
CentreVu Computer-Telephony
for Windows NT

Release 3.30, Version 2

Java Telephony API (JTAPI)
Client Programmer’s Guide
Issue 1.1 November 1998

Copyright  1998 Lucent Technologies Inc.
All Rights Reserved
Printed in U.S.A.

Notice

Every effort was made to ensure that the information in this book was complete and accurate at the time of printing.
However, information is subject to change.

Your Responsibility for Your System’s Security

Toll fraud is the unauthorized use of your telecommunications system by an unauthorized party, for example, persons
other than your company’s employees, agents, subcontractors, or persons working on your company’s behalf. Note that
there may be a risk of toll fraud associated with your telecommunications system and, if toll fraud occurs, it can result in
substantial additional charges for your telecommunications services.

You and your system manager are responsible for the security of your system, such as programming and configuring
your equipment to prevent unauthorized use. The system manager is also responsible for reading all installation,
instruction, and system administration documents provided with this product in order to fully understand the features
that can introduce risk of toll fraud and the steps that can be taken to reduce that risk. Lucent Technologies does not
warrant that this product is immune from or will prevent unauthorized use of common-carrier telecommunication
services or facilities accessed through or connected to it. Lucent Technologies will not be responsible for any charges
that result from such unauthorized use.

Lucent Technologies Fraud Intervention

If you suspect that you are being victimized by toll fraud and you need technical support or assistance, call Technical
Service Center Toll Fraud Intervention Hotline at 1 800 643 2353.

Obtaining Products

To learn more about Lucent Technologies products and to order products, contact Lucent Direct, the direct-market
organization of Lucent Technologies Business Communications Systems. Access their web site at
www.lucentdirect.com. Or call the following number: customers 1 800 451 2100.

Trademarks

Adobe, Acrobat, and the Acrobat logo are trademarks of Adobe Systems Incorporated, which may be registered in
certain jurisdictions.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc. in
the United States and other countries.

CentreVu and the Lucent Technologies logotype are registered trademarks of Lucent Technologies Incorporated.

Windows NT is a registered trademark of Microsoft Corp.

All products and company names are trademarks or registered trademarks of their respective holders.

Comments

If you have comments, complete and return the comment card at the end of this document.

Acknowledgment

This document was prepared by GLS Information Development, Lucent Technologies, Holmdel, NJ 07733-3030.

 Main Contents

This section is intended for those readers who are using Adobe Acrobat to view the
document. If you are reading from a printed version, you can ignore this section.

There are two ways to navigate through the sections of this file:

n Click on any of the bookmarks visible in the left margin.

n Click on the chapter or section titles in the following table.

Chapter or Section Title Pages
Title 1 – 2
Copyright 3 – 4
Main Contents (this page) 5 – 6
About This Guide 7 – 14

1 – Telephony Services Implementation of
JTAPI for All Switches and the DEFINITY
Switch

15 – 44

2 – Using Telephony Services Extensions to
JTAPI

45 – 48

Extensions to JTAPI
(Interface Index and Exception Index)

49 – 68

3 – Using Telephony Services DEFINITY-
Specific Extensions to JTAPI

69 – 74

DEFINITY-Specific Extensions
(Interface Index and Class Index)

75 – 156

4 – Using Telephony Services Private Data
Extensions to JTAPI

157 – 162

Private Data Extensions
(Interface Index and Class Index)

163 – 184

A – Telephony Services Implementation of
JTAPI for Private Data

185 – 192

Comment Card 193 – 194

About This Guide

Contents

JTAPI Client Programmer’s Guide Issue 1.1 v

What is JTAPI? vii

What is the CentreVu Telephony Services Java
Client? viii

Purpose and Scope ix

Finding What You Need (Generic JTAPI and
DEFINITY-Specific) x

Finding What You Need (Non-DEFINITY Private
Data) xi

Navigating through the Document xii

Related Documents xii

About This Guide

JTAPI Client Programmer’s Guide Issue 1.1 vii

What is JTAPI?

The Java Telephony API (JTAPI) specifies the standard telephony application
programming interface for computer-telephone applications under Java. It is the
definition for a reuseable set of call control objects that bring cross-platform and
cross-implementation portability to telephony applications. It is a simple,
extensible, object-oriented model that addresses a broad range of computer-
telephony tasks.

The Java Telephony API represents the combined efforts of design teams from
Sun, Lucent Technologies, Nortel, Novell, Intel, and IBM, all operating under the
direction of JavaSoft.

About This Guide

viii Issue 1.1 JTAPI Client Programmer’s Guide

What is the CentreVu Telephony
Services Java Client?

The JTAPI specification, as published under the direction of JavaSoft, is a set of
Java interfaces. It requires an implementation of the defined interfaces in the
form of Java classes in order to produce a working product. The Lucent
Technologies CentreVu Telephony Services Java client is an implementation of
the Java classes required to support the JTAPI interfaces.

The Telephony Services Java client communicates with a Telephony Services
driver (i.e., a service provider) to execute the telephony requests to control the
actual switching elements. The Telephony Services drivers use Lucent
Technologies Telephony Services Application Programmer’s Interface (TSAPI)
interfaces to present their services. Therefore, the Telephony Services Java
client can only present the functions and services supplied by TSAPI and
TSAPI’s associated private data.

Since the Telephony Services Java client uses TSAPI as its vehicle to
communicate with the Telephony Services drivers, the Telephony Services Java
client has extended JTAPI to give the application additional information
(provided by TSAPI) to help understand exceptions in greater detail. In addition
to the parameters specified in the JTAPI protocol, the Telephony Services Java
client can also deliver private data to the application that is unique to each
switching environment. This additional information is provided by the switch
providers in the private data that accompanies TSAPI messages.

