal Connection is now

Cal | Cont r ol Ter m nal Connecti on. HELD. Thismethod Cal | Cont r ol Ter ni nal Connecti on. get Cal | Control State()
returns the current state. Thisinterface extendsthe Cal | Ct | Ter nConnEv interface and is reported viathe

Cal | Observer. cal | ChangedEvent () method. The observer object must also implement the Cal | Cont r ol Cal | Cbser ver interfaceto
signal it isinterested in call control package events.

This interface supports no additional methods.
See Also:
CallObserver, Termina Connection, CallControl Termina Connection, Call Control CallObserver, CallCtlITermConnEv

Variable [Hdex

Event id

Variables

@D

public static final int ID
Eventid

Al l Packages Thi s Package Previous Next

Al | Packages Thi s Package Previous Next

Interface
javax.telephony.callcontrol.events.CallCtiITermConninUseEv

public interface CallCtITermConnl nUseEv
extends CallCtlTermConnEv

TheCal | & | Ter nConnl nUseEyv interface indicates that the call control package state of the Terminal Connection is now

Cal | Cont r ol Ter m nal Connecti on. | NUSE. This method Cal | Cont r ol Ter m nal Connecti on. get Cal | Control St at e()
returns the current state. Thisinterface extendsthe Cal | Ct | Ter nConnEv interface and is reported viathe

Cal | Gbserver. cal | ChangedEvent () method. The observer object must also implement the Cal | Cont r ol Cal | Cbser ver interfaceto
signal it isinterested in call control package events.

This interface supports no additional methods.
See Also:
CalObserver, Terminal Connection, Call Control Terminal Connection, Call Control CallObserver, CallCtlITermConnEv

Variable [Hdex

Eventid

Variables

@D

public static final int ID
Event id

Al l Packages Thi s Package Previous Next

All Packages This Package Previous Next

Interface
javax.telephony.callcontrol.events.CallCtiITermConnRingingEv

public interface CallCtITermConnRingingEv
extends CallCtI TermConnEv

TheCal | Ct | Ter mConnRi ngi ngEv interface indicates that the call control package state of the Terminal Connection is now

Cal | Cont rol Ter mi nal Connecti on. Rl NG NG Thismethod Cal | Cont r ol Ter mi nal Connecti on. get Cal | Control St at e() returns
the current state. Thisinterface extendsthe Cal | Ct | Ter mConnEv interface and isreported viathe Cal | Gbser ver. cal | ChangedEvent ()
method. The observer object must al'so implement the Cal | Cont r ol Cal | Gbser ver interfaceto signal it isinterested in call control package events.

Thisinterface supports no additional methods.
See Also:
CallObserver, Termina Connection, CallControl Terminal Connection, CallControl Call Observer, CallCtlTermConnEv

Variable [Hdex

Eventid

Variables

@D

public static final int ID
Event id

All Packages This Package Previous Next

Al | Packages Thi s Package Previous Next

Interface
javax.telephony.callcontrol.events.CallCtiITermConnTalkingEv

public interface CallCtITermConnTalkingEv
extends CallCtITermConnEv

TheCal | Ct| Ter nConnTal ki ngEv interface indicates that the call control package state of the Terminal Connection is now

Cal | Cont r ol Ter mi nal Connecti on. TALKI NG Thismethod Cal | Cont r ol Ter m nal Connecti on. get Cal | Control St at e() returns
the current state. Thisinterface extendsthe Cal | Ct | Ter mConnEv interface and isreported viathe Cal | Cbser ver. cal | ChangedEvent ()
method. The observer object must also implement the Cal | Cont r ol Cal | Cbser ver interfaceto signa it isinterested in call control package events.

This interface supports no additional methods.
See Also:
CadllObserver, Termina Connection, CallControl Terminal Connection, Call Control CallObserver, CallCtlTermConnEv

Variable [Hdex

Eventid

Variables

@D

public static final int ID
Event id

Al |l Packages This Package Previous Next

Al l Packages This Package Previous Next

Interface
javax.telephony.callcontrol.events.CallCtiITermConnUnknownEv

public interface CallCtlITermConnUnknownEv
extends CallCtl TermConnEv

TheCal | Ct | Ter nConnUnknownEv interface indicates that the call control package state of the Termina Connection is now

Cal | Cont r ol Ter m nal Connecti on. UNKNOAN. Thismethod Cal | Cont r ol Ter mi nal Connecti on. get Cal | Control St at e() returnsthe
current state. Thisinterface extendsthe Cal | Gt | Ter nConnEv interface and is reported viathe Cal | Qbser ver. cal | ChangedEvent () method. The
observer object must also implement the Cal | Cont r ol Cal | Cbser ver interfaceto signa it isinterested in call control package events.

Thisinterface supports no additional methods.
See Also:
CallObserver, Termina Connection, CallControl Termina Connection, Call Control CallObserver, CalCtlTermConnEv

Variable [Hdex

Event id

Variables

@D

public static final int ID
Event id

Al Packages This Package Previous Next

Al'l Packages This Package Previous Next

Interface
javax.telephony.callcontrol.events.CallCtITermDoNotDisturbEv

public interface CallCtITermDoNotDisturbEv
extends CallCtI TermEv

TheCal | Ct| Ter mDoNot Di st ur bEv interface indicates the state of the do not disturb feature has changed for the Terminal. This interface extends the
Cal | | Ter nEv interface and isreported viathe Ter mi nal Cbser ver . t er m nal ChangedEvent () method. The observer object must also
implement the Cal | Cont r ol Ter m nal Gbser ver interfaceto signd it isinterested in call control package events.
This interface supports a single method which returns the current state of the do not disturb feature.
See Also:

Terminal, Terminal Observer, CallControl Terminal, CallControl Terminal Observer, CallCtlTermEv

Variable [ndex

Event id

Method Index,

@ getDoNotDisturbState()

Returns true if the do not disturb feature is activated, false otherwise.

Variables

@D

public static final int ID
Event id

MeFhods

- getDoNotDisturbState

publi c abstract bool ean get DoNot Di sturbState()
Returns true if the do not disturb feature is activated, false otherwise.
Returns:
Trueif the do not disturb feature is activated, false otherwise.

Al'l Packages This Package Previous Next

Al l Packages Thi s Package Previous Next

Interface javax.telephony.callcontrol.events.CallCtiITermEv

public interface CallCtITermEv
extends CallCtIEv, TermEv

TheCal | Ct | Ter nEv interface isthe base interface for all call control package Terminal-related events. All events which pertain to the
Cal | Cont r ol Ter m nal interface must extend this interface. Events which extend this interface are reported via the

Ter mi nal Cbserver. t erm nal ChangedEvent () method. The observer object must also implement the

Cal | Cont r ol Ter mi nal Cbser ver interfaceto signal it isinterested in call control package events. Thisinterface extends both the
Cal | Ct| Ev and Ter nEv interfaces.

The only event defined in the call control package for the Terminal isthe Cal | Ct | Ter nDoNot Di st ur bEv.

This interface supports no additional methods.
See Also:
Terminal, Terminal Observer, TermEv, Call Control Terminal, Call Control Termina Observer, CallCtlTermDoNotDisturbEv, CallCtIEv

Al |l Packages Thi s Package Previous Next

Al l Packages

package javax.telephony.capabilities

Interface [ndex

o AddressCapabilities

o CallCapabilities
« ConnectionCapabilities

o ProviderCapabilities

o Terminal Capabilities

« Terminal ConnectionCapabilities

Al l Packages Thi s Package Previous Next

Interface javax.telephony.capabilities.AddressCapabilities

public interface Addr essCapabilities
The Addr essCapabi | i ti es interface represents the initial capabilities interface for the Address. Thisinterface supports basic queries for the
core package.

Applications obtain the static Address capabilitiesviathe Pr ovi der . get AddressCapabilities() nmethod, and the dynanic
capabilities via the Address.getCapabilities() method. This interface is used to represent both
static and dynam c capabilities.

Any package which extends the core Address interface should also extend this interface to provide
additional capability queries for that particul ar package.
See Al so:

Provi der, Address

Method [rndex

i sQbservabl e()

Returns true if this Address can be observed, fal se otherw se.

MeEhods

o i sCbhservabl e

public abstract bool ean i sChservabl e()
Returns true if this Address can be observed, fal se otherw se.
Ret ur ns:
True if this Address can be observed, false otherw se.

Al |l Packages Thi s Package Previous Next

Al l Packages Thi s Package Previous Next

Interface javax.telephony.capabilities.CallCapabilities

public interface CallCapabilities

The Cal | Capabi | i ti es interface representstheinitia capabilities interface for the Call. This interface supports basic queries for the core
package.

Applications obtain the static Call capabilitiesviathe Pr ovi der . get Cal | Capabiliti es() method, and the dynanic
capabilities via the Call.getCapabilities() method. This interface is used to represent both
static and dynam c capabilities.

Any package which extends the core Call interface should also extend this interface to provide
additional capability queries for that particul ar package.
See Al so:

Provi der, Call

Method [rndex

canConnect ()

Returns true if the application can invoke Call.connect(), false otherwi se.
@ i sohservabl e()

Returns true if this Call can be observed, fal se otherw se.

MeEhods

o canConnect

public abstract bool ean canConnect ()
Returns true if the application can invoke Call.connect(), false otherwi se.
Ret ur ns:
True if the application can performa connect, false otherw se.

o i sCbhservabl e

public abstract bool ean i sQhservabl e()
Returns true if this Call can be observed, fal se otherw se.
Ret ur ns:
True if this Call can be observed, false otherw se.

Al |l Packages Thi s Package Previous Next

Al l Packages Thi s Package Previous Next

Interface
javax.telephony.capabilities.ConnectionCapabilities

public interface ConnectionCapabilities
The Connect i onCapabi | i ti es interface representstheinitial capabilitiesinterface for the Connection. This interface supports basic queries
for the core package.

Applications obtain the static Connection capabilities viathe Pr ovi der . get Connecti onCapabi liti es() nethod, and the
dynani c capabilities via the Connection.getCapabilities() nethod. This interface is used to
represent both static and dynam c capabilities.

Any package whi ch extends the core Connection interface should also extend this interface to
provi de additional capability queries for that particul ar package.
See Al so:

Provi der, Connection

Method [rndex

@ canDi sconnect ()

Returns true if the application can invoke Connecti on. di sconnect ()perform a di sconnect(),
fal se otherw se.

MeEhods

] canDi sconnect

public abstract bool ean canbi sconnect ()

Returns true if the application can invoke Connecti on. di sconnect ()perform a di sconnect(),
fal se otherw se.

Ret ur ns:
True if the application can disconnect, false otherw se.

Al l Packages Thi s Package Previous Next

Al l Packages Thi s Package Previous Next

Interface javax.telephony.capabilities.ProviderCapabilities

public interface Provider Capabilities
TheProvi der Capabi | i ti es interface representsthe initial capabilities interface for the Provider. This interface supports basic queries for the
core package.

Applications obtain the static Provider capabilities viathe Pr ovi der . get Provi der Capabi liti es() nethod, and the dynamc
capabilities via the Provider.getCapabilities() nethod. This interface is used to represent both
static and dynam c capabilities.

Any package which extends the core Provider interface should also extend this interface to provide
additional capability queries for that particul ar package.

See Al so:
Pr ovi der

Method [rndex

i sQbservabl e()

Returns true if this Provider can be observed, false otherw se.

MeEhods

o i sCbhservabl e

public abstract bool ean i sChservabl e()
Returns true if this Provider can be observed, false otherw se.
Ret ur ns:
True if this Provider can be observed, fal se otherwi se.

Al |l Packages Thi s Package Previous Next

Al l Packages Thi s Package Previous Next

Interface javax.telephony.capabilities. TerminalCapabilities

public interface Ter minalCapabilities
The Ter m nal Capabi | i ti es interface representstheinitial capabilitiesinterface for the Terminal. This interface supports basic queries for
the core package.

Applications obtain the static Terminal capabilities viathe Pr ovi der . get Ter mi nal Capabilities() method, and the dynanic
capabilities via the Term nal.getCapabilities() nethod. This interface is used to represent both
static and dynam c capabilities.

Any package which extends the core Ternminal interface should also extend this interface to provide
additional capability queries for that particul ar package.

See Al so:
Provi der, Term nal

Method [rndex

i sQbservabl e()

Returns true if this Termnal is observable, false otherw se.

MeEhods

o i sCbhservabl e

public abstract bool ean i sChservabl e()
Returns true if this Term nal is observable, false otherw se.
Ret ur ns:
True if this Terminal is observable, false otherwi se.

Al |l Packages Thi s Package Previous Next

Al |l Packages This Package Previous Next

Interface
javax.telephony.capabilities.TerminalConnectionCapabilities

public interface T erminalConnectionCapabilities
TheTer mi nal Connecti onCapabi |l iti es interface representstheinitial capabilities interface for the Terminal Connection. Thisinterface
supports basic queries for the core package.

Applications obtain the static Terminal Connection capabilitiesviathe Pr ovi der . get Ter mi nal Connecti onCapabi lities() nethod,
and the dynami c capabilities via the Terninal Connection. getCapabilities() nethod. This interface is
used to represent both static and dynami c capabilities.

Any package whi ch extends the core Term nal Connection interface should also extend this interface to
provi de additional capability queries for that particul ar package.

See Al so:
Provi der, Tern nal Connecti on

Method Index

@ canAnswer ()

Returns true if the application can invoke Terni nal Connecti on. answer ()
, false otherw se.

MeEhods

] canAnswer

public abstract bool ean canAnswer ()
Returns true if the application can invoke Termn nal Connection. answer ()
, false otherw se.
Ret ur ns:
True if the application can answer, false otherw se.

Al |l Packages This Package Previous Next

Al |l Packages

package javax.telephony.events

Interface [ndex

o AddrEv

« AddrObservationEndedEv
« CallActiveEv

. CalEv

« Cadllinvalidev

« CallObservationEndedEv
« ConnAlertingEv

« ConnConnectedEv

« ConnCreatedEv

« ConnDisconnectedEv

« ConnkEv
o ConnFailedEv
o ConnlnProgressev

o ConnUnknownEv

- Bv

- ProvEv

« ProvinServiceEv

« ProvObservationEndedEv
o ProvOutOfServiceEv

« ProvShutdownEv

o« TermConnActiveEv
o TermConnCreatedEv

o TermConnDroppedEv

o« TermConnEv
o TermConnPassiveEv

o« TermConnRingingEv

o TermConnUnknownEv

e TermEv

o TermObservationEndedEv

Al l Packages Thi s Package Previous Next

Interface javax.telephony.events.AddrEv

public interface Addr Ev
extends Ev

The Addr Ev interface is the base interface for all Address- related events. All events which pertain to the Address object must extend this
interface. Events which extend this interface are reported viathe Addr essObser ver interface.