Included in the Telephony Services Java client is a set of Java interfaces that
gives the application programmer access to the private data information used by
the DEFINITY Enterprise Communications Server (ECS). This allows the
application programmer to access additional switch features not available
through standard JTAPI. Application programmers who want their applications to
run on multiple TSAPI switches must “special-case” their code using these
extensions.

For switches other than DEFINITY, the Telephony Services Java client
implements the JTAPI private data package. This exposes TSAPI private data
directly to the application. Additional interfaces have been defined to allow the
application programmer to translate from TSAPI constructs to JTAPI objects and
allow the interpretation of private TSAPI information to JTAPI objects.

About This Guide

JTAPI Client Programmer’s Guide Issue 1.1 ix

Purpose and Scope

This document describes:

n the Lucent Technologies generic implementation of JTAPI on CentreVu
Telephony Services. This implementation provides a programming
environment that may be used with any switch for which there is a CentreVu
Telephony Services driver.

n the Lucent Technologies CentreVu Telephony Services1 implementation of

JTAPI that provides Telephony Services extensions to JTAPI for those
application programmers who want to use TSAPI-specific error codes. This
implementation provides a programming environment that may be used with
any switch for which there is a CentreVu Telephony Services driver.

n the Telephony Services implementation of JTAPI that applies to clients using

the DEFINITY switch and the associated CentreVu Telephony Services
driver, the G3 PBX driver (G3PD). This implementation provides a
programming environment that makes available DEFINITY-specific features.

n the Telephony Services implementation of JTAPI for private data. This

implementation is targeted to independent switch vendors who want to use
the private data programming mechanism to create private data packages,
or application programmers who want to use or interpret private data that is
provided in its raw form.

 This document assumes a familiarity with the Java programming language and
JTAPI and, for application programmers who want to use the TSAPI-specific
information, TSAPI. For those readers interested in private data, it assumes a
familiarity with TSAPI and its private data mechanism.

 1 Hereafter, the phrase “Telephony Services implementation of JTAPI” indicates the

Lucent Technologies CentreVu Telephony Services implementation of JTAPI.

About This Guide

x Issue 1.1 JTAPI Client Programmer’s Guide

 Finding What You Need (Generic
JTAPI and DEFINITY-Specific)

 If you are an application programmer using the Telephony Services generic
implementation of JTAPI to develop applications for all switches for which there
is a CentreVu Telephony Services driver, or for the DEFINITY switch and the
G3PD, find the appropriate description and refer to the associated chapters in
the table below:

�Intended Audience �This implementation
provides:

�Refer to Chapter(s):

 Who: an application
programmer
 What: Telephony Services
generic implementation of
JTAPI
 To do: programming with
JTAPI for any switch for
which there is a CentreVu
Telephony Services driver
 Be familiar with:
n Java
n JTAPI
n TSAPI (optional)

 1) A programming
environment for applications
used with any switch for
which there is a CentreVu
Telephony Services driver;
 2) A programming
environment that makes
available TSAPI-specific
information (optional)

n Chapter 1, “Telephony
Services Implementation
of JTAPI for All Switches
and the DEFINITY
Switch”

n Chapter 2, “Using

Telephony Services
Extensions to JTAPI”
(optional)

 Who: an application
programmer
 What: Telephony Services
implementation of JTAPI
 To do: programming with
JTAPI for applications used
with the DEFINITY switch
and the G3PD
 Be familiar with:
n Java
n JTAPI
n TSAPI (optional)

 1) A programming
environment for applications
used with the DEFINITY
switch and the G3PD;
 2) A programming
environment that makes
available DEFINITY-specific
features;
 3) A programming
environment that makes
available TSAPI-specific
information (optional)

n Chapter 1, “Telephony
Services Implementation
of JTAPI for All Switches
and the DEFINITY
Switch”

n Chapter 3, “Using

Telephony Services
DEFINITY-Specific
Extensions to JTAPI”

n Chapter 2, “Using

Telephony Services
Extensions to JTAPI”
(optional)

About This Guide

JTAPI Client Programmer’s Guide Issue 1.1 xi

 Finding What You Need (Non-
DEFINITY Private Data)

 If you are an independent switch vendor who is using the JTAPI private data
programming environment to develop a private data package for non-DEFINITY
switches, or an application programmer who is using or interpreting private data
in a raw form, find the appropriate description and refer to the associated
chapters in the table below:

�Intended Audience �This implementation
provides:

�Refer to Chapter(s):

 Who: An independent
switch vendor
 What: Telephony Services
implementation of JTAPI for
applications using private
data
 To do: Programming with
JTAPI and TSAPI to produce
private data packages for
applications used with non-
DEFINITY switches and their
associated drivers
 Be familiar with:
n Java
n JTAPI
n TSAPI
n TSAPI’s private data

mechanism

 A programming environment
to produce private data
packages that may be used
with any non-DEFINITY
switch and its associated
CentreVu Telephony
Services driver

n Chapter 4, “Using
Telephony Services
Private Data Extensions
to JTAPI”

n Appendix A, “Telephony

Services Implementation
of JTAPI for Private
Data”

 Who: An application
programmer
 What: Telephony Services
implementation of JTAPI for
applications using private
data
 To do: Programming with
JTAPI and TSAPI to use or
interpret private data for
applications used with non-
DEFINITY switches and their
associated drivers
 Be familiar with:
n Java
n JTAPI
n TSAPI
n TSAPI’s private data

mechanism

 A programming environment
to use or interpret private
data, in a raw form, without
an intermediate private data
package, for applications
used with any non-DEFINITY
switch and its associated
CentreVu Telephony
Services driver

n Chapter 4, “Using
Telephony Services
Private Data Extensions
to JTAPI”

n Appendix A, “Telephony

Services Implementation
of JTAPI for Private
Data”

About This Guide

xii Issue 1.1 JTAPI Client Programmer’s Guide

Navigating through the Document

This document is presented in PDF format with hypertext links and thumbnails for
easy viewing and printing. Hypertext links are inserted so that you can easily
navigate through the document by moving the hand symbol and clicking on the
desired subject. You can also navigate through the document using the
thumbnails of Adobe Acrobat Reader. After opening the PDF file with Adobe
Reader, you will notice a list of items presented in outline format. If you click on
one of the items in the list, you will be brought to the associated subject.

Related Documents

There is one other document related to JTAPI that is provided with the SDK.

Java Telephony API (JTAPI) Programmer’s Reference (JTAPI v1.2)

This document consists of Sun Microsystem’s Java Telephony API (JTAPI)
specification files that are available to you from the Sun Microsystem Java
Telephony API web site. This document presents the JTAPI v1.2 specification.
To obtain the very latest HTML files, go directly to the web site,
http://java.sun.com/products/jtapi.

The following documents provide reference material about DEFINITY and Telephony
Services Application Programming Interface (TSAPI) respectively.

CentreVu Computer-Telephony for Windows NT
 DEFINITY Enterprise Communications Server Programmer’s Guide

This document presents information about DEFINITY switch administration and
switch interactions.

Telephony Services Application Programming Interface (TSAPI) Version 2

This document presents information about how Telephony Services and TSAPI
support telephony control capabilities in a generic, switch-independent way (i.e.,
support PBXs from various vendors). The architecture allows the incorporation of
vendor-specific switch drivers to deliver Telephony Services across various
switch environments.

Telephony Services
Implementation of JTAPI 1
Contents

JTAPI Client Programmer’s Guide Issue 1.1 1-i

Telephony Services Implementation of JTAPI for
All Switches and the DEFINITY Switch 1-1
n Support for JTAPI Core Package 1-2

 Implementation Notes 1-4
n Support for JTAPI Call Center Package 1-5

 Implementation Notes 1-6
n Support for JTAPI Call Center Capabilities Package 1-8
n Support for JTAPI Call Center Events Package 1-9

 Implementation Notes 1-10
n Support for JTAPI Call Control Package 1-11

 Implementation Notes 1-12
n Support for JTAPI Call Control Capabilities Package 1-14
n Support for JTAPI Call Control Events Package 1-16

 Implementation Notes 1-16
n Support for JTAPI Capabilities Package 1-17
n Support for JTAPI Events Package 1-18
n Support for JTAPI Media Package 1-19
n Support for JTAPI Media Capabilities Package 1-20
n Support for JTAPI Media Events Package 1-21

 Implementation Notes 1-21
n Support for JTAPI Phone Package 1-22
n Support for JTAPI Phone Capabilities Package 1-23
n Support for JTAPI Phone Events Package 1-24
n Support for JTAPI Private Data Package 1-25

 Implementation Notes 1-25
n Support for JTAPI Private Data Capabilities Package 1-26
n Support for JTAPI Private Data Events Package 1-27

 Telephony Services
Implementation of JTAPI 1

 JTAPI Client Programmer’s Guide Issue 1.1 1-1

 Telephony Services Implementation
of JTAPI for All Switches and the
DEFINITY Switch

 This chapter presents the level of support provided by the Telephony Services
implementation of JTAPI for JTAPI interfaces and associated methods:

n for all switches for which there is a Telephony Services driver

 The information contained in the column entitled “Supported for All

Switches” in the following tables represents the features supported by
the Telephony Services generic implementation of JTAPI for any switch
for which there is a CentreVu Telephony Services driver.

n for the DEFINITY switch and the G3PD driver

 The information contained in the column entitled “Supported for the

DEFINITY Switch” in the following tables represents the features
supported by the Telephony Services implementation of JTAPI for the
DEFINITY switch and the G3PD driver.

 This information is organized by JTAPI package, for example, Table 1-1 lists
each interface and its associated method from the JTAPI Core package;
Table 1-2 lists each interface and its associated method from the JTAPI
CallCenter Capabilities package, and so forth.

 Numerous tables are followed by implementation notes. If a number follows
an interface (e.g., JtapiPeer 2) or a method (e.g., getServices 3), see the
appropriate “Implementation Notes” section that follows the table to obtain
additional information about the interfaces and/or their respective methods.

 Telephony Services Implementation of JTAPI for All
Switches and the DEFINITY Switch

 1-2 Issue 1.1 JTAPI Client Programmer’s Guide

 NOTE:
 If you are an independent switch vendor who is using the JTAPI private
data programming environment to develop a private data package for non-
DEFINITY switches, or an application programmer who is using or
interpreting private data in a raw form, ignore this chapter and refer to
Chapter 4, “Telephony Services Private Data Extensions to JTAPI.”

 Support for JTAPI Core Package

 The following table lists each JTAPI interface from the JTAPI Core Package,
(e.g., Address), followed by its associated method(s), (e.g., getName,
getProvide, getTerminals, and so forth), and whether the implementation is
supported for all switches and/or for the DEFINITY switch.