The only event defined in the core package for the Addressisthe Addr Cbser vat i onEndedEv.

The Addr Ev. get Addr ess() method on thisinterface returns the Address associated with the Address event.
See Also:
AddrObservationEndedEv, Ev, AddressObserver, Address

Method [rndex

@ getAddress()
Returns the Address associated with this Address event.

MeEHhods

@ getAddress

public abstract Address get Address()
Returns the Address associated with this Address event.
Returns:
The Address associated with this event.

Al l Packages Thi s Package Previous Next

Al l Packages Thi s Package Previous Next

Interface javax.telephony.events.AddrObservationEndedEv

public interface Addr ObservationEndedEv
extends AddrEv

The Addr Qbser vat i onEndedEv event indicates that the application will no |onger receive Address
events on the instance of the AddressCbserver. This interface extends the AddrEv interface and is
reported on the AddressChserver interface.

See Al so:
Addr Ev, Addr essCbserver

Variable [ndex

Variables
@D

public static final int ID
Event id

Al l Packages Thi s Package Previous Next

Al l Packages Thi s Package Previous Next

Interface javax.telephony.events.CallActiveEv

public interface Call ActiveEv
extends CallEv

TheCal | Act i veEv interfaceindicates that the state of the Call object has changed to Cal | . ACTI VE. Thisinterface extendsthe Cal | Ev
interface and isreported viathe Cal | Cbser ver interface.

See Also:
Call, CdllObserver, CalEv

Variable Index

Event id

Variables

@D

public static final int ID
Eventid

Al |l Packages Thi s Package Previous Next

Al l Packages Thi s Package Previous Next

Interface javax.telephony.events.CallEv

public interface CallEv
extends Ev

The Cal | Ev interface isthe base interface for al Call-related events. All events which pertain to the Call object must extend this interface. Events
which extend this interface are reported viathe Cal | Cbser ver interface.

The core package defines events which are reported when the Call changes state. These eventsare: Cal | Act i veEv andCal | | nval i dEv.
Also, the core package definesthe Cal | Gbser vat i onEndedEv event which is sent when the Call becomes unobservable.

The ConnEv and Ter nConnEv events extend this interface. This reflects the fact that all Connection and Terminal Connection events are reported
viatheCal | Cbser ver interface.

TheCal | Ev. get Cal | () method on this interface returns the Call associated with the Call event.
See Also:
CdlActiveEv, CdllnvalidEv, CalObservationEndedEv, Ev, ConnEv, TermConnEv, CallObserver, Call

Method [rndex

® getCall()
Returns the Call object associated with this Call event.

MeEHhods

@ getcall

public abstract Call getCall ()
Returns the Call object associated with this Call event.
Returns;
The Call associated with this event.

Al l Packages Thi s Package Previous Next

Al l Packages Thi s Package Previous Next

Interface javax.telephony.events.CallinvalidEv

public interface Calll nvalidEv
extends CallEv

TheCal | I nval i dEv interface indicates that the state of the Call object has changed to Cal | . | NVALI D. Thisinterface extendsthe Cal | Ev
interface and isreported viathe Cal | Cbser ver interface.

See Also:
Call, CdllObserver, CalEv

Variable Index

Event id

Variables

@D

public static final int ID
Eventid

Al |l Packages Thi s Package Previous Next

Al |l Packages This Package Previous

Interface javax.telephony.events.CallObservationEndedEv

public interface CallObser vationEndedEv
extends CallEv

TheCal | Gbservati onEndedEv event indicates that the application wll

no | onger receive Call events

on the instance of the Call Cbserver This interface extends the CallEv interface and is reported on

the Cal | Observer interface.
See Al so:
Cal |l Ev, Call Cbserver

Variable [ndex

Event id

Method [rndex

get Endedbj ect ()

This nmethod returns the object which is responsible for the observation of the call ending.

Variables

@ D

public static final int ID
Event id

Mefhods

- get Ended(bj ect

public abstract Object get EndedOnject ()

This method returns the object which is responsible for the observation of the call ending.

If this nmethod returns a Call,

the observati on ended because either the Call could no | onger

be observed or the observer was renpbved via the Call.renoveCbserver() nethod. If this nethod

returns either an Address or Term nal,

t hen additi onal

Call arrives at the returned Address or Term nal .

obsevers wil |

not be added if the

Ret ur ns:
The obj ect responsible for the observation ending for the Call

Al |l Packages Thi s Package Previous Next

Al l Packages Thi s Package Previous Next

Interface javax.telephony.events.ConnAlertingEv

public interface ConnAlertingEv
extends ConnEv

The ConnAl erti ngEv interface indicates that the state of the Connection object has changed to Connect i on. ALERTI NG. Thisinterface
extendsthe ConnEv interface and isreported viathe Cal | Gbser ver interface.

See Also:
Connection, CallObserver, ConnEv

Variable Index

Event id

Variables

@D

public static final int ID
Eventid

Al |l Packages Thi s Package Previous Next

Al l Packages Thi s Package Previous Next

Interface javax.telephony.events.ConnConnectedEv

public interface ConnConnectedEv
extends ConnEv

The ConnConnect edEv interface indicates that the state of the Connection object has changed to Connect i on. CONNECTED. Thisinterface
extendsthe ConnEv interface and isreported viathe Cal | Gbser ver interface.

See Also:
Connection, CallObserver, ConnEv

Variable Index

Event id

Variables

@D

public static final int ID
Eventid

Al |l Packages Thi s Package Previous Next

Al l Packages Thi s Package Previous Next

Interface javax.telephony.events.ConnCreatedEv

public interface ConnCreatedEv
extends ConnEv

The ConnUnknownEv interface indicates that a new Connection object has been created. Thisinterface extends the ConnEv interface and is
reported viathe Cal | Gbser ver interface.

See Also:
Connection, CallObserver, ConnEv

Variable Index

Event id

Variables

@D

public static final int ID
Eventid

Al |l Packages Thi s Package Previous Next

Al l Packages Thi s Package Previous Next

Interface javax.telephony.events.ConnDisconnectedEyv

public interface ConnDisconnectedEv
extends ConnEv

The ConnDi sconnect edEv interface indicates that the state of the Connection object has changed to Connect i on. DI SCONNECTED. This
interface extends the ConnEv interface and is reported viathe Cal | Cbser ver interface.

See Also:
Connection, CallObserver, ConnEv

Variable Index

Event id

Variables

@D

public static final int ID
Eventid

Al |l Packages Thi s Package Previous Next

Al l Packages Thi s Package Previous Next

Interface javax.telephony.events.Connkv

public interface ConnEv
extends CallEv

The ConnEv interface is the base event interface for all Connection-related events. All events which pertain to the Connection object must extend
thisinterface. Thisinterface extendsthe Cal | Ev interface and therefore is reported viathe Cal | Gbser ver interface.

The core package defines events which are reported when the Connection changes state. These events are: Connl nPr ogr essEv,
ConnAl erti ngEv, ConnConnect edEv, ConnDi sconnect edEv, ConnFai | edEv, and ConnUnknownEv. Also, the ConnCr eat edEv
is sent when anew Connection is created.

The ConnEv. get Connecti on() method on thisinterface returns the Connection associated with this Connection event.
See Also:

Connection, CallObserver, CallEv, ConnCreatedEv, ConnlnProgressEv, ConnAlertingEv, ConnConnectedEv, ConnDisconnectedEyv,
ConnFailedEv, ConnUnknownEv

Method [rndex

@ getConnection()
Returns the Connection associated with this Connection event.

MeEHhods

@ getConnection

publi c abstract Connection getConnection()
Returns the Connection associated with this Connection event.
Returns:
The Connection associated with this event.

Al Packages Thi s Package Previous Next

Al l Packages Thi s Package Previous Next

Interface javax.telephony.events.ConnFailedEv

public interface ConnFailedEv
extends ConnEv

The ConnFai | edEv interface indicates that the state of the Connection object has changed to Connect i on. FAI LED. Thisinterface extends
the ConnEv interface and isreported viathe Cal | Gbser ver interface.

See Also:
Connection, CallObserver, ConnEv

Variable Index

Event id

Variables

@D

public static final int ID
Eventid

Al |l Packages Thi s Package Previous Next

Al l Packages Thi s Package Previous Next

Interface javax.telephony.events.ConninProgresskv

public interface ConnlnProgressEv
extends ConnEv

The Connl nPr ogr essEv interface indicates that the state of the Connection object has changed to Connect i on. | N PROGRESS. This
interface extends the ConnEv interface and is reported viathe Cal | Cbser ver interface.

See Also:
Connection, CallObserver, ConnEv

Variable Index

Event id

Variables

@D

public static final int ID
Eventid

Al |l Packages Thi s Package Previous Next

Al l Packages Thi s Package Previous Next

Interface javax.telephony.events.ConnUnknownEv

public interface ConnUnknownEv
extends ConnEv

The ConnUnknownEv interface indicates that the state of the Connection object has changed to Connect i on. UNKNOWN. This interface extends
the ConnEv interface and isreported viathe Cal | Cbser ver interface.

See Also:
Connection, CallObserver, ConnEv

Variable Index

Event id

Variables

@D

public static final int ID
Eventid

Al |l Packages Thi s Package Previous Next

Al l Packages Thi s Package Previous Next

Interface javax.telephony.events.Ev

public interface Ev
Introduction

The Ev interface isthe parent of all JTAPI event interfaces. All JTAPI event interfaces extend thisinterface, either directly or indirectly. Event
interfaces within each JTAPI package are organized in a hierarchical fashion. The architecture of the core package event hierarchy is described
later.

The JTAPI event system notifies applications when changes in various JTAPI object occur. Each individual change in an object is represented by
an event sent to the appropriate observer. Because severa changes may happen to an object at once, events are delivered as a batch. A batch of

events represents a series of events and changes to the call model which happened exactly at the same time. For this reason, events are delivered to
observers as arrays.

Event IDs

Each event carries a corresponding identification integer. The Ev. get | D() method returns this identification number for each event. The actual
event identification integer is defined in each of the specific event interfaces. Each event interface must carry auniqueid.

Cause Codes

Each events carries a cause or areason why the event happened. The Ev. get Cause() method returns this cause value. The different types of
cause values are a so defined in this interface.

Core Package Event Hierarchy

The core package defines a hierarchy of event interfaces. The base of this hierarchy isthe Ev interface. Directly extending this interface are those
events interfaces for each object which supports an observer: Pr ovEv, Cal | Ev, Addr Ev, and Ter nEv.

Since Connection and Termina Connection events are reported viathe Cal | Cbser ver interface, the ConnEv and Ter mConnEv interfaces
extendsthe Cal | Ev interface.

The following diagram illustrates the compl ete core package event structure.

AddEer T ioerErr ol Ber Taronber
Tronlolerrica B
FaoerCuah O i B Terreisbre mraicnE rcledE
TParShoabcdome ol e ¥
TFroarThearration Brdled B
ddrTbeerraticrBock
A dE-r | T
Coadle o aBrr
CalllreralidBer
Cadkobere mracicn B rodecdB
CongCreskedEy Tt oo i Evr
Lt N E N Te oreesouney oy o Eer
Conndi i L1 Tee e o e Enr
ST angecte A Terressoaurd Todrose ol
o Trbocsen B
CordPadled Ber
Meta Codes

TheEv. get Met aCode() method returns the meta code for the event. Events are grouped together using meta codes to provide a higher-level
description of an update to the call model. Since events represent singular changes in one particular object in the call model, it may be difficult for
the application to infer a higher-level interpretation of several of these singular events. Meta codes exist on events to assist the application in this

regard.

Events which belong to the same higher-level action and contain the same meta code are reported consecutively in an event batch sent to an
observer. In fact, multiple meta code grouping of events may exist in asingle event batch. In that case, the Ev. i sNewivet aEvent () methodis
used to indicate the beginning of a new meta code event grouping. This method a so indicates whether a meta code grouping exists across event
batch boundaries. That is, events belonging to the same meta code grouping may be delivered in two contiguous event batches.

There are five types of meta codes which pertain to individual calls, and two which pertain to amutli-call action, and two miscellaneous meta
codes. The five meta codes which pertain to individua cals are:

Ev.META_CALL_STARTING

EV.META_CALL_PROGRESS

EV.META_CALL_ADDING_PARTY

Ev.META_CALL_REMOVING_PARTY

Ev.META_CALL_ENDING

Indicates that a new active call has been presented to the application, either by an application creating a
call and performing an action on it, or by an incoming call to an object being observed by the
application.

Indicates that the objects belonging to a call have changed state, with the exception of Connections
moving to Connect i on. DI SCONNECTED. For example, when a remote party answers a telephone
call and the corresponding Connection movesinto the Connect i on. CONNECTED state, thisisthe
meta code associated with the resulting batch of events.

Indicates that a party has been added to the call. A "party" corresponds to a Connection being added.
Note that if a TerminalConnection is added, it carries ameta code of Ev. META_CALL_PROGRESS.
Indicates that a party (i.e. Connection) has been removed from the call by moving into the

Connect i on. DI SCONNECTED state.

Indicates that an entire telephone call has ended, which implies the call has moved into the

Cal | . I NVALI D state and all of its Connections have moved into the

Connect i on. DI SCONNECTED state.

The two meta codes pertaining to a mutli-call actions are as follows:

Ev.META_CALL_MERGING

Ev.META_CALL_TRANSFERRING

Indicates that a party has moved from one call to another as part of the two calls merging. A common
example is when two telephone calls are conferenced.

Indicates that a party has moved from one call to another as part of one call being transferred to another.
Thediffersfrom Ev. META CALL_MERG NG because a common party leaves both calls.

The two miscellaneous meta codes are as follows:

Indicates that the sequence of events are part of a"snapshot” given to the application to bring it up-to-date with the
current state of the call model.

Ev.META_UNKNOWN Indicates that the meta code is unknown for the event.