Table 1-1. Support for JTAPI Core Package

 JTAPI Interfaces and Methods Supported for
All Switches

 Supported for
the DEFINITY

Switch
 Address √ √
 getName √ √
 getProvider √ √
 getTerminals √ √
 getConnections √ √
 addObserver √ √
 getObservers √ √
 removeObserver √ √
 addCallObserver √ √
 getCallObservers √ √
 removeCallObserver √ √
 getAddressCapabilities √ √
 AddressObserver √ √
 addressChangedEvent √ √
 Call √ √
 getConnections √ √
 getProvider √ √
 getState √ √
 connect √ √
 addObserver √ √
 getObservers √ √
 removeObserver √ √
 getCallCapabilities √ √
 CallObserver √ √
 callChangedEvent √ √

 Telephony Services Implementation of JTAPI for All
Switches and the DEFINITY Switch

 JTAPI Client Programmer’s Guide Issue 1.1 1-3

 JTAPI Interfaces and Methods Supported for
All Switches

 Supported for
the DEFINITY

Switch
 Connection √ √
 getState √ √
 getCall √ √
 getAddress √ √
 getTerminalConnections √ √
 disconnect 1 √ √
 getConnectionCapabilities √ √
 JtapiPeer 2 √ √
 getName √ √
 getServices 3 √ √

 getProvider 4 √ √
 Provider √ √
 getState √ √
 getName √ √
 getCalls √ √
 getAddress √ √
 getAddresses √ √
 getTerminals √ √
 getTerminal √ √
 shutdown √ √
 createCall √ √
 addObserver √ √
 getObservers √ √
 removeObserver √ √
 getProviderCapabilities √ √
 getCallCapabilities √ √
 getConnectionCapabilities √ √
 getAddressCapabilities √ √
 getTerminalConnectionCapabilities √ √
 getTerminalCapabilities √ √
 ProviderObserver √ √
 providerChangedEvent √ √
 Terminal √ √
 getName √ √
 getProvider √ √
 getAddresses √ √
 getTerminalConnections √ √
 addObserver √ √
 getObservers √ √
 removeObserver √ √

 Telephony Services Implementation of JTAPI for All
Switches and the DEFINITY Switch

 1-4 Issue 1.1 JTAPI Client Programmer’s Guide

 JTAPI Interfaces and Methods Supported for
All Switches

 Supported for
the DEFINITY

Switch
 addCallObserver √ √
 getCallObservers √ √
 removeCallObserver √ √
 getTerminalCapabilities √ √
 TerminalConnection √ √
 getState √ √
 getTerminal √ √
 getConnection √ √
 answer √ √
 getTerminalConnectionCapabilities √ √
 TerminalObserver √ √
 terminalChangedEvent √ √

 Implementation Notes

1 For the DEFINITY switch, the Connection/disconnect method must be called
with Connection in the CONNECTED state. (For all other switches, it can be
called with Connection in the CONNECTED, ALERTING, INPROGRESS, or
FAILED state.)

2 Obtain a JtapiPeer object using the JtapiPeerFactory class. The TsapiPeer
class represents this implementation of the JtapiPeer. To obtain TsapiPeer,
do:

 JtapiPeerFactory.getJtapiPeer(com.lucent.jtapi.tsapi.TsapiPeer)

3 The JtapiPeer/getServices method returns an array of service names that can
be used to build the String needed to be passed to JtapiPeer.getProvider().
These Strings are the Telephony Services server Tlink names.

4 The String provided by JtapiPeer/getProvider must contain a Telephony
Services server Tlink name as well as a Windows NT login and password.
The format of the String must be:

 <tlink>;login=<loginID>;passwd=<pw>

 Telephony Services Implementation of JTAPI for All
Switches and the DEFINITY Switch

 JTAPI Client Programmer’s Guide Issue 1.1 1-5

 Support for JTAPI Call Center Package

 The following table lists each JTAPI interface from the JTAPI Call Center
Package, (e.g., ACDAddress), followed by its associated method(s), (e.g.,
getLoggedOnAgents, getNumberQueued, getOldestCallQueued, and so forth),
and whether the implementation is supported for all switches and/or for the
DEFINITY switch.

Table 1-2. Support for JTAPI CallCenter Package

 JTAPI Interfaces and Methods Supported for
All Switches

 Supported for
the DEFINITY

Switch
 ACDAddress √ √
 getLoggedOnAgents 1 √ √

 getNumberQueued 2 √ √
 getOldestCallQueued
 getRelativeQueueLoad
 getQueueWaitTime
 getACDManagerAddress
 ACDAddressObserver √ √
 ACDConnection √
 getACDManagerConnection √
 ACDManagerAddress √
 getACDAddresses
 ACDManagerConnection √
 getACDConnections √
 AgentObject √ √
 setState √ √
 getState √ √
 getAgentID 3 √ √
 getACDAddress √ √
 getAgentAddress √ √
 getAgentTerminal √ √
 AgentTerminal √ √
 addAgent √ √
 removeAgent √ √
 getAgents √ √
 AgentTerminalObserver 4 √ √
 CallCenterAddress √ √
 addCallObserver √ √
 CallCenterCall √ √

 Telephony Services Implementation of JTAPI for All
Switches and the DEFINITY Switch

 1-6 Issue 1.1 JTAPI Client Programmer’s Guide

 JTAPI Interfaces and Methods Supported for
All Switches

 Supported for
the DEFINITY

Switch

 connectPredictive 5 √ √
 setApplicationData
 getApplicationData
 getTrunks √ √
 CallCenterCallObserver √ √
 CallCenterProvider √ √
 getRouteableAddresses √ √
 getACDAddresses √
 getACDManagerAddresses √
 CallCenterTrunk √ √
 getName √ √
 getState √ √
 getType √ √
 getCall √ √
 RouteAddress √ √
 registerRouteCallback 6 √ √
 cancelRouteCallback √ √
 getRouteCallback √ √
 getActiveRouteSessions √ √
 RouteCallback √ √
 routeEvent √ √
 reRouteEvent √ √
 routeUsedEvent √ √
 routeEndEvent √ √
 routeCallbackEndedEvent √ √
 RouteSession √ √
 getRouteAddress √ √
 selectRoute 7 √ √
 endRoute √ √
 getState √ √
 getCause √ √

 Implementation Notes

1 The ACDAddress/getLoggedOnAgents method is fully supported for the
DEFINITY switch. For other switches, it returns the sum of (a) those agents
that were logged in through the application and (b) those agents that were
logged in after an ACDAddressObserver was added to the application.

 Telephony Services Implementation of JTAPI for All
Switches and the DEFINITY Switch

 JTAPI Client Programmer’s Guide Issue 1.1 1-7

 Implementation Notes (Continued)

2 The ACDAddress/getNumberQueued method is fully supported for the
DEFINITY switch. For other switches, it returns the number of calls queued
reported in the last queued event. This may not be accurate since some of
the calls may have been subsequently dequeued.

3 The AgentObject/getAgentID method returns a null String for the DEFINITY
switch.

4 The AgentTerminalObserver only supports the AgentTermLoggedOnEv and
AgentTermLoggedOffEv when the state change is produced through the
JTAPI application. In order to monitor agent activity (e.g., agents logging on
and off manually), an ACDAddressObserver should be added to the
ACDAddress.

5 The CallCenterCall/connectPredictive method is supported for the DEFINITY
switch and for other switches; however, the answeringEndpointType
parameter is not supported. For the DEFINITY switch, the maxRings and
answeringTreatment parameters are supported. For other switches, the
maxRings and answeringTreatment parameters are not supported.

 For the DEFINITY switch, if the Call is observed and the ACDAddress or
AgentTerminal is also call observed, then two unique Call objects will be
created that are associated with the same real call.

 Other methods must be used to determine that there are two Call objects
representing the same real call:

n One way to do this, if the called address is unique among all calls, is to
use the Call.getCalledAddress() method.

n Another way is to use the UserToUserInfo DEFINITY-specific extension.
The application can send a unique ID in the UserToUserInfo with the
connectPredictive and this ID will be reported in call events for the
ACDAddress or AgentTerminal. The UserToUserInfo can also be
retrieved directly from the Calls.

In any case, both Call objects and all Connections and TerminalConnections
in both Calls are valid. Valid requests may be made of any of the objects.

6 The RouteAddress/registerRouteCallback method is supported for the
DEFINITY switch and other switches; however, only one RouteCallback may
be registered for an Address at a time.

7 The RouteSession/selectRoute method is supported for the DEFINITY switch
and other switches; however, only the first route specified in the
routeSelected parameter is used. The subsequent routes are ignored.

 Telephony Services Implementation of JTAPI for All
Switches and the DEFINITY Switch

 1-8 Issue 1.1 JTAPI Client Programmer’s Guide

Support for JTAPI Call Center Capabilities
Package

The following table lists each JTAPI interface from the JTAPI Call Center
Capabilities Package, (e.g., ACDAddressCapabilities), followed by its associated
method(s), (e.g., canGetLoggedOnAgents, canGetNumberQueued, and so
forth), and whether the implementation is supported for all switches and/or for
the DEFINITY switch.

Table 1-3. Support for JTAPI CallCenter Capabilities Package

JTAPI Interfaces and Methods Supported for
All Switches

Supported for
the DEFINITY

Switch
ACDAddressCapabilities √ √
canGetLoggedOnAgents √ √
canGetNumberQueued √ √
canGetOldestCallQueued √ √
canGetRelativeQueueLoad √ √
canGetQueueWaitTime √ √
canGetACDManagerAddress √ √
ACDConnectionCapabilities √ √
canGetACDManagerConnection √ √
ACDManagerAddressCapabilities √ √
canGetACDAddresses √ √
ACDManagerConnectionCapabilities √ √
canGetACDConnections √ √
AgentTerminalCapabilities √ √
canHandleAgents √ √
CallCenterAddressCapabilities √ √
canAddCallObserver √ √
CallCenterCallCapabilities √ √
canConnectPredictive √ √
canHandleApplicationData √ √
canGetTrunks √ √
CallCenterProviderCapabilities √ √
canGetRouteableAddresses √ √
canGetACDAddresses √ √
canGetACDManagerAddresses √ √
canGetTrunks √ √
RouteAddressCapabilities √ √
canRouteCalls √ √

 Telephony Services Implementation of JTAPI for All
Switches and the DEFINITY Switch

 JTAPI Client Programmer’s Guide Issue 1.1 1-9

Support for JTAPI Call Center Events Package

The following table lists each JTAPI interface from the JTAPI Call Center Events
Package, (e.g., ACDAddrBusyEv, ACDAddrLoggedOffEv,
ACDAddrLoggedOnEv, and so forth), and whether the implementation is
supported for all switches and/or for the DEFINITY switch.

 NOTE:
If a JTAPI Call Center Event is supported, all associated methods are also
supported.

Table 1-4. Support for JTAPI CallCenter Events Package

JTAPI Interfaces Supported for
All Switches

Supported for
the DEFINITY

Switch

ACDAddrBusyEv √
ACDAddrLoggedOffEv √ √
ACDAddrLoggedOnEv √ √
ACDAddrNotReadyEv 1 √ √

ACDAddrReadyEv 1 √ √
ACDAddrUnknownEv √ √
ACDAddrWorkNotReadyEv 1 √ √

ACDAddrWorkReadyEv 1 √ √
AgentTermBusyEv √
AgentTermLoggedOffEv √ √
AgentTermLoggedOnEv √ √
AgentTermNotReadyEv 1 √ √

AgentTermReadyEv 1 √ √
AgentTermUnknownEv √ √
AgentTermWorkNotReadyEv 1 √ √

AgentTermWorkReadyEv 1 √ √
CallCentCallAppDataEv
RouteCallbackEndedEvent √ √
RouteEndEvent √ √
RouteEvent √ √
RouteSessionEvent √ √
RouteUsedEvent √ √

 Telephony Services Implementation of JTAPI for All
Switches and the DEFINITY Switch

 1-10 Issue 1.1 JTAPI Client Programmer’s Guide

Implementation Notes

1 These events are not supported for the DEFINITY switch. They will be
generated by the implementation and sent to the application when an
explicit state change is requested by the application.