Ev.META_SNAPSHOT

Variable [Hdex

@ CAUSE_CALL_CANCELLED

Cause code indicating the user has terminated call without going on-hook.
» CAUSE_DEST NOT_OBTAINABLE

Cause code indicating the destination is not available.
@ CAUSE INCOMPATIBLE DESTINATION

Cause code indicating that a call has encountered an incompatible destination.
@ CAUSE_LOCKOUT

Cause code indicating that a call encountered inter-digit timeout while dialing.
CAUSE NETWORK_CONGESTION

Cause code indicating call encountered network congestion.
CAUSE NETWORK NOT OBTAINABLE

Cause code indicating call could not reach a destination network.
@ CAUSE NEW CALL

Cause code indicating that a new call.
* CAUSE_NORMAL

Cause code indicating normal operation
CAUSE RESOURCES NOT AVAILABLE

Cause code indicating resources were not available.
@ CAUSE_SNAPSHOT

Cause code indicating that the event is part of a snapshot of the current state of the call.
CAUSE_ UNKNOWN

Cause code indicating the cause was unknown
@ META CALL ADDITIONAL PARTY

Meta code description for the addition of a party to call.
@ META_CALL _ENDING

Meta code description for the entire call ending.
* META CALL _MERGING

Meta code description for an action of merging two calls.
META CALL PROGRESS

Meta code description for the progress of a call.
@ META CALL REMOVING PARTY

Meta code description for a party leaving the call.
* META CALL_STARTING

Meta code description for the initiation or starting of acall.
@ META CALL TRANSFERRING

Meta code description for an action of transferring one call to another.
@ META SNAPSHOT

Meta code description for a snapshot of events.
* META UNKNOWN

Meta code is unknown.

Method Index

@ getCause()

Returns the cause associated with this event.
® get! D()

Returnsthe id of event.

@ getM etaCode()
Returns the meta code associated with this event.

getObser ved()

Returns the object that is being observed. Depr ecated.
2 isNewM etaEvent()

Returns true when this event is the start of a meta code group.

Variables

@ CAUSE NORMAL

public static final int CAUSE_ NORVAL
Cause code indicating normal operation

@ CAUSE_ UNKNOWN

public static final int CAUSE UNKNOMN
Cause code indicating the cause was unknown

- CAUSE_CALL_CANCELLED

public static final int CAUSE CALL_CANCELLED
Cause code indicating the user has terminated call without going on-hook.

@ CAUSE DEST_NOT_OBTAINABLE

public static final int CAUSE DEST_NOT_OBTAI NABLE
Cause code indicating the destination is not available.

@ CAUSE_INCOMPATIBLE_DESTINATION

public static final int CAUSE | NCOVPATI BLE DESTI NATI ON
Cause code indicating that a call has encountered an incompatible destination.

@ cAUSE LockouT

public static final int CAUSE LOCKOUT
Cause code indicating that a call encountered inter-digit timeout while dialing.

@ CAUSE NEW _CALL

public static final int CAUSE NEW CALL
Cause code indicating that a new call.

@ CAUSE_RESOURCES NOT_AVAILABLE

public static final int CAUSE_RESOURCES NOT_AVAI LABLE
Cause code indicating resources were not available.

-+ CAUSE_NETWORK_CONGESTION

public static final int CAUSE_NETWORK_ CONGESTI ON
Cause code indicating call encountered network congestion.

@ CAUSE_NETWORK_NOT_OBTAINABLE

public static final int CAUSE NETWORK NOT_OBTAI NABLE
Cause code indicating call could not reach a destination network.

@ CAUSE_SNAPSHOT

public static final int CAUSE SNAPSHOT
Cause code indicating that the event is part of a snapshot of the current state of the call.

@ META_CALL_STARTING

public static final int META CALL_STARTI NG

Meta code description for the initiation or starting of acall. Thisimplies that the call isanew call and in the active state with at least one
Connection added to it.

@ META CALL_PROGRESS

public static final int META CALL_ PROGRESS

Meta code description for the progress of a call. Thisindicates an update in state of certain objectsin the call, or the addition of
Terminal Connections (but not Connections).

@ META CALL_ADDITIONAL_PARTY

public static final int META CALL_ADDI Tl ONAL_ PARTY
Meta code description for the addition of a party to call. Thisincludes adding a connection to the call.

@ META_CALL_REMOVING_PARTY

public static final int META CALL_REMOVI NG PARTY

Meta code description for a party leaving the call. This includes exactly one Connection moving to the Connect i on. DI SCONNECTED
State.

@ META_CALL_ENDING

public static final int META CALL_ENDI NG

Meta code description for the entire call ending. Thisincludesthe call goingto Cal | . | NVALI D, al of the Connections moving to the
Connect i on. DI SCONNECTED state.

@ META_CALL_MERGING

public static final int META CALL MERG NG

Meta code description for an action of merging two calls. Thisinvolves the removal of one party from one call and the addition of the
same party to another call.

- B ETA_CALL_TRANSFERRING

public static final int META CALL_TRANSFERRI NG

Meta code description for an action of transferring one call to another. Thisinvolves the removal of parties from one call and the addition
to another call, and the common party dropping off completely.

@ META_SNAPSHOT

public static final int META SNAPSHOT
Meta code description for a snapshot of events.

@ META _UNKNOWN

public static final int META UNKNOMW
Meta code is unknown.

MeEHhods

@ getCause

public abstract int getCause()

Returns the cause associated with this event. Every event has a cause. The various cause values are defined as public static final variables
in thisinterface.

Returns:
The cause of the event.

- getM etaCode

public abstract int getMetaCode()
Returns the meta code associated with this event. The meta code provides a higher-level description of the event.
Returns:
The meta code for this event.

] isNewM etaEvent

public abstract bool ean i sNewivet aEvent ()

Returns true when this event is the start of a meta code group. This method is used to distinguish two contiguous groups of events bearing
the same meta code.

Returns:
Trueif this event represents a new meta code grouping, false otherwise.

@ getiD

public abstract int getlD()

Returnsthe id of event. Every event has an id. The defined id of each event matches the object type of each event. The defined id allows
applications to switch on event id rather than having to use multiple "if instanceof” statements.

Returns:
Theid of the event.

- getObserved

public abstract Ohject getObserved()

Note: getObserved() is deprecated. Snce JTAPI v1.2 Thisinterface no longer needs to supply thisinformation and may return null.
Returns the object that is being observed.

Note: Implementation need no longer supply thisinformation. The Cal | Gbsevat i onEndedEv. get Gbser vedOhj ect () method
has been added which returns related information. This method may return null in JTAPI v1.2 and later.

Returns:
The object that is being observed.

Al |l Packages Thi s Package Previous Next

Al l Packages Thi s Package Previous Next

Interface javax.telephony.events.ProvEyv

public interface ProvEv
extends Ev

The Pr ovEv interface is the base interface for al Provider- related events. All events which pertain to the Provider object must extend this
interface. Events which extend this interface are reported viathe Pr ovi der Gbser ver interface.

The core package defines events which are reported when the Provider changes state. These eventsare: Pr ovl nSer vi ceEv,

Pr ovQut OF Ser vi ceEv, and Pr ovShut downEv. Also, the core package definesthe Pr ovObser vat i onEndedEv event which is sent
when the Provider becomes unobservable.

The Pr ovEv. get Provi der () method on this interface returns the Provider associated with the Provider event.

See Also:

ProvinServiceEv, ProvOutOf ServiceEv, ProvShutdownEyv, ProvObservationEndedEv, Ev, ProviderObserver, Provider

MeFtnod lndex

@ getProvider()
Returns the Provider associated with this Provider event.

MeEhods

@ getProvider

public abstract Provider getProvider()
Returns the Provider associated with this Provider event.
Returns:
The Provider associated with this event.

Al l Packages Thi s Package Previous Next

Al l Packages Thi s Package Previous Next

Interface javax.telephony.events.ProvinServicekv

public interface ProvinServiceEv
extends ProvEv

ThePr ovl nSer vi ceEv interface indicates that the state of the Provider object has changed to Pr ovi der . | N_SERVI CE. Thisinterface
extendsthe Pr ovEv interface and is reported viathe Pr ovi der Cbser ver interface.

See Also:
Provider, ProviderObserver, ProvEv

Variable Index

Event id

Variables

@D

public static final int ID
Eventid

Al |l Packages Thi s Package Previous Next

Al l Packages Thi s Package Previous Next

Interface javax.telephony.events.ProvObservationEndedEv

public interface ProvObservationEndedEv
extends ProvEv

ThePr ovQbservat i onEndedEv event indicates that the application will no | onger receive Provider

events on the instance of the Provider Qoserver.

reported on the ProviderCbhserver interface.
See Al so:
ProvEv, ProviderCbserver

This interface extends the ProvEv interface and is

Variable [ndex

Variables
@D

public static final int ID
Event id

Al l Packages Thi s Package Previous Next

Al l Packages Thi s Package Previous Next

Interface javax.telephony.events.ProvOutOfServiceEkv

public interface ProvOutOfServiceEv
extends ProvEv

The Pr ovQut O Ser vi ceEv interface indicates that the state of the Provider object has changed to Pr ovi der . OQUT_OF_SERVI CE. This
interface extends the Pr ovEv interface and is reported viathe Pr ovi der Gbser ver interface.

See Also:
Provider, ProviderObserver, ProvEv

Variable Index

Event id

Variables

@D

public static final int ID
Eventid

Al |l Packages Thi s Package Previous Next

Al l Packages Thi s Package Previous Next

Interface javax.telephony.events.ProvShutdownEv

public interface ProvShutdownEv
extends ProvEv

The Pr ovShut downEv interface indicates that the state of the Provider object has changed to Pr ovi der . SHUTDOWN. This interface extends
the Pr ovEv interface and isreported viathe Pr ovi der Cbser ver interface.

See Also:
Provider, ProviderObserver, ProvEv

Variable Index

Event id

Variables

@D

public static final int ID
Eventid

Al |l Packages Thi s Package Previous Next

Al l Packages Thi s Package Previous Next

Interface javax.telephony.events. TermConnActiveEv

public interface TermConnActiveEv
extends TermConnEv

The Ter nConnAct i veEv interface indicates that the state of the Terminal Connection object has changed to
Ter mi nal Connecti on. ACTI VE. Thisinterface extendsthe Ter nConnEv interface and is reported viathe Cal | Cbser ver interface.

See Also:
Terminal Connection, CallObserver, TermConnEv

Variable Index

Event id

Variables

@D

public static final int ID
Eventid

Al |l Packages Thi s Package Previous Next

Al l Packages Thi s Package Previous Next

Interface javax.telephony.events.TermConnCreatedEv

public interface TermConnCreatedEv
extends TermConnEv

The Ter nConnDr oppedEyv interface indicates that a new Termina Connection object has been created. This interface extends the Ter nConnEv
interface and isreported viathe Cal | Cbser ver interface.

See Also:
Terminal Connection, CallObserver, TermConnEv

Variable Index

Event id

Variables

@D

public static final int ID
Eventid

Al |l Packages Thi s Package Previous Next

Al l Packages Thi s Package Previous Next

Interface javax.telephony.events. TermConnDroppedEv

public interface TermConnDroppedEv
extends TermConnEv

The Ter nConnDr oppedEv interface indicates that the state of the Terminal Connection object has changed to
Ter mi nal Connect i on. DROPPED. Thisinterface extends the Ter nConnEv interface and isreported viathe Cal | Cbser ver interface.

See Also:
Terminal Connection, CallObserver, TermConnEv

Variable Index

Event id

Variables

@D

public static final int ID
Eventid

Al |l Packages Thi s Package Previous Next

Al l Packages Thi s Package Previous Next

Interface javax.telephony.events.TermConnEv

public interface TermConnEv
extends CallEv
The Ter nConnEv interface is the base event interface for all TerminalConnection-related events. All events which pertain to the

Terminal Connection object must extend this interface. This interface extendsthe Cal | Ev interface and therefore is reported via the
Cal | Obser ver interface.

The core package defines events which are reported when the Terminal Connection changes state. These events are: Ter mConnRi ngi ngEv,
Ter mConnAct i veEv, Ter nConnPassi veEv, Ter nConnDr oppedEv, and Ter nConnUnknownEv. Also, aTer nConnCr eat edEv is
sent when anew Terminal Connection is created.

The Ter nConnEv. get Ter mi nal Connecti on() method on this interface returns the Terminal Connection associated with this
Terminal Connection event.
See Also:

Terminal Connection, CallObserver, CallEv, TermConnEv, TermConnRingingEv, TermConnActiveEv, TermConnPassiveEy,
TermConnDroppedEv, TermConnUnknownEv

Method [rndex

@ getTerminalConnection()

Returns the Terminal Connection associated with this event.

MeEHhods

@ getTerminalConnection

publi c abstract Term nal Connection get Term nal Connecti on()

Returns the Terminal Connection associated with this event.
Returns:
The Terminal Connection associated with this event.

Al l Packages Thi s Package Previous Next

Al l Packages Thi s Package Previous Next

Interface javax.telephony.events. TermConnPassiveEv

public interface TermConnPassiveEv
extends TermConnEv

The Ter nConnPassi veEv interface indicates that the state of the Terminal Connection object has changed to
Ter mi nal Connecti on. PASSI VE. Thisinterface extends the Ter nConnEv interface and isreported viathe Cal | Cbser ver interface.

See Also:
Terminal Connection, CallObserver, TermConnEv

Variable Index

Event id

Variables

@D

public static final int ID
Eventid

Al |l Packages Thi s Package Previous Next

Al l Packages Thi s Package Previous Next

Interface javax.telephony.events.TermConnRingingEv

public interface TermConnRingingEv
extends TermConnEv

The Ter nConnRi ngi ngEv interface indicates that the state of the Terminal Connection object has changed to
Ter mi nal Connecti on. Rl NG NG. Thisinterface extends the Ter nConnEv interface and isreported viathe Cal | Cbser ver interface.

See Also:
Terminal Connection, CallObserver, TermConnEv

Variable Index

Event id

Variables

@D

public static final int ID
Eventid

Al |l Packages Thi s Package Previous Next

Al l Packages Thi s Package Previous Next

Interface javax.telephony.events. TermConnUnknownEv

public interface TermConnUnknownEv
extends TermConnEv

The Ter nConnUnknownEv interface indicates that the state of the Terminal Connection object has changed to
Ter mi nal Connect i on. UNKNOMN. This interface extends the Ter nConnEv interface and isreported viathe Cal | Cbser ver interface.

See Also:
Terminal Connection, CallObserver, TermConnEv

Variable Index

Event id

Variables

@D

public static final int ID
Eventid

Al |l Packages Thi s Package Previous Next

Al l Packages Thi s Package Previous Next

Interface javax.telephony.events.TermEv

public interface TermEv
extends Ev

The Ter nEv interface is the base interface for all Terminal- related events. All events which pertain to the Terminal object must extend this
interface. Events which extend this interface are reported viathe Ter m nal Gbser ver interface.