 Telephony Services Implementation of JTAPI for All
Switches and the DEFINITY Switch

 JTAPI Client Programmer’s Guide Issue 1.1 1-11

Support for JTAPI Call Control Package

The following table lists each JTAPI interface from the JTAPI Call Control
Package, (e.g., CallControlAddress), followed by its associated method(s), (e.g.,
setForwarding, getForwarding, cancelForwarding, and so forth), and whether the
implementation is supported for all switches and/or for the DEFINITY switch.

Table 1-5. Support for JTAPI CallControl Package

JTAPI Interfaces and Methods Supported for
All Switches

Supported for
the DEFINITY

Switch

CallControlAddress √ √
setForwarding 1 √ √
getForwarding √ √
cancelForwarding √ √
getDoNotDisturb 2 √ √

setDoNotDisturb 2 √ √
getMessageWaiting √ √
setMessageWaiting √ √
CallControlAddressObserver √ √
CallControlCall √ √
getCallingAddress √ √
getCallingTerminal √ √
getCalledAddress √ √
getLastRedirectedAddress √ √
addParty √
drop √ √
offHook
conference √ √
transfer(Call otherCall) √ √
transfer(String address)
setConferenceController √ √
getConferenceController √ √
setTransferController √ √
getTransferController √ √
setConferenceEnable √ √
getConferenceEnable √ √
setTransferEnable √ √
getTransferEnable √ √
consult (TerminalConnection termconn, String address) √ √
consult (TerminalConnection termconn)
CallControlCallObserver √ √

 Telephony Services Implementation of JTAPI for All
Switches and the DEFINITY Switch

 1-12 Issue 1.1 JTAPI Client Programmer’s Guide

JTAPI Interfaces and Methods Supported for
All Switches

Supported for
the DEFINITY

Switch

CallControlConnection √ √
getCallControlState √ √
accept
reject
redirect √ √
addToAddress
park
CallControlTerminal √ √
getDoNotDisturb 2 √ √

setDoNotDisturb 2 √ √
pickup (Connection pickConnection, Address
terminalAddress)

√ √

pickup (TerminalConnection pickTermConn, Address
terminalAddress)

√ √

pickup (Address pickAddress, Address
terminalAddress)

√ √

pickupFromGroup(String pickupGroup, Address
terminalAddress)
pickupFromGroup(Address terminalAddress) √ √
CallControlTerminalConnection √ √
getCallControlState √ √
hold √ √
unhold √ √
join √
leave √
CallControlTerminalObserver √ √

Implementation Notes

1 Our implementation supports the FORWARD_UNCONDITIONALLY
forwarding type only when used in combination with the ALL_CALLS filter
type. When talking to a DEFINITY swtich, the only values supported are the
FORWARD_UNCONDITIONALLY forwarding type and the ALL_CALLS filter
type.

 Telephony Services Implementation of JTAPI for All
Switches and the DEFINITY Switch

 JTAPI Client Programmer’s Guide Issue 1.1 1-13

Implementation Notes (Continued)

2 The following methods are paired synonyms:

CallControlAddress/getDoNotDisturb
 CallControlTerminal/getDoNotDisturb

CallControlAddress/setDoNotDisturb
 CallControlTerminal/setDoNotDisturb

For these methods, there is no distinction between an Address and a
Terminal. CallControlAddress.getDoNotDisturb() and
CallControlTerminal.getDoNotDisturb() always return equivalent values.

 Telephony Services Implementation of JTAPI for All
Switches and the DEFINITY Switch

 1-14 Issue 1.1 JTAPI Client Programmer’s Guide

Support for JTAPI Call Control Capabilities
Package

The following table lists each JTAPI interface from the JTAPI Call Control
Capabilities Package, (e.g., CallControlAddressCapabilities), followed by its
associated method(s), (e.g., canSetForwarding, canGetForwarding,
canCancelForwarding, and so forth), and whether the implementation is
supported for all switches and/or for the DEFINITY switch.

Table 1-6. Support for JTAPI CallControl Capabilities Package

JTAPI Interfaces and Methods Supported for
All Switches

Supported for
the DEFINITY

Switch
CallControlAddressCapabilities √ √
canSetForwarding √ √
canGetForwarding √ √
canCancelForwarding √ √
canGetDoNotDisturb √ √
canSetDoNotDisturb √ √
canGetMessageWaiting √ √
canSetMessageWaiting √ √
CallControlCallCapabilities √ √
canDrop √ √
canOffHook √ √
canSetConferenceController √ √
canSetTransferController √ √
canSetTransferEnable √ √
canSetConferenceEnable √ √
canTransfer √ √
canConference √ √
canAddParty √ √
canConsult √ √
CallControlConnectionCapabilities √ √
canRedirect √ √
canAddToAddress √ √
canAccept √ √
canReject √ √
canPark √ √
CallControlTerminalCapabilities √ √
canGetDoNotDisturb √ √
canSetDoNotDisturb √ √
canPickup √ √

 Telephony Services Implementation of JTAPI for All
Switches and the DEFINITY Switch

 JTAPI Client Programmer’s Guide Issue 1.1 1-15

JTAPI Interfaces and Methods Supported for
All Switches

Supported for
the DEFINITY

Switch
canPickupFromGroup √ √
CallControlTerminalConnectionCapabilities √ √
canHold √ √
canUnhold √ √
canJoin √ √
canLeave √ √

 Telephony Services Implementation of JTAPI for All
Switches and the DEFINITY Switch

 1-16 Issue 1.1 JTAPI Client Programmer’s Guide

Support for JTAPI Call Control Events Package

The following table lists each JTAPI interface from the JTAPI Call Control Events
Package, (e.g., CallCtlAddrDoNotDisturbEv, CallCtlAddrForwardEv,
CallCtlAddrMessageWaitingEv, and so forth), and whether the implementation is
supported for all switches and/or for the DEFINITY switch.