The only event defined in the core package for the Terminal isthe Ter mObser vat i onEndedEv.

The Ter nEv. get Ter ni nal () method on thisinterface returns the Terminal associated with the Terminal event.
See Also:
TermObservationEndedEv, Ev, Termina Observer, Terminal

Method [rndex

@ getTerminal()
Returns the Terminal associated with this Termina event.

MeEHhods

@ getTerminal

public abstract Term nal getTerninal ()

Returns the Terminal associated with this Terminal event.
Returns:
The Terminal associated with this event.

Al l Packages Thi s Package Previous Next

Al l Packages Thi s Package Previous Next

Interface
javax.telephony.events.TermObservationEndedEv

public interface TermObser vationEndedEv
extends TermEv

The Ter nbser vat i onEndedEv event indicates that the application will no |onger receive Term nal
events on the instance of the Term nal Gbserver This interface extends the TernEv interface and is
reported on the Term nal Cbhserver interface.

See Al so:
Ter nEv, Term nal Qoserver

Variable [ndex

Variables
@D

public static final int ID
Event id

Al l Packages Thi s Package Previous Next

Al l Packages

package javax.telephony.media

Interface [ndex

« MediaCallObserver

o Medial erminal Connection

Al l Packages Thi s Package Previous Next

Interface javax.telephony.media.MediaCallObserver

public interface M ediaCallObser ver
extends CallObserver

The MediaCallObserver extends the Call Observer interface and reports al events pertaining to the MediaT erminal Connection object. Events for
this object are reported on this observer because, in the core, Terminal Connection events are reported on the CallObserver object.

Thisinterface does not have any methods. All events for the MediaTerminal Connection object are reported via the call ChangedEvent() method on
the CallObserver interface. All MediaTerminal Connection events, therefore, extend the core TermConnEyv interface (which extends the core CallEv
interface.

Applications which desire MediaT erminal Connection events implement this interface asa"signal” to the implementation that is wants to be sent
events for the MediaT ermina Connection object.

Al Packages Thi s Package Previous Next

Al l Packages Thi s Package Previous Next

Interface javax.telephony.media.MediaTerminalConnection

public interface M ediaT er minalConnection
extends Terminal Connection

Introduction

The MediaTerminal Connection interface extends the Termina Connection interface to add media capabilities. Media streams are associated with
the Terminal Connection object in the call model. Therefore, different Terminals which are part of the same call at the same Address may have their
own media streams. Additionality, Terminals which are part of more than one call have separate media streams for each of its calls.

The mediainterface consists of a base media APl which supports all of the various types of media-based telephony applications. A simplier,
voice-based API exist for applications which desire only the most simply voice-based media features. The base media API is still under
development. This specification only represent the voice API.

The voice API supports the following applications: routing voice data to/from the telephone line to/from a workstation's speaker of microphone;
routing voice data to/from the telephone line to/from audio files; starting and stoping of playing and recording; and DTMF tone detection.

In this specification, "playing" is defined as sending information to the telephone line. For example, an application would "play" an audio file to the
telephone line for the opposite parties to hear. The term "recording” is defines as receiving information from the telephone line. For example, an
application may "record" data from the telephone line into afile on disk.

Playing

For playing, applications may either route data from a URL with the usePlayURL () method or from the workstatation's default microphone using
the useDefaultMicrophone() method. Note that if there is more than one microphone on the workstation, then the default microphone may be set
using the javax.telephony.phone package. Applications begin playing using the startPlaying() method and stop playing using the stopPlaying()
method. If an application issues a startPlaying() after a stopPlaying(), the implementation attempts to read from the mediawhere it last | eft off, if
possible. If the application wishes to "rewind" the media to the beginning, it should re-issue the usePlayURL () method.

Recording

For recording, applications may either route datato a URL with the useRecordURL () method or to the workstation's default speaker using the
useDefaultSpeaker() method. Note that if there is more than one speaker on the workstation, then the default speaker may be set using the
javax.telephony.phone package. Applications begin recording using the startRecording() method and stop recording using the stopRecording()
method. If an application issues a startRecording() after a stopRecording(), the implementation attempts to write to the mediawhere it last |eft off,
if possible. If the application wishes to "overwrite" the media from the beginning, it should re-issue the useRecordURL () method.

Variable [Hdex

= AVAILABLE

Mediais currently available on thisterminal connection
NOACTIVITY

There is currently no activity on this Terminal Connection.
* PLAYING

Thereis currently playing on this terminal connection
@ RECORDING

Thereis currently recording on this terminal connection
@ UNAVAILABLE

Mediais currently not available on this terminal connection

Method [ndex

@ gener ateDtmf(String)
@ getM ediaAvailability()
Returns the current media availability state, either AVAILABLE or UNAVAILABLE.
@ getM ediaState()
Returns the current state of the terminal connection as a bit mask of PLAYING and RECORDING.
@ setDtmfDetection(bool ean)
@ startPlaying()
Start the playing.
@ startRecor ding()
Start the recording.
@ stopPlaying()
Stop the playing.

@ stopRecor ding()
Stop the recording.
@ useDefaultMicr ophone()

Instructs the terminal connection to use the default microphone for playing to the telephone line.
@ useDefaultSpeaker ()

Instructs the terminal connection to use the default speaker for recording from the telephone line.
» usePlayURL (URL)

Instructs the terminal connection to use afile for playing to the telephone line.
@ useRecordURL (URL)

Instructs the terminal connection to use afile for recording from the telephone line.

Variables

@ AVAILABLE

public static final int AVAILABLE
Mediais currently available on thisterminal connection

@ UNAVAILABLE

public static final int UNAVAI LABLE
Mediais currently not available on this terminal connection

@ PLAYING

public static final int PLAYING

Thereis currently playing on thisterminal connection

@ RECORDING

public static final int RECORDI NG
Thereis currently recording on this terminal connection

@ NoACTIVITY

public static final int NOACTIVITY
Thereis currently no activity on this Terminal Connection.

MeEhods

@ getMediaAvailability

public abstract int getMediaAvailability()
Returns the current media availability state, either AVAILABLE or UNAVAILABLE.
Returns:
The current availability of the media channel.

- getM ediaState

public abstract int getMedi aState()

Returns the current state of the terminal connection as a bit mask of PLAYING and RECORDING. If thereis not activity, then this
method returns Medi aTer mi nal Connecti on. NOACTI VI TY.

Returns:
The current state of playing or recording.

@ useDefaultSpeaker

public abstract void useDefaul t Speaker() throws Privil egeViol ati onExcepti on,
Resour ceUnavai | abl eExcepti on, Met hodNot Support edExcepti on

Instructs the terminal connection to use the default speaker for recording from the telephone line.
Throws: PrivilegeViolationException

Indicates the application is not permitted to direct voice mediato the default speaker.
Throws: ResourceUnavailableException

Indicates that the speaker is not currently available for use.
Throws. MethodNotSupportedException

This method is not supported by the implementation.
@ useRecordURL

public abstract void useRecordURL(URL url) throws PrivilegeViolationException,
Resour ceUnavai | abl eExcepti on, Met hodNot Support edExcepti on

Instructs the terminal connection to use afile for recording from the telephone line.
Parameters:

url - The URL-destination for the voice data for recording.
Throws: PrivilegeViolationException

Indicates the application is not permitted to use the give URL for recording.

Throws. ResourceUnavail ableException

Indicates the URL given is not available, either because the URL was invalid or a network problem occurred.
Throws: MethodNotSupportedException

This method is not supported by the implementation.

@ useDefaultM icrophone

public abstract void useDefaul tM crophone() throws PrivilegeViol ati onExcepti on,
Resour ceUnavai | abl eExcepti on, Met hodNot Support edExcepti on

Instructs the terminal connection to use the default microphone for playing to the telephone line.
Throws: PrivilegeViolationException

Indicates the application is not permitted to direct voice media from the default microphone.
Throws: ResourceUnavailableException

Indicates that the microphoneis not currently available for use.
Throws: MethodNotSupportedException

This method is not supported by the implementation.

@ usePlayURL

public abstract void usePlayURL(URL url) throws PrivilegeViol ati onExcepti on,
Resour ceUnavai | abl eExcepti on, Met hodNot Support edExcepti on

Instructs the terminal connection to use afile for playing to the telephone line.
Parameters:

url - The URL-source of the voice data to play. valid or available source of voice data.
Throws: PrivilegeViolationException

Indicates the application is not permitted to use the give URL for playing.
Throws: ResourceUnavailableException

Indicates the URL given is not available, either because the URL wasinvalid or a network problem occurred.
Throws. MethodNotSupportedException

This method is not supported by the implementation.

@ startPlaying

public abstract void startPlaying() throws MethodNot SupportedExcepti on,
Resour ceUnavai | abl eExcepti on, |nvalidStateException

Start the playing. This method returns once playing has begun, that is, when getMediaState() & PLAYING == PLAYING.
Throws. MethodNotSupportedException

The implementation does not support playing to the telephone line.
Throws. ResourceUnavailableException

Indicates playing is not able to be started because some resource is unavailable.
Throws: InvalidStateException

Indicates the Terminal Connection is not in the media channel available state.

< stopPlaying

public abstract void stopPl aying()

Stop the playing. This method returns once the playing has stopped, that is, when getMediaState() & PLAYING == 0. If playing is not
currently taking place, this method has no effect.

@ startRecording

public abstract void startRecording() throws MethodNot SupportedException,
Resour ceUnavai | abl eExcepti on, |nvalidStateException

Start the recording. This method returns once the recording has started, that is, when getMediaState() & RECORDING == RECORDING.
Throws: MethodNotSupportedException

The implementation does not support recording from the telephone line.
Throws: ResourceUnavailableException

Indicates recording is not able to be started because some resource is unavailable.
Throws: InvalidStateException
Indicates the Termina Connection is not in the media channel available state.

< stopRecording

public abstract void stopRecording()

Stop the recording. This method returns once the recording has stopped, that is, when getMediaState() & RECORDING == 0. If recording
is not currently taking place, this method has no effect.

o setDtmfDetection

public abstract void setDtnfDetection(bool ean enabl e) throws
Met hodNot Suppor t edExcepti on, Resour ceUnavail abl eException, InvalidStateException

@ gener ateDtmf

public abstract void generateDinf(String digits) throws
Met hodNot Suppor t edExcepti on, Resour ceUnavai |l abl eException, I nvalidStateException

Al |l Packages Thi s Package Previous Next

Al l Packages

package javax.telephony.media.capabilities

Interface [ndex

o MediaTl erminal ConnectionCapabilities

Al |l Packages This Package Previous Next

Interface
javax.telephony.media.capabilities.MediaTerminalConnectionCapabilities

public interface M ediaT er minal ConnectionCapabilities
extends Terminal ConnectionCapabilities

The MediaT erminal ConnectionCapabilities interface extends the Termina ConnectionCapabilities interface. This interface provides capabilities methods for the
MediaTermina Connection object. The methods in this interface provides applications the ability to query for those actions where are possible on the MediaTerminal Connection
interface as part of the capabilities package.

Mertwod Index

& canDetectDtmf()

This method returns true if the application is able to detect DTMF-tones on the telephone line.
@ canGener ateDtmf()

This method returns true if the application is able to generate DTMF- tones the telephone line.

canStartPlaying()
This method returns true if the application is able to start playing to the telephone line.

» canStartRecording()
This method returns true if the application is able to start recording from the telephone line.

& canStopPlaying()
This method returns true if the application is able to stop playing to the telephone line.

» canStopRecor ding()
This method returns true if the application is able to stop recording from the telephone line.
@ canUseDefaultMicrophone()

This method returns true if the application can invoke the useDefaultMicrophone() method and route the media from the default microphone.
@ canUseDefaultSpeaker ()

This method returns true if the application can invoke the useDefaultSpeaker() method and route the media from the telephone line to the default speaker.

& canUsePlayURL ()
This method returns true if the application can invoke the usePlayURL () method and route voice mediafrom URL's.
@ canUseRecor dURL ()

This method returns true if the application can invoke the useRecordURL () method and route voice mediato URL's.

Methods

@ canUseDefaultSpeaker

publi c abstract bool ean canUseDef aul t Speaker ()

This method returns true if the application can invoke the useDefaultSpeaker() method and route the media from the telephone line to the default speaker. Returns false
otherwise.

Returns:
Trueif the application can route voice mediato the default speaker, false otherwise.

@ canuseDefaultMicr ophone

public abstract bool ean canUseDef aul t M cr ophone()
This method returns true if the application can invoke the useDefaultMicrophone() method and route the media from the default microphone. Returns fal se otherwise.
Returns:
Trueif the application can route voice media from the default microphone, false otherwise.

@ canUseRecordURL

public abstract bool ean canUseRecor dURL()
This method returns true if the application can invoke the useRecordURL () method and route voice mediato URL's. Returns false otherwise.
Returns:
Trueif the application can route voice mediato URL's, false otherwise.

@ canUsePlayURL

public abstract bool ean canUsePl ayURL()
This method returns true if the application can invoke the usePlayURL () method and route voice media from URL's. Returns fal se otherwise.
Returns:
Trueif the application can route voice mediafrom URL's, false otherwise.

@ canStartPlaying

public abstract bool ean canStart Pl ayi ng()
This method returns true if the application is able to start playing to the telephone line. Returns fal se otherwise.
Returns:
Trueif the application can begin playing to the telephone line, false otherwise.

@ canStopPlaying

public abstract bool ean canSt opPl ayi ng()
This method returns true if the application is able to stop playing to the telephone line. Returns fal se otherwise.
Returns:
Trueif the application can stop playing to the telephone line, fal se otherwise.

@ canStartRecording

public abstract bool ean canStartRecordi ng()
This method returns true if the application is able to start recording from the telephone line. Returns fal se otherwise.
Returns:
Trueif the application can start recording from the telephone line, false otherwise.

@ canStopRecor ding

public abstract bool ean canSt opRecordi ng()
This method returns true if the application is able to stop recording from the telephone line. Returns fal se otherwise.
Returns:
Trueif the application can stop recording from the telephone line, false otherwise.

@ canDetectDtmf

public abstract bool ean canDetect Dt nf ()

This method returns true if the application is able to detect DTMF-tones on the telephone line. Returns false otherwise. This method indicates whether the application is able
to invoke the setDtmfDetection(true) method.

Returns:
Trueif the application can detect DTMF-tones from the telephone line, fal se otherwise.