 NOTE:
If a JTAPI Call Control Event is supported, all associated methods are also
supported.

Table 1-7. Support for JTAPI CallControl Events Package

JTAPI Interfaces Supported for
All Switches

Supported for
the DEFINITY

Switch

CallCtlAddrDoNotDisturbEv 1 √ √
CallCtlAddrForwardEv √ √
CallCtlAddrMessageWaitingEv √ √
CallCtlConnAlertingEv √ √
CallCtlConnDialingEv
CallCtlConnDisconnectedEv √ √
CallCtlConnEstablishedEv √ √
CallCtlConnFailedEv √ √
CallCtlConnInitiatedEv √ √
CallCtlConnNetworkAlertingEv √ √
CallCtlConnNetworkReachedEv √ √
CallCtlConnOfferedEv
CallCtlConnQueuedEv √ √
CallCtlConnUnknownEv √ √
CallCtlTermConnBridgedEv √ √
CallCtlTermConnDroppedEv √ √
CallCtlTermConnHeldEv √ √
CallCtlTermConnInUseEv
CallCtlTermConnRingingEv √ √
CallCtlTermConnTalkingEv √ √
CallCtlTermConnUnknownEv √ √

Implementation Notes

1 The CallCtrlAddrDoNotDisturbEv event is sent even if DoNotDisturb was
changed using CallControlTerminal.setDoNotDisturb(). For DoNotDisturb,
there is no distinction between an Address and a Terminal.

 Telephony Services Implementation of JTAPI for All
Switches and the DEFINITY Switch

 JTAPI Client Programmer’s Guide Issue 1.1 1-17

Support for JTAPI Capabilities Package

The following table lists each JTAPI interface from the JTAPI Capabilities
Package, (e.g., AddressCapabilities), followed by its associated method(s), (e.g.,
isObservable), and whether the implementation is supported for all switches
and/or for the DEFINITY switch.

Table 1-8. Support for JTAPI Capabilities Package

JTAPI Interfaces and Methods Supported for
All Switches

Supported for
the DEFINITY

Switch
AddressCapabilities √ √
isObservable √ √
CallCapabilities √ √
canConnect √ √
isObservable √ √
ConnectionCapabilities √ √
canDisconnect √ √
ProviderCapabilities √ √
isObservable √ √
TerminalCapabilities √ √
isObservable √ √
TerminalConnectionCapabilities √ √
isObservable √ √

 Telephony Services Implementation of JTAPI for All
Switches and the DEFINITY Switch

 1-18 Issue 1.1 JTAPI Client Programmer’s Guide

Support for JTAPI Events Package

The following table lists each JTAPI interface from the JTAPI Events Package,
(e.g., AddObservationEndedEv, CallActiveEv, CallInvalid, and so forth), and
whether the implementation is supported for all switches and/or for the DEFINITY
switch.

 NOTE:
If a JTAPI Event is supported, all associated methods are also supported.

Table 1-9. Support for JTAPI Events Package

JTAPI Interfaces Supported for
All Switches

Supported for
the DEFINITY

Switch

AddrObservationEndedEv √ √
CallActiveEv √ √
CallInvalidEv √ √
CallObservationEndedEv √ √
ConnAlertingEv √ √
ConnConnectedEv √ √
ConnCreatedEv √ √
ConnDisconnectedEv √ √
ConnFailedEv √ √
ConnInProgressEv √ √
ConnUnknownEv √ √
ProvInServiceEv √ √
ProvObservationEndedEv √ √
ProvOutOfServiceEv √ √
ProvShutdownEv √ √
TermConnActiveEv √ √
TermConnCreatedEv √ √
TermConnDroppedEv √ √
TermConnPassiveEv √ √
TermConnRingingEv √ √
TermConnUnknownEv √ √
TermObservationEndedEv √ √

 Telephony Services Implementation of JTAPI for All
Switches and the DEFINITY Switch

 JTAPI Client Programmer’s Guide Issue 1.1 1-19

Support for JTAPI Media Package

The following table lists each JTAPI interface from the JTAPI Media Package,
(e.g., MediaCallObserver), followed by its associated method(s), (if any), and
whether the implementation is supported for all switches and/or for the DEFINITY
switch.

Table 1-10. Support for JTAPI Media Package

JTAPI Interfaces and Methods Supported for
All Switches

Supported for
the DEFINITY

Switch

MediaCallObserver √
MediaTerminalConnection √
getMediaAvailability
getMediaState
useDefaultSpeaker
useRecordURL
useDefaultMicrophone
usePlayURL
startPlaying
stopPlaying
startRecording
setDtmfDetection
generateDtmf √

 Telephony Services Implementation of JTAPI for All
Switches and the DEFINITY Switch

 1-20 Issue 1.1 JTAPI Client Programmer’s Guide

Support for JTAPI Media Capabilities Package

The following table lists each JTAPI interface from the JTAPI Media Capabilities
Package, (e.g., MediaTerminalConnectionCapabilities), followed by its
associated method(s), (e.g., canUseDefaultSpeaker, canUseDefaultMicrophone,
canUseRecordURL, and so forth), and whether the implementation is supported
for all switches and/or for the DEFINITY switch.