- canGenerateDtmf

public abstract bool ean canGenerateDtnf ()
This method returns true if the application is able to generate DTMF- tones the telephone line. Returns false otherwise.
Returns:
Trueif the application can generate DTMF-tones to the telephone line, false otherwise.

Al l _Packages Thi s Package Previous Next

Al l Packages

package javax.telephony.media.events

Interface [ndex

o MediaEv
« MediaTermConnAvailableEv

o« MediaTermConnDtmfEv

« MediaTermConnEv

o MediaTermConnStateEv

o« MediaTermConnUnavailableEv

Al l Packages Thi s Package Previous Next

Interface javax.telephony.media.events.MediaEv

public interface M ediaEv
extends Ev

The MediaEv isthe base event for all eventsin the Media package. Each event in this package must extend this interface. Thisinterface is not
meant to be a public interface, it isjust abuilding block for other event interfaces.

The MediaEv interface contains getM ediaCause(), which returns the reason for the event.

Variable [ndex

@ CAUSE_ NORMAL

Cause code indicating normal operation
@ CAUSE_UNKNOWN

Cause code indicating the cause was unknown

Method [ndex

@ getM ediaCause()
Returns the media and core causes associated with this event.

Variables

@ CAUSE_ NORMAL

public static final int CAUSE NORMAL
Cause code indicating normal operation

@ CAUSE_ UNKNOWN

public static final int CAUSE_ UNKNOMN
Cause code indicating the cause was unknown

Mefhods

- getM ediaCause

public abstract int getMedi aCause()

Returns the media and core causes associated with this event. Every event has a cause. The various cause values are defined as public
static final variabliesin thisinterface, with the exception of CAUSE_NORMAL and CAUSE_UNKNOWN, which are defined in the core.

Returns:
s The cause of the event.

Al |l Packages Thi s Package Previous Next

Al l Packages Thi s Package Previous Next

Interface
javax.telephony.media.events.MediaTermConnAvailableEv

public interface M ediaT ermConnAvailableEv
extends MediaTermConnEv

The MediaTermConnAvailableEv interface indicates that mediais currently available on the Terminal Connection. Media becomes available on the
Terminal Connection when the state of the Terminal Connection changes with respect to the telephone call. For example, when a

Termina Connection becomes active on the telephone call, mediais made available to the application. This event interface extends the
javax.telephony.events. TermConnEv interface, through which the application may obtain the Terminal Connection object associated with this
event.

Variable [ndex

Event id

Variables

@D

public static final int ID
Event id

Al l Packages Thi s Package Previous Next

Al l Packages Thi s Package Previous Next

Interface
javax.telephony.media.events.MediaTermConnDtmfEv

public interface M ediaT ermConnDtmfEv
extends MediaTermConnEv

The MediaTermConnDtmfEv interface indicates that a DTM F-tone has been detection on the telephone line. This event interface extends the
javax.telephony.events. TermConnEv interface, through which the application may obtain the Terminal Connection object associated with this
event.

Applications may obtain the detected DTMF-digit via the getDtmfDigit() method on this interface.

Variable [ndex

Event id

Method [ndex

getDtmfDigit()
Returns the DTMF-digit which has been recogni zed.

Variables

@D

public static final int ID
Event id

MeEhods

] getDtmfDigit

public abstract char getDinfDigit()

Returns the DTMF-digit which has been recognized. This digit may either be the numbers zero through nine (0-9), the asterisk (*), or the
pound (#).

Returns:

The DTMF-digit which has been detected.

Al l Packages Thi s Package Previous Next

Al l Packages Thi s Package Previous Next

Interface javax.telephony.media.events.MediaTermConnEv

public interface M ediaTermConnEv
extends MediaEv, TermConnEv

Al |l Packages Thi s Package Previous Next

Al l Packages Thi s Package Previous Next

Interface
javax.telephony.media.events.MediaTermConnStateEv

public interface M ediaTermConnStateEv
extends MediaTermConnEv

The MediaTermConnStateEv interface indicates that the playing/recording state has changed on the Terminal Connection object. This event
interface extends the javax.telephony.events.TermConnEv interface, through which the application may obtain the Terminal Connection object
associated with this event.

Applications may obtain the new state via the getMediaState() method on thisinterface, or viathe MediaTermina Connection.getM ediaState()
method.

Variable Index

Event id

Method Index

@ getM ediaState()
Returns the current state of playing/recording on the Terminal Connection in the form of a bit mask.

Variables

@D

public static final int ID
Eventid

MeEHhods

@ getM ediaState

public abstract int getMedi aState()
Returns the current state of playing/recording on the Terminal Connection in the form of a bit mask.
Returns:

The current playing/recording state.

Al l Packages Thi s Package Previous Next

Al Packages Thi s Package Previous Next

Interface
javax.telephony.media.events.MediaTermConnUnavailableEv

public interface M ediaT ermConnUnavailableEv
extends M ediaT ermConnEv

The MediaTermConnUnavailableEv interface indicates that there is currently no media available on the Termina Connection. This event is most likely
cause by achangein state of the Terminal Connection which respect to the call. For example, when someone goes on hold, mediais no longer avaiable
on that Terminal Connection. This event interface extends the javax.telephony.events. TermConnEv interface, through which the application may obtain
the Terminal Connection object associated with this event.

Variable [Hdex

Eventid

Variables

@D

public static final int ID
Eventid

Al |l Packages Thi s Package Previous Next

Al |l Packages

package javax.telephony.phone

Interface [ndex

« Component
« ComponentGroup

« PhoneButton

« PhoneDisplay

« PhoneGraphicDisplay
 PhoneHookswitch

« Phonel amp

« PhoneMicrophone

« PhoneRinger

« PhoneSpeaker

o PhoneTermina

« PhoneTerminal Observer

Al l Packages Thi s Package Previous Next

Interface javax.telephony.phone.Component

public interface Component
The Component interface is the base interface for all individual components used to model telephone hardware. Each individual component
extends this interface.

Each component isidentified not only by itstype, but also by an identifying name, which may be obtained via the getName() method on this
interface.

Method [ndex

@ getCapabilities()
Returns the dynamic capabilities for this Conponent instance.

@ getName()
Returns the name of the Component.

MeFhods

- getName

public abstract String get Nanme()
Returns the name of the Component.
Returns:
The name of this component.

@ getCapabilities

public abstract Conponent Capabilities getCapabilities()

Returns the dynamic capabilities for this Component instance. Static capabilities are not available for components.
Returns:
The dynamic component capabilities.

Al |l Packages Thi s Package Previous Next

Al l Packages Thi s Package Previous Next

Interface javax.telephony.phone.ComponentGroup

public interface ComponentGroup

A ComponentGroup is a grouping of Component objects. Terminals may be composed of zero or more ComponentGroups. Applications query the
PhoneTerminal interface for the available ComponentGroups. Then they query thisinterface for the components which make up this component

group.

Variable [ndex

* HAND_SET

The component group is of type HAND_SET.
*HEAD SET

The component group is of type HEAD_SET.
* OTHER

The component group is of type OTHER.
@ PHONE SET

The componet group is of type PHONE_SET.
@ SPEAKER PHONE

The component group is of type SPEAKER_PHONE.

Method [ndex

@ activate()

Enables all routing of events or media stream between all Components of this group and calls on any of the Addresses asociated with the
parent Terminal.

@ activate(Address)
Enables all routing of events or media stream between all Components of this group and calls to the specified Address.

@ deactivate()

Disables all routing of events or media stream between all Components of this group and calls on any of the Addresses associated with the
parent Terminal.

deactivate(Address)

Disables all routing of events or media stream between all Components of this group and the specified Address.
@ getCapabilities()

Returns the dynamic capabilities for this Component Gr oup instance.

@ getComponents()
Returns the groups components, null if the group contains zero components.

@ getDescription()
Returns a string describing the component group.

@ getType()
Returns the type of group, either HEAD_SET, HAND_SET, SPEAKER_PHONE, PHONE_SET or OTHER.

Variables

@ HEAD SET

public static final int HEAD SET
The component group is of type HEAD_SET.

@ HAND SET

public static final int HAND SET
The component group is of type HAND_SET.

@ SPEAKER PHONE

public static final int SPEAKER PHONE
The component group is of type SPEAKER_PHONE.

@ PHONE SET

public static final int PHONE _SET
The componet group is of type PHONE_SET.

@ OTHER

public static final int OTHER
The component group is of type OTHER.

Mefhods

o getType

public abstract int getType()
Returns the type of group, either HEAD_SET, HAND_SET, SPEAKER_PHONE, PHONE_SET or OTHER.
Returns:
The type of group.

< getDescription
public abstract String getDescription()
Returns a string describing the component group.

Returns:
A string description of the component group.

- getComponents

public abstract Conponent[] get Conponents()

Returns the groups components, null if the group contains zero components.
Returns:
An array of Component objects.

o activate

public abstract bool ean activate()

Enables all routing of events or media stream between all Components of this group and calls on any of the Addresses asociated with the
parent Terminal.

Returns:
true if successful and false if unsuccessful.

o deactivate

public abstract bool ean deactivate()

Disables all routing of events or media stream between all Components of this group and calls on any of the Addresses associated with the
parent Terminal.

Returns:
true if successful and false if unsuccessful.

o activate

public abstract bool ean activate(Address address) throws |nvali dArgunment Excepti on

Enables all routing of events or media stream between all Components of this group and calls to the specified Address.
Parameters:
address - The Address that the group is to be activated on.
Returns:
true if successful and false if unsuccessful.
Throws: InvalidArgumentException

The provided Addressis not valid for the Terminal.
@ deactivate

public abstract bool ean deactivate(Address address) throws |nvali dArgunent Excepti on

Disables all routing of events or media stream between all Components of this group and the specified Address.
Parameters:
address - The Address that the group is to be deactivated on.
Returns:
true if successful and false if unsuccessful.
Throws: InvalidArgumentException

The provided Addressis not valid for the Terminal.
@ getCapabilities

public abstract Conponent G oupCapabilities getCapabilities()

Returns the dynamic capabilities for this Conponent Gr oup instance. Static capabilities are not available for component groups.
Returns:

The dynamic component group capabilities.

Al |l Packages Thi s Package Previous Next

Al l Packages Thi s Package Previous Next

Interface javax.telephony.phone.PhoneButton

public interface PhoneButton
extends Component

Method [ndex

@ buttonPress()

Press the button.
@ getAssociatedPhonel amp()

Returns the associated lamp information.

@ getlnfo()
Returns the button information.
@ setlnfo(String)

Sets button information.

MeFhods

@ getlnfo

public abstract String getlnfo()
Returns the button information.
Returns:
The string button information.

o setinfo

public abstract void setlnfo(String buttonlnfo)
Sets button information.
Parameters:
buttonlnfo - The button information.

< getAssociatedPhonel amp

public abstract PhonelLanp get Associ at edPhonelLanp()

Returns the associated lamp information.
Returns:
The associated lamp object.

o buttonPress

public abstract void buttonPress()
Press the button.

Al |l Packages Thi s Package Previous Next

Al l Packages Thi s Package Previous Next

Interface javax.telephony.phone.PhoneDisplay

public interface PhoneDisplay
extends Component

Method [ndex

® getDisplay(int, int)
Returns the displayed string starting at coordinates (X, y).
getDisplayColumns()

Returns the number of display columns.

@ getDisplayRows()
Returns the number of display rows.

@ setDisplay(String, int, int)
Displays the given string starting at coordinates (X, y).

MeFhods

@ getDisplayRows

public abstract int getD spl ayRows()
Returns the number of display rows.
Returns:
The number of display rows.

- getDisplayColumns

public abstract int getD splayCol umms()
Returns the number of display columns.
Returns:
The number of display columns.

< getDisplay

public abstract String getDisplay(int x,
int y) throws InvalidArgunent Exception

Returns the displayed string starting at coordinates (X, y).
Parameters:

X - The x-coordinate.

y - They-coordinate.

Returns:
The string displayed starting at coordinates (X, y).
Throws: InvalidArgumentException

Either the coordinates provided were invalid.
< setDisplay
public abstract void setDisplay(String string,

int x,
int y) throws InvalidArgunent Exception

Displays the given string starting at coordinates (X, y).
Parameters:

string - The string to display.

X - The x-coordinate.

y - They-coordinate.
Throws: InvalidArgumentException

Either the coordinates provided were invalid.

Al |l Packages Thi s Package Previous Next

Al l Packages Thi s Package Previous Next

Interface javax.telephony.phone.PhoneGraphicDisplay

public interface PhoneGraphicDisplay
extends Component

A PhoneGraphicsDisplay represents a display device that is pixel-addressable, and which can be drawn into using AWT primitives.

Method Index

@ getGraphics()
Returns a Graphics object for drawing into the display.

® Size()
Returns the size of the display.

MeEHhods

@ getGraphics

public abstract G aphics get Graphics()
Returns a Graphics object for drawing into the display.
Returns:
A Graphic object, as defined in the AWT.

@ sz
public abstract Di nmension size()
Returns the size of the display.
Returns:

The size of the display, packaged in an AWT Dimension object.

Al |l Packages Thi s Package Previous Next

Al l Packages Thi s Package Previous Next

Interface javax.telephony.phone.PhoneHookswitch

public interface PhoneH ook switch
extends Component

Variable [Hdex

@ OFF_HOOK

The Hookswitch is OFF_ HOOK.
ON_HOOK

The Hookswitchis ON_HOOK.

Method Index

@ getHook SwitchState()

Returns the current state of the hookswitch.
@ setHook Switch(int)
Sets the state of the hookswitch to either ON_HOOK or OFF_HOOK.

Variables

@ oN_HoOoK

public static final int ON_HOOK
The Hookswitch is ON_HOOK.

@ OFF HoOK

public static final int OFF_HOOK
The Hookswitch is OFF_HOOK.

MeEhods

o setHook Switch

public abstract void set HookSwi tch(int hookSwi tchState) throws

I nval i dAr gunent Excepti on
Sets the state of the hookswitch to either ON_HOOK or OFF_HOOK.
Parameters:
hookSwtichState - The desired state of the hook switch.
Throws: InvalidArgumentException

The provided hookswitch state is not valid.
- getHook SwitchState

public abstract int getHookSwi tchState()
Returns the current state of the hookswitch.
Returns:
The current state of the hookswitch.

Al |l Packages Thi s Package Previous Next

Al l Packages Thi s Package Previous Next

Interface javax.telephony.phone.PhoneLamp

public interface Phonel amp
extends Component

Variable [Hdex

* LAMPMODE_BROKENFLUTTER

The lamp mode is BROKENFLUTTER, which is the superposition of flash and flutter.
* LAMPMODE_FLASH

The lamp mode is FLASH, which means slow on and off.
LAMPMODE FLUTTER

The lamp mode is FLUUTER, which means fast on and off.
* LAMPMODE OFF

The lamp modeis OFF.
* LAMPMODE_STEADY

Thelamp is STEADY, which means continuously lit.
LAMPMODE WINK

The lamp modeis WINK.

Method [rndex

@ getAssociatedPhoneButton()

Returns the button associated with the lamp.
@ getM ode()

Returns the current lamp mode.
@ getSupportedM odes()

Returns an array of supported lamp modes.
@ setM ode(int)

Sets the current lamp mode to a mode supported by the lamp and returns by getSupportedModes().

Variables

@ L AMPMODE_OFF

public static final int LAVPMODE OFF

The lamp modeis OFF.
@ | AMPMODE_FLASH

public static final int LAMPMODE_ FLASH
The lamp mode is FLASH, which means slow on and off.

@ LAaMPM ODE_STEADY

public static final int LAMPMODE STEADY
Thelamp is STEADY, which means continuously lit.

@ LavPM ODE_FLUTTER

public static final int LAMPMODE FLUTTER
Thelamp modeis FLUUTER, which means fast on and off.

@ LAaMPM ODE_BROKENFLUTTER

public static final int LAMPMODE BROKENFLUTTER
The lamp mode is BROKENFLUTTER, which is the superposition of flash and flutter.

@ L AMPMODE_WINK

public static final int LAMPMODE W NK
The lamp modeis WINK.

Mefhods

- getSupportedM odes

public abstract int[] getSupportedMdes()
Returns an array of supported lamp modes.
Returns:
An array of supported lamp modes.

o setMode

public abstract void setMdde(int node) throws Invali dArgunent Excepti on

Sets the current lamp mode to a mode supported by the lamp and returns by getSupportedModes().
Parameters:

mode - The desired |lamp mode.
Throws: InvalidArgumentException

The provided lamp mode is not valid.

- getMode

public abstract int getMde()
Returns the current lamp mode.
Returns:
The current lamp mode.

@ getAssociatedPhoneButton

public abstract PhoneButton get Associ at edPhoneButton()
Returns the button associated with the lamp.
Returns:
The button associated with the lamp.

Al | Packages This Package Previous Next

Al l Packages Thi s Package Previous Next

Interface javax.telephony.phone.PhoneMicrophone

public interface PhoneMicrophone
extends Component

Variable [Hdex

@ FULL

The full microhphone gain.
*MID

The microphone gainisMID.
e MUTE

The microphone gainis MUTE.

Method [rndex

@ getGain()
Returns the current microphone gain.
@ setGain(int)

Sets the microphone gain to a value between MUTE and FULL, inclusive.

Variables

@ vuTE

public static final int MJTE
The microphone gainisMUTE.

@ MmiD

public static final int MD
The microphone gainisMID.

@ rFuLL

public static final int FULL
The full microhphone gain.

Mefhods

] getGain

public abstract int getGain()
Returns the current microphone gain.
Returns:

The current microphone gain.

o setGain

public abstract void setGin(int gain) throws InvalidArgunent Exception

Sets the microphone gain to a value between MUTE and FULL, inclusive.
Parameters:

gain - A microphone gain between MUTE and FULL, inclusive.
Throws: InvalidArgumentException

The microphone gain is not valid.

Al |l Packages Thi s Package Previous Next

Al l Packages Thi s Package Previous Next

Interface javax.telephony.phone.PhoneRinger

public interface PhoneRinger
extends Component

Variable [Hdex

@ FULL

Ringer volume definition for the ringer at maximum volume.
+ MIDDLE

Ringer volume definition for the middle volume.
OFF

Ringer volume definition for the ringer off.

Method [rndex

2 getNumber OfRingPatter ns()

Returns the number of available ringing patterns.
@ getNumber OfRings()

Returns the number of complete ring cycles that the ringer has been ringing.
getRinger Pattern()

Returns the current ringer pattern.
@ getRinger Volume()

Returns the current ringer volume.
@ isRingerOn()

Returnstrueif theringer is on, false otherwise.
setRinger Pattern(int)

Set the ringer pattern given an valid index number returned by getNumberOf RingPatterns().
@ setRinger Volume(int)

Sets the ringer volume between ZERO or FULL, inclusive.

Variables

@ orr

public static final int OFF

Ringer volume definition for the ringer off.

@ MIDDLE

public static final int MDDLE
Ringer volume definition for the middle volume.

@ rFuLL

public static final int FULL
Ringer volume definition for the ringer at maximum volume.

MeFhods

@ isRingerOn

public abstract int isRingerOn()
Returnstrueif theringer is on, false otherwise.
Returns:
Trueif the ringer is on, false otherwise

- getRingerVolume

public abstract int getRi ngerVol une()
Returns the current ringer volume.
Returns
The current ringer volume.

< setRinger Volume

public abstract void setRi ngerVol unme(int volune) throws |nvalidArgunent Exception

Sets the ringer volume between ZERO or FULL, inclusive.
Parameters:

volume - The ringer volume, between ZERO and FULL, inclusive.
Throws: InvalidArgumentException

The volume provided was not valid.

- getRinger Pattern

public abstract int getRi ngerPattern()
Returns the current ringer pattern.
Returns:
The current ringer pattern.

@ getNumber OfRingPatter ns

public abstract int getNunberOf R ngPatterns()

Returns the number of available ringing patterns. An index between zero and the returns value minus one may be used for the
setRingerPattern() method.

Returns:
The number of available ringer patterns.

@ setRinger Pattern

public abstract void setRingerPattern(int ringerPattern) throws
I nval i dAr gunment Excepti on

Set the ringer pattern given an valid index number returned by getNumberOf RingPatterns().
Parameters:

ringerPattern - The desired ringer pattern.
Throws: InvalidArgumentException

Thering pattern provided was not valid.

- getNumber OfRings

public abstract int getNunberOf Ri ngs()
Returns the number of complete ring cycles that the ringer has been ringing. A value of 0 indicates that the ringer is not being rung.
Returns
The current ringer count.

Al l Packages Thi s Package Previous Next

Al l Packages Thi s Package Previous Next

Interface javax.telephony.phone.PhoneSpeaker

public interface PhoneSpeaker
extends Component

Variable [Hdex

@ FULL

Speaker volume definition for highest volume.
*MID

Speaker volume definition for the middle volume.
e MUTE

Speaker volume definition for muting.

Method [rndex

@ getVolume()

Returns the volume of the speaker.
@ setVolume(int)

Sets the speaker or handset volume.

Variables

@ vuTE

public static final int MJTE
Speaker volume definition for muting.

@ MmiD

public static final int MD
Speaker volume definition for the middle volume.

@ rFuLL

public static final int FULL
Speaker volume definition for highest volume.

Mefhods

- getVolume

public abstract int getVol une()
Returns the volume of the speaker.
Returns:
The volume of the speaker.

o setVolume

public abstract void setVol une(int vol une)
Sets the speaker or handset volume. The volume value may be anything between MUTE or FULL, inclusive.
Parameters:
volume - The volume, between MUTE and FULL.

Al |l Packages Thi s Package Previous Next

Al l Packages Thi s Package Previous Next

Interface javax.telephony.phone.PhoneTerminal

public interface PhoneT erminal
extends Terminal

The PhoneTerminal interface extends the Terminal interface to provide functionality for the Phone package. It allows applications to obtain arrays
of telephony Components (each group is called a ComponentGroup) which represents the physical components of telephones.

Method [rndex

@ getComponentGroups()

Returns an array of ComponentGroup objects available on the Terminal.

MeEhods

< getComponentGroups

public abstract Conponent Group[] get Conponent G oups()

Returns an array of ComponentGroup objects available on the Terminal. A ComponentGroup object is composed of a number of
Components. Examples of Component objects include headsets, handsets, speakerphones, and buttons. ComponentGroup objects group
Components together.

Returns:
An array of ComponetGroup objects on this Terminal.

Al l Packages Thi s Package Previous Next

Al l Packages Thi s Package Previous Next

Interface javax.telephony.phone.PhoneTerminalObserver

public interface PhoneT er minal Obser ver
extends Terminal Observer

The PhoneTerminal Observer interface is used to report all Phone-related events. Note that this observer does not have any method associated with
it. Applications which implement a Terminal Observer class should also implement thisinterface to indicate to the implementation that it wants
Phone-related events sent to it. If an application's observer does not implement this interface, phone-related events will not be sent to the
application.

Al |l Packages Thi s Package Previous Next

Al l Packages

package javax.telephony.phone.capabilities

Interface [ndex

o ComponentCapabilities

o ComponentGroupCapabilities

Al l Packages Thi s Package Previous Next

Interface
javax.telephony.phone.capabilities.ComponentCapabilities

public interface ComponentCapabilities

Method [ndex

@ canControl()

Returns true if the component can be controlled.
@ canObserve()

Returnstrue if the component can be observed.

MeEhods

o canObserve

public abstract bool ean canCbserve()

Returnstrue if the component can be observed. For example, this method on a PhoneMicrophone component would return true, if events
for changesin gain setting can be received through the Terminal Observer interface and also if the "get" methods on each of the component
interfaces is expected to be successful.

Returns:

Trueif the component can be observed, false otherwise.

o canControl

public abstract bool ean canControl ()

Returnstrue if the component can be controlled. For example, this method on a PhoneMicrophone component would return true, if the
gain setting can be adjusted programmatically.

Returns:
Trueif the componet can be controlled, false otherwise.

Al l Packages Thi s Package Previous Next

Al Packages This Package Previous Next

Interface
javax.telephony.phone.capabilities.ComponentGroupCapabilities

public interface ComponentGroupCapabilities

Method Index,

® canActivate()

Returnstrue if the ComponentGroup can be "activated" on the Terminal that the ComponentGroup is associated with.
@ canActivate(Address)

Returns true if the ComponentGroup can be "activated” on the specified Address at the Terminal that the ComponentGroup is associated with.

MeEhods

& canActivate

public abstract bool ean canActivate()

Returns true if the ComponentGroup can be "activated” on the Terminal that the ComponentGroup is associated with. For example, activation of a
headset on a certain Terminal allows mediato flow between the headset and the telephone line associated with the terminal for al calls on theline. This
method allows the application to determine if activation of the ComponentGroup on its Terminal is supported.

Returns:
Trueif the component group can be activated on its Terminal, false otherwise.

] canActivate

public abstract bool ean canActi vat e(Address address)

Returnstrue if the ComponentGroup can be "activated" on the specified Address at the Terminal that the ComponentGroup is associated with. For
example, activation of a headset on a certain Address at a Terminal allows mediato flow between the headset and the telephone line associated with the
Terminal for all calls on the specified Address. This method allows the application to determine if activation of the ComponentGroup on a specific
Address at a Terminal is supported.

Returns:

Trueif the component group can be activated on its Terminal at the specified Address, false otherwise.

Al | Packages This Package Previous Next

Al l Packages

package javax.telephony.phone.events

Interface [ndex

« ButtonlnfoEv
o ButtonPresskEv

« DisplayUpdateEv
o HookswitchStateEv

o LampModeEv
o MicrophoneGainEv
« PhoneEv

o PhoneTermEv

« RingerPatternEv

« RingerVolumeEv
o SpeakerVolumeEv

Al l Packages Thi s Package Previous Next

Interface javax.telephony.phone.events.ButtoninfoEv

public interface Buttonl nfoEv
extends PhoneTermEv

The ButtonInfoEv interface extends the PhoneTermEv interface and is reported via the PhoneTermObserver interface. This event interface
indicates the information associated with a button component has changed.

Applications may obtain the new information associated with this button via the getlnfo() method on this interface. The old information (before the
change) may be obtained via the getOldinfo() method on thisinterface.

Variable [Hdex

Event id

Method [ndex

@ getlnfo()
Returns the button information.

@ getOldInfo()
Returns the information previously associated with this button.

Variables

@D

public static final int ID
Eventid

'getlnfo

public abstract String getlnfo()
Returns the button information.
Returns:

The string button information.

@ getOldInfo

public abstract String getd dl nfo()
Returns the information previously associated with this button.
Returns:
The old button information.

Al |l Packages Thi s Package Previous Next

Al l Packages Thi s Package Previous Next

Interface javax.telephony.phone.events.ButtonPressEv

public interface ButtonPresskEv
extends PhoneTermEv

The ButtonPressEv interface extends the PhoneTermEv interface and is reported via the PhoneTermObserver interface. This event interface
indicates that a button component has been pressed.

Applications may obtain the identifying information associated with this button via the getInfo() method.

Variable [ndex

Event id

MeFtnod lndex

@ getlnfo()
Returns the button information.

Variables

@D

public static final int ID
Eventid

'getlnfo

public abstract String getlnfo()
Returns the button information.
Returns:
The string button information.

Al |l Packages This Package Previous Next

Al l Packages Thi s Package Previous Next

Interface javax.telephony.phone.events.DisplayUpdateEv

public interface DisplayUpdateEv
extends PhoneTermEv

The DisplayUpdateEv interface extends the PhoneTermEv interface and is reported via the PhoneTermObserver interface. This event interface
indicates that the contents of the display component has changed.

Applications may obtain the new contents of the display component viathe getDisplay(int x, int y) method on this interface.

Variable [ndex

Event id

MeFtnod lndex

@ getDisplay(int, int)
Returns the displayed string starting at coordinates (x, y).

Variables

@D

public static final int ID
Eventid

] getDisplay

public abstract String getD splay(int x,
int y)
Returns the displayed string starting at coordinates (X, y).
Parameters:
X - The x-coordinate.
y - They-coordinate.

Returns:
The string displayed starting at coordinates (x, y).

Al |l Packages Thi s Package Previous Next

Al l Packages Thi s Package Previous Next

Interface
javax.telephony.phone.events.HookswitchStateEv

public interface HookswitchStateEv
extends PhoneTermEv

The HookswitchStateEv interface extends the PhoneTermEv interface and is reported via the PhoneTermObserver interface. This event interface
indicates that the state of the hookswitch component has changed.

Applications may obtain the new state of the hookswitch (either on-hook or off-hook) via the getHookSwitchSate() method on this interface.

Variable [Hdex

Event id

Method [ndex

@ getHook SwitchState()

Returns the current state of the hookswitch.

Variables

@D

public static final int ID
Event id

Mefhods

- getHook SwitchState

public abstract int getHookSwi tchState()
Returns the current state of the hookswitch.
Returns:
The current state of the hookswitch.

Al |l Packages Thi s Package Previous Next

Al l Packages Thi s Package Previous Next

Interface javax.telephony.phone.events.LampModeEv

public interface LampM odeEv
extends PhoneTermEv

The LampModeEv interface extends the PhoneTermEv and is reported via the PhoneTerminal Observer interface. This event indicates that the
mode of the lamp has changed.

Applications may use the getMode() method on this interface to obtain the new mode of the lamp.

Variable [ndex

Event id

MeFtnod lndex

@ getM ode()
Returns the current lamp mode.

Variables

@D

public static final int ID
Eventid

'getMode

public abstract int getMde()
Returns the current lamp mode.
Returns:
The current lamp mode.

Al |l Packages This Package Previous Next

Al l Packages Thi s Package Previous Next

Interface javax.telephony.phone.events.MicrophoneGainEkv

public interface MicrophoneGainEv
extends PhoneTermEv

The MicrophoneGainEv interface extends the PhoneTermEv interface and is reported via the PhoneTerminal Observer interface. This event
interface indicates that the gain of a microphone component has changed.

Applications may use the getGain() method on this interface to obtain the new gain of the microphone component.

Variable [ndex

Event id

MeFtnod lndex

@ getGain()
Returns the gain of the microphone.

Variables

@D

public static final int ID
Eventid

'getGain

public abstract int getGain()
Returns the gain of the microphone.
Returns:
The gain of the microphone.

Al |l Packages This Package Previous Next

Al l Packages Thi s Package Previous Next

Interface javax.telephony.phone.events.PhoneEv

public interface PhoneEv
extends Ev

The PhoneEv is the base event for al eventsin the Phone package. Each event in this package must extend this interface. Thisinterface is not
meant to be a public interface, it isjust abuilding block for other event interfaces.

The PhoneEv interface contains getPhoneCause(), which returns the reason for the event.

Variable [ndex

@ CAUSE_ NORMAL

Cause code indicating normal operation
@ CAUSE_UNKNOWN

Cause code indicating the cause was unknown

Method [ndex

@ getPhoneCause()
Returns the phone and core causes associated with this event.

Variables

@ CAUSE_ NORMAL

public static final int CAUSE NORMAL
Cause code indicating normal operation

@ CAUSE_ UNKNOWN

public static final int CAUSE_ UNKNOMN
Cause code indicating the cause was unknown

Mefhods

@ getPhoneCause

public abstract int getPhoneCause()

Returns the phone and core causes associated with this event. Every event has a cause. The various cause values are defined as public
static final variabliesin thisinterface, with the exception of CAUSE_NORMAL and CAUSE_UNKNOWN, which are defined in the core.

Returns:
s The cause of the event.

Al |l Packages Thi s Package Previous Next

Al l Packages Thi s Package Previous Next

Interface javax.telephony.phone.events.PhoneTermEv

public interface PhoneT er mEv
extends PhoneEv, TermEv

The PhoneTermEv interface extends the TermEv interface and is the base event interface for all phone-components related events. All component
events must extends this interface. These events are reported through the Terminal Observer interface.

Method [rndex

@ getComponent()
Returns the Component object responsible for this event.
@ getComponentGroup()

Returns the ComponentGroup object associated with this event.

MeEhods

@ getComponentGroup

public abstract Conponent G oup get Conponent G oup()

Returns the ComponentGroup object associated with this event.
Returns:
s The ComponentGroup object associated with this event.

@ getComponent

publi c abstract Conponent get Conponent ()
Returns the Component object responsible for this event.
Returns:
s The Component object responsible for this event.

Al |l Packages Thi s Package Previous Next

Al l Packages Thi s Package Previous Next

Interface javax.telephony.phone.events.RingerPatternkEv

public interface Ringer Patter nEv
extends PhoneTermEv

The RingerPatternEv interface extends the PhoneTermEv interface and is reported via the PhoneTermina Observer interface. This event interface
indicates that the pattern of aringer component has changed.

Applications may use the getPattern() method on this interface to obtain the new pattern of the ringer component.

Variable [ndex

Event id

MeFtnod lndex

@ getRinger Pattern()

Returns the pattern of the ringer.

Variables

@D

public static final int ID
Eventid

Mefhods

- getRinger Pattern

public abstract int getRi ngerPattern()
Returns the pattern of the ringer.
Returns:
The pattern of the ringer.

Al |l Packages This Package Previous Next

Al l Packages Thi s Package Previous Next

Interface javax.telephony.phone.events.RingerVolumeEv

public interface Ringer VolumeEv
extends PhoneTermEv

The RingerVolumeEyv interface extends the PhoneTermEv interface and is reported via the PhoneTermina Observer interface. This event interface
indicates that the volume of aringer component has changed.

Applications may use the getVolume() method on this interface to obtain the new volume of the ringer component.

Variable [ndex

Event id

MeFtnod lndex

@ getVolume()
Returns the volume of the ringer.

Variables

@D

public static final int ID
Eventid

- getVolume

public abstract int getVol une()
Returns the volume of the ringer.
Returns:
The volume of the ringer.

Al |l Packages This Package Previous Next

Al l Packages Thi s Package Previous Next

Interface javax.telephony.phone.events.SpeakerVolumeEyv

public interface Speaker VolumeEv
extends PhoneTermEv

The SpeakerVolumeEv interface extends the PhoneTermEv interface and is reported via the PhoneTermina Observer interface. This event interface
indicates that the volume of a speaker component has changed.

Applications may use the getVolume() method on this interface to obtain the new volume of the speaker component.

Variable [ndex

Event id

MeFtnod lndex

@ getVolume()
Returns the volume of the speaker.

Variables

@D

public static final int ID
Eventid

- getVolume

public abstract int getVol une()
Returns the volume of the speaker.
Returns:
The volume of the speaker.

Al |l Packages This Package Previous Next

Al l Packages

package javax.telephony.privatedata

Interface [ndex

o PrivateData

Al l Packages Thi s Package Previous Next

Interface javax.telephony.privatedata.PrivateData

public interface PrivateData
Introduction

The private data mechanism in JTAPI is a means by which applications can send platform-specific messages to the underlying telephone platform.
The Pri vat eDat a interface may be implemented on any JTAPI object. Applications may query an object to seeif it supports this interface via
thei nst anceof operator. Thisinterface makes no attempt to interpret the data sent to the underlying platform.

Note: Use of thisinterface interferes with application portability across different JTAPI implementations. Applications which make use of this
interface may not work properly with other JTAPI-compliant implementations.

Setting vs. Sending Private Data

There are two ways in which information is sent to the platform. Applications can set a piece of data to be associated with the next method
invocation on the object. The datais only valid for the next method invocation on the same object. This datais not transmitted to the underlying
platform until the next method isinvoked. Also, applications may immediately send a piece of data to the underlying platform. This datais not
associated with any future method invocation.

Private Data Events

Implementations may also send platform-specific events to the application. Each individual object carriesits own private data event. The data
carried in these objects are specific to the implementation. The private data event interfaces defined are: Pri vat eAddr Ev, Pri vat eCal | Ev,
Privat eProvEv,and Pri vat eTer nkv

See Also:
PrivateDataCapabilities, PrivateAddrEv, PrivateCallEv, PrivateProvEv, PrivateTermEv

Method [ndex

@ getPrivateDatal()

Returns some platform-specific data associated with the last method that was invoked on the object for which this PrivateDatais
implemented.

@ sendPrivateData(Object)

Immediately performs some platform-specific action.
@ setPrivateData(Object)

Associates some platform-specific data with the next method that is invoked on the object for which thisinterface is implemented.

MeFhods

- setPrivateData

public abstract void setPrivateData(Object data)

Associates some platform-specific data with the next method that is invoked on the object for which this interface isimplemented. The

format of this data and the manner in which it modifies the method invocation is platform-dependent. This data applies to the next method
invocation ONLY and does not affect any future method invocations.

Parameters:
data - The platform-dependent data.

- getPrivateData

public abstract Object getPrivateData()

Returns some platform-specific data associated with the last method that was invoked on the object for which this PrivateDatais
implemented. The format of this datais platform-dependent. This data pertains to the last method invocation ONLY .

Returns:
Object The platform-dependent data.

o sendPrivateData

public abstract hject sendPrivateData(Object data)

Immediately performs some platform-specific action. The effect of this methods invocation isimmediate and does not directly relate to

any future object method invocations. The action taken upon receipt of this datais platform-dependent asis the format of the data itself.
This method returns the platform-dependent data actually sent.

Parameters:

data - The platform-dependent data.
Returns

The platform-dependent data sent.

Al |l Packages Thi s Package Previous Next

Al l Packages

package javax.telephony.privatedata.capabilities

Interface [ndex

o PrivateDataCapabilities

Al | Packages This Package Previous Next

Interface
javax.telephony.privatedata.capabilities.PrivateDataCapabilities

public interface PrivateDataCapabilities
ThePri vat eDat aCapabi | i ti es interfaceisthe capabilitiesinterface for the Pri vat eDat a interface. Additional packages which want to extend the
private data package should extend this interface for its capabilities.

Sincethe Pri vat eDat a interface is aways implemented on some existing JTAPI object (e.g. Provider, Call, etc), thisinterface should be implemented
along with the corresponding object's capabilities interface. For example, if the implementation's Call object supports private data, the

Provi der.get Cal | Capabilities() andCal|. get Capabilities() methods should return objects which implement

Privat eDat aCapabi | i ti es inadditiontotheCal | Capabi liti es interface.

See Also:
PrivateData

Method [ndex

@ canGetPrivateData()

This method returnstrue if the Pri vat eDat a. get Pri vat eDat a() method is supported, fal se otherwise.
@ canSendPrivateData()

This method returnstrueif the Pri vat eDat a. sendPri vat eDat a() method is supported, false otherwise.
@ canSetPrivateData()

This method returnstrue if the Pri vat eDat a. set Pri vat eDat a() method is supported, false otherwise.

MeFkhods

@ canSetPrivateData

public abstract bool ean canSet Pri vat eDat a()
This method returnstrue if the Pri vat eDat a. set Pri vat eDat a() method is supported, fal se otherwise.
Returns:
Trueif the setting of private datais supported, false otherwise.

] canGetPrivateData

public abstract bool ean canGet Pri vat eDat a()
This method returnstrueif the Pri vat eDat a. get Pri vat eDat a() method is supported, false otherwise.
Returns:
Trueif obtaining the private data is supported, fal se otherwise.

] canSendPrivateData

public abstract bool ean canSendPri vat eDat a()
This method returnstrueif the Pri vat eDat a. sendPri vat eDat a() method is supported, false otherwise.
Returns:
Trueif the sending of private datais supported, fal se otherwise.

Al | Packages This Package Previous Next

Al l Packages

package javax.telephony.privatedata.events

Interface [ndex

o PrivateAddrEv
o PrivateCallEv
o PrivateProvEv

o PrivateTermEv

Al l Packages Thi s Package Previous Next

Interface javax.telephony.privatedata.events.PrivateAddrEv

public interface PrivateAddr Ev
extends AddrEv

ThePri vat eAddr Ev interface sends platform-specific event information to an Addr essCbser ver . Thisinterface extends the core Addr Ev
interface. Thisinterface could be a stand-alone event for private data that is not associated with any other event. Thisinterface could also be used to
extend any other event for private data.

When used as a stand-alone event, the ID returned by Ev. get | D() should be the ID defined in this interface. When used to extend another event
to add private data to that event, the ID returned by Ev. get | D() should bethe ID defined in the other event interface.
See Also:

AddrEv, AddressObserver, PrivateData

Variable [ndex

The Event ID.

MeFtnod lndex

@ getPrivateData()
Returns platform-specific information to the application.

Variables

@D

public static final int ID
The Event ID.

Mefhods

- getPrivateData

public abstract Object getPrivateData()

Returns platform-specific information to the application. The format of the data and the action that should be taken upon receipt of the
datais platform-dependent.

Returns:
The platform-specific data.

Al |l Packages Thi s Package Previous Next

Al l Packages Thi s Package Previous Next

Interface javax.telephony.privatedata.events.PrivateCallEv

public interface PrivateCallEv
extends CallEv

ThePri vat eCal | Ev interface sends platform-specific event informationto aCal | Gbser ver . Thisinterface extends the core Cal | Ev
interface. This event could be a stand-alone event for private data that is not associated with any other event. Thisinterface could also be used to
extend any other event for private data.

When used as a stand-alone event, the ID returned by Ev. get | D() should be the ID defined in this interface. When used to extend another event
to add private data to that event, the ID returned by Ev. get | D() should bethe ID defined in the other event interface.
See Also:

CallEv, CallObserver, PrivateData

Variable [ndex

The Event ID.

MeFtnod lndex

@ getPrivateData()
Returns platform-specific information to the application.

Variables

@D

public static final int ID
The Event ID.

Mefhods

- getPrivateData

public abstract Object getPrivateData()

Returns platform-specific information to the application. The format of the data and the action that should be taken upon receipt of the
datais platform-dependent.

Returns:
The platform-specific data.

Al |l Packages Thi s Package Previous Next

Al l Packages Thi s Package Previous Next

Interface javax.telephony.privatedata.events.PrivateProvEv

public interface PrivateProvEv
extends ProvEv

ThePri vat ePr ovEv interface sends platform-specific event information to aPr ovi der Cbser ver . Thisinterface extends the core Pr ovEv
interface. This event could be a stand-alone event for private data that is not associated with any other event. Thisinterface could also be used to
extend any other event for private data.

When used as a stand-alone event, the ID returned by Ev. get | D() should be the ID defined in this interface. When used to extend another event
to add private data to that event, the ID returned by Ev. get | D() should bethe ID defined in the other event interface.
See Also:

ProvEv, ProviderObserver, PrivateData

Variable [ndex

The Event ID.

MeFtnod lndex

@ getPrivateData()
Returns platform-specific information to the application.

Variables

@D

public static final int ID
The Event ID.

Mefhods

- getPrivateData

public abstract Object getPrivateData()

Returns platform-specific information to the application. The format of the data and the action that should be taken upon receipt of the
datais platform-dependent.

Returns:
The platform-specific data.

Al |l Packages Thi s Package Previous Next

Al l Packages Thi s Package Previous Next

Interface
javax.telephony.privatedata.events.PrivateTermEv

public interface PrivateT ermEv
extends TermEv

The Pri vat eTer nEv interface sends platform-specific event information to aTer mi nal Gbser ver . Thisinterface extends the core Ter mev
interface. This event could be a stand-alone event for private data that is not associated with any other event. This interface could also be used to
extend any other event for private data.

When used as a stand-alone event, the ID returned by Ev. get | D() should bethe ID defined in this interface. When used to extend another event
to add private data to that event, the ID returned by Ev. get | D() should bethe ID defined in the other event interface.
See Also:

TermEv, TerminalObserver, PrivateData

Variable [Hdex

The Event ID.

Method [ndex

@ getPrivateData()
Returns platform-specific information to the application.

Variables

@D

public static final int ID
The Event ID.

MeEhods

@ getPrivateData

public abstract Object getPrivateData()

Returns platform-specific information to the application. The format of the data and the action that should be taken upon receipt of the
data is platform-dependent.

Returns:
The platform-specific data.

Al |l Packages This Package Previous Next

	Title Page
	Copyright Page
	About this Document
	Packages
	Package javax.telephony
	Interface javax.telephony.Address
	Interface javax.telephony.AddressObserver
	Interface javax.telephony.Call
	Interface javax.telephony.CallObserver
	Interface javax.telephony.Connection
	Interface javax.telephony.JtapiPeer
	Interface javax.telephony.Provider
	Interface javax.telephony.ProviderObserver
	Interface javax.telephony.Terminal
	Interface javax.telephony.TerminalConnection
	Interface javax.telephony.TerminalObserver
	Class javax.telephony.JtapiPeerFactory
	Class javax.telephony.InvalidArgumentException
	Class javax.telephony.InvalidPartyException
	Class javax.telephony.InvalidStateException
	Class javax.telephony.JtapiPeerUnavailableException
	Class javax.telephony.MethodNotSupportedException
	Class javax.telephony.PlatformException
	Class javax.telephony.PrivilegeViolationException
	Class javax.telephony.ProviderUnavailableException
	Class javax.telephony.ResourceUnavailableException

	Package javax.telephony.callcenter
	Interface javax.telephony.callcenter.ACDAddress
	Interface javax.telephony.callcenter.ACDAddressObserver
	Interface javax.telephony.callcenter.ACDConnection
	Interface javax.telephony.callcenter.ACDManagerAddress
	Interface javax.telephony.callcenter.ACDManagerConnection
	Interface javax.telephony.callcenter.Agent
	Interface javax.telephony.callcenter.AgentTerminal
	Interface javax.telephony.callcenter.AgentTerminalObserver
	Interface javax.telephony.callcenter.CallCenterAddress
	Interface javax.telephony.callcenter.CallCenterCall
	Interface javax.telephony.callcenter.CallCenterCallObserver
	Interface javax.telephony.callcenter.CallCenterProvider
	Interface javax.telephony.callcenter.CallCenterTrunk
	Interface javax.telephony.callcenter.RouteAddress
	Interface javax.telephony.callcenter.RouteCallback
	Interface javax.telephony.callcenter.RouteSession

	Package javax.telephony.callcenter.capabilities
	Interface javax.telephony.callcenter.capabilities.ACDAddressCapabilities
	Interface javax.telephony.callcenter.capabilities.ACDConnectionCapabilities
	Interface javax.telephony.callcenter.capabilities.ACDManagerAddressCapabilities
	Interface javax.telephony.callcenter.capabilities.ACDManagerConnectionCapabilities
	Interface javax.telephony.callcenter.capabilities.AgentTerminalCapabilities
	Interface javax.telephony.callcenter.capabilities.CallCenterAddressCapabilities
	Interface javax.telephony.callcenter.capabilities.CallCenterCallCapabilities
	Interface javax.telephony.callcenter.capabilities.CallCenterProviderCapabilities
	Interface javax.telephony.callcenter.capabilities.RouteAddressCapabilities

	Package javax.telephony.callcenter.events
	Interface javax.telephony.callcenter.events.ACDAddrBusyEv
	Interface javax.telephony.callcenter.events.ACDAddrEv
	Interface javax.telephony.callcenter.events.ACDAddrLoggedOffEv
	Interface javax.telephony.callcenter.events.ACDAddrLoggedOnEv
	Interface javax.telephony.callcenter.events.ACDAddrNotReadyEv
	Interface javax.telephony.callcenter.events.ACDAddrReadyEv
	Interface javax.telephony.callcenter.events.ACDAddrUnknownEv
	Interface javax.telephony.callcenter.events.ACDAddrWorkNotReadyEv
	Interface javax.telephony.callcenter.events.ACDAddrWorkReadyEv
	Interface javax.telephony.callcenter.events.AgentTermBusyEv
	Interface javax.telephony.callcenter.events.AgentTermEv
	Interface javax.telephony.callcenter.events.AgentTermLoggedOffEv
	Interface javax.telephony.callcenter.events.AgentTermLoggedOnEv
	Interface javax.telephony.callcenter.events.AgentTermNotReadyEv
	Interface javax.telephony.callcenter.events.AgentTermReadyEv
	Interface javax.telephony.callcenter.events.AgentTermUnknownEv
	Interface javax.telephony.callcenter.events.AgentTermWorkNotReadyEv
	Interface javax.telephony.callcenter.events.AgentTermWorkReadyEv
	Interface javax.telephony.callcenter.events.CallCentCallAppDataEv
	Interface javax.telephony.callcenter.events.CallCentCallEv
	Interface javax.telephony.callcenter.events.CallCentConnEv
	Interface javax.telephony.callcenter.events.CallCentConnInProgressEv
	Interface javax.telephony.callcenter.events.CallCentEv
	Interface javax.telephony.callcenter.events.CallCentTrunkEv
	Interface javax.telephony.callcenter.events.CallCentTrunkInvalidEv
	Interface javax.telephony.callcenter.events.CallCentTrunkValidEv
	Interface javax.telephony.callcenter.events.ReRouteEvent
	Interface javax.telephony.callcenter.events.RouteCallbackEndedEvent
	Interface javax.telephony.callcenter.events.RouteEndEvent
	Interface javax.telephony.callcenter.events.RouteEvent
	Interface javax.telephony.callcenter.events.RouteSessionEvent
	Interface javax.telephony.callcenter.events.RouteUsedEvent

	Package javax.telephony.callcontrol
	Interface javax.telephony.callcontrol.CallControlAddress
	Interface javax.telephony.callcontrol.CallControlAddressObserver
	Interface javax.telephony.callcontrol.CallControlCall
	Interface javax.telephony.callcontrol.CallControlCallObserver
	Interface javax.telephony.callcontrol.CallControlConnection
	Interface javax.telephony.callcontrol.CallControlTerminal
	Interface javax.telephony.callcontrol.CallControlTerminalConnection
	Interface javax.telephony.callcontrol.CallControlTerminalObserver
	Class javax.telephony.callcontrol.CallControlForwarding

	Package javax.telephony.callcontrol.capabilities
	Interface javax.telephony.callcontrol.capabilities.CallControlAddressCapabilities
	Interface javax.telephony.callcontrol.capabilities.CallControlCallCapabilities
	Interface javax.telephony.callcontrol.capabilities.CallControlConnectionCapabilities
	Interface javax.telephony.callcontrol.capabilities.CallControlTerminalCapabilities
	Interface javax.telephony.callcontrol.capabilities.CallControlTerminalConnectionCapabilities

	Package javax.telephony.callcontrol.events
	Interface javax.telephony.callcontrol.events.CallCtlAddrDoNotDisturbEv
	Interface javax.telephony.callcontrol.events.CallCtlAddrEv
	Interface javax.telephony.callcontrol.events.CallCtlAddrForwardEv
	Interface javax.telephony.callcontrol.events.CallCtlAddrMessageWaitingEv
	Interface javax.telephony.callcontrol.events.CallCtlCallEv
	Interface javax.telephony.callcontrol.events.CallCtlConnAlertingEv
	Interface javax.telephony.callcontrol.events.CallCtlConnDialingEv
	Interface javax.telephony.callcontrol.events.CallCtlConnDisconnectedEv
	Interface javax.telephony.callcontrol.events.CallCtlConnEstablishedEv
	Interface javax.telephony.callcontrol.events.CallCtlConnEv
	Interface javax.telephony.callcontrol.events.CallCtlConnFailedEv
	Interface javax.telephony.callcontrol.events.CallCtlConnInitiatedEv
	Interface javax.telephony.callcontrol.events.CallCtlConnNetworkAlertingEv
	Interface javax.telephony.callcontrol.events.CallCtlConnNetworkReachedEv
	Interface javax.telephony.callcontrol.events.CallCtlConnOfferedEv
	Interface javax.telephony.callcontrol.events.CallCtlConnQueuedEv
	Interface javax.telephony.callcontrol.events.CallCtlConnUnknownEv
	Interface javax.telephony.callcontrol.events.CallCtlEv
	Interface javax.telephony.callcontrol.events.CallCtlTermConnBridgedEv
	Interface javax.telephony.callcontrol.events.CallCtlTermConnDroppedEv
	Interface javax.telephony.callcontrol.events.CallCtlTermConnEv
	Interface javax.telephony.callcontrol.events.CallCtlTermConnHeldEv
	Interface javax.telephony.callcontrol.events.CallCtlTermConnInUseEv
	Interface javax.telephony.callcontrol.events.CallCtlTermConnRingingEv
	Interface javax.telephony.callcontrol.events.CallCtlTermConnTalkingEv
	Interface javax.telephony.callcontrol.events.CallCtlTermConnUnknownEv
	Interface javax.telephony.callcontrol.events.CallCtlTermDoNotDisturbEv
	Interface javax.telephony.callcontrol.events.CallCtlTermEv

	Package javax.telephony.capabilities
	Interface javax.telephony.capabilities.AddressCapabilities
	Interface javax.telephony.capabilities.CallCapabilities
	Interface javax.telephony.capabilities.ConnectionCapabilities
	Interface javax.telephony.capabilities.ProviderCapabilities
	Interface javax.telephony.capabilities.TerminalCapabilities
	Interface javax.telephony.capabilities.TerminalConnectionCapabilities

	Package javax.telephony.events
	Interface javax.telephony.events.AddrEv
	Interface javax.telephony.events.AddrObservationEndedEv
	Interface javax.telephony.events.CallActiveEv
	Interface javax.telephony.events.CallEv
	Interface javax.telephony.events.CallInvalidEv
	Interface javax.telephony.events.CallObservationEndedEv
	Interface javax.telephony.events.ConnAlertingEv
	Interface javax.telephony.events.ConnConnectedEv
	Interface javax.telephony.events.ConnCreatedEv
	Interface javax.telephony.events.ConnDisconnectedEv
	Interface javax.telephony.events.ConnEv
	Interface javax.telephony.events.ConnFailedEv
	Interface javax.telephony.events.ConnInProgressEv
	Interface javax.telephony.events.ConnUnknownEv
	Interface javax.telephony.events.Ev
	Interface javax.telephony.events.ProvEv
	Interface javax.telephony.events.ProvInServiceEv
	Interface javax.telephony.events.ProvObservationEndedEv
	Interface javax.telephony.events.ProvOutOfServiceEv
	Interface javax.telephony.events.ProvShutdownEv
	Interface javax.telephony.events.TermConnActiveEv
	Interface javax.telephony.events.TermConnCreatedEv
	Interface javax.telephony.events.TermConnDroppedEv
	Interface javax.telephony.events.TermConnEv
	Interface javax.telephony.events.TermConnPassiveEv
	Interface javax.telephony.events.TermConnRingingEv
	Interface javax.telephony.events.TermConnUnknownEv
	Interface javax.telephony.events.TermEv
	Interface javax.telephony.events.TermObservationEndedEv

	Package javax.telephony.media
	Interface javax.telephony.media.MediaCallObserver
	Interface javax.telephony.media.MediaTerminalConnection

	Package javax.telephony.media.capabilities
	Interface javax.telephony.media.capabilities.MediaTerminalConnectionCapabilities

	Package javax.telephony.media.events
	Interface javax.telephony.media.events.MediaEv
	Interface javax.telephony.media.events.MediaTermConnAvailableEv
	Interface javax.telephony.media.events.MediaTermConnDtmfEv
	Interface javax.telephony.media.events.MediaTermConnEv
	Interface javax.telephony.media.events.MediaTermConnStateEv
	Interface javax.telephony.media.events.MediaTermConnUnavailableEv

	Package javax.telephony.phone
	Interface javax.telephony.phone.Component
	Interface javax.telephony.phone.ComponentGroup
	Interface javax.telephony.phone.PhoneButton
	Interface javax.telephony.phone.PhoneDisplay
	Interface javax.telephony.phone.PhoneGraphicDisplay
	Interface javax.telephony.phone.PhoneHookswitch
	Interface javax.telephony.phone.PhoneLamp
	Interface javax.telephony.phone.PhoneMicrophone
	Interface javax.telephony.phone.PhoneRinger
	Interface javax.telephony.phone.PhoneSpeaker
	Interface javax.telephony.phone.PhoneTerminal
	Interface javax.telephony.phone.PhoneTerminalObserver

	Package javax.telephony.phone.capabilities
	Interface javax.telephony.phone.capabilities.ComponentCapabilities
	Interface javax.telephony.phone.capabilities.ComponentGroupCapabilities

	Package javax.telephony.phone.events
	Interface javax.telephony.phone.events.ButtonInfoEv
	Interface javax.telephony.phone.events.ButtonPressEv
	Interface javax.telephony.phone.events.DisplayUpdateEv
	Interface javax.telephony.phone.events.HookswitchStateEv
	Interface javax.telephony.phone.events.LampModeEv
	Interface javax.telephony.phone.events.MicrophoneGainEv
	Interface javax.telephony.phone.events.PhoneEv
	Interface javax.telephony.phone.events.PhoneTermEv
	Interface javax.telephony.phone.events.RingerPatternEv
	Interface javax.telephony.phone.events.RingerVolumeEv
	Interface javax.telephony.phone.events.SpeakerVolumeEv

	Package javax.telephony.privatedata
	Interface javax.telephony.privatedata.PrivateData

	Package javax.telephony.privatedata.capabilities
	Interface javax.telephony.privatedata.capabilities.PrivateDataCapabilities

	Package javax.telephony.privatedata.events
	Interface javax.telephony.privatedata.events.PrivateAddrEv
	Interface javax.telephony.privatedata.events.PrivateCallEv
	Interface javax.telephony.privatedata.events.PrivateProvEv
	Interface javax.telephony.privatedata.events.PrivateTermEv