Table 1-11. Support for JTAPI Media Capabilities Package

JTAPI Interfaces and Methods Supported for
All Switches

Supported for
the DEFINITY

Switch
MediaTerminalConnectionCapabilities √ √
canUseDefaultSpeaker √ √
canUseDefaultMicrophone √ √
canUseRecordURL √ √
canUsePlayURL √ √
canStartPlaying √ √
canStopPlaying √ √
canStartRecording √ √
canStopRecording √ √
canDetectDtmf √ √
canGenerateDtmf √ √

 Telephony Services Implementation of JTAPI for All
Switches and the DEFINITY Switch

 JTAPI Client Programmer’s Guide Issue 1.1 1-21

Support for JTAPI Media Events Package

The following table lists each JTAPI interface from the JTAPI Media Events
Package, (e.g., MediaTermConnAvailable, MediaTermConnDtmfEv,
MediaTermConnEv, and so forth), and whether the implementation is supported
for all switches and/or for the DEFINITY switch.

 NOTE:
If a JTAPI Media Event is supported, all associated methods are also
supported.

Table 1-12. Support for JTAPI Media Events Package

JTAPI Interfaces Supported for
All Switches

Supported for
the DEFINITY

Switch

MediaTermConnAvailableEv

MediaTermConnDtmfEv 1 √
MediaTermConnStateEv
MediaTermConnUnavailableEv

Implementation Notes

1 Although the MediaTermConnDtmfEv interface has been defined as a
TerminalConnection event, the TerminalConnection field will be null. The Call
field will be filled in with the call to which the DTMF digits have been applied.

This event is sent only when a DTMF detector is attached to the call and
DTMF tones are detected. The tone detector is disconnected when the far
end answers or “#” is detected. This event is used in conjunction with the
DEFINITY-specific extension LucentRouteSession/selectRouteAndCollect.

 Telephony Services Implementation of JTAPI for All
Switches and the DEFINITY Switch

 1-22 Issue 1.1 JTAPI Client Programmer’s Guide

Support for JTAPI Phone Package

 NOTE:
The JTAPI Phone Package interfaces and methods are not supported.

 Telephony Services Implementation of JTAPI for All
Switches and the DEFINITY Switch

 JTAPI Client Programmer’s Guide Issue 1.1 1-23

Support for JTAPI Phone Capabilities Package

 NOTE:
The JTAPI Phone Package interfaces and methods are not supported.

 Telephony Services Implementation of JTAPI for All
Switches and the DEFINITY Switch

 1-24 Issue 1.1 JTAPI Client Programmer’s Guide

Support for JTAPI Phone Events Package

 NOTE:
The JTAPI Phone Events Package interfaces and methods are not
supported.

 Telephony Services Implementation of JTAPI for All
Switches and the DEFINITY Switch

 JTAPI Client Programmer’s Guide Issue 1.1 1-25

Support for JTAPI Private Data Package

The following table lists each JTAPI interface from the JTAPI Private Data
Package, (e.g., PrivateData), followed by its associated method(s), (e.g.,
getPrivateData, and so forth), and whether the implementation is supported for
all switches and/or for the DEFINITY switch.

Table 1-13. Support for JTAPI Private Data Package

JTAPI Interfaces and Methods Supported for
All Switches

Supported for
the DEFINITY

Switch

PrivateData √
getPrivateData √
setPrivateData 1 √

sendPrivateData 1 √

Implementation Notes

1 For the PrivateData/setPrivateData and PrivateData/sendPrivateData
methods, the private data Object parameter must be an instance of
TsapiPrivate.

 Telephony Services Implementation of JTAPI for All
Switches and the DEFINITY Switch

 1-26 Issue 1.1 JTAPI Client Programmer’s Guide

Support for JTAPI Private Data Capabilities
Package

The following table lists each JTAPI interface from the JTAPI Private Data
Capabilities Package, (e.g., PrivateDataCapabilities), followed by its associated
method(s), (e.g., canSetPrivateData, and so forth), and whether the
implementation is supported for all switches and/or for the DEFINITY switch.

Table 1-14. Support for JTAPI Private Data Capabilities Package

JTAPI Interfaces and Methods Supported for
All Switches

Supported for
the DEFINITY

Switch
PrivateDataCapabilities √ √
canSetPrivateData √ √
canGetPrivateData √ √
canSendPrivateData √ √

 Telephony Services Implementation of JTAPI for All
Switches and the DEFINITY Switch

 JTAPI Client Programmer’s Guide Issue 1.1 1-27

Support for JTAPI Private Data Events Package

The following table lists each JTAPI interface from the JTAPI Private Data Events
Package, (e.g., PrivateAddrEv, PrivateCallEv, and so forth), and whether the
implementation is supported for all switches and/or for the DEFINITY switch.

 NOTE:
If a JTAPI Private Data Event is supported, all associated methods are also
supported.

Table 1-15. Support for JTAPI Private Data Events Package

JTAPI Interfaces Supported for
All Switches

Supported for
the DEFINITY

Switch

PrivateAddrEv √
PrivateCallEv √
PrivateProvEv √
PrivateTermEv √

Using Telephony Services
Extensions to JTAPI

Contents

JTAPI Client Programmer’s Guide Issue 1.1 2-i

Using Telephony Services Extensions to JTAPI 2-1
n Who Should Be Using These Extensions? 2-1
n What are the Extensions? 2-2

Extensions to JTAPI Exceptions 2-2
Extensions to JTAPI Provider Events 2-2

Using Telephony Services
Extensions to JTAPI

JTAPI Client Programmer’s Guide Issue 1.1 2-1

Using Telephony Services Extensions
to JTAPI

 NOTE:
This chapter describes non-standard additions to JTAPI. This package is
available only from the CentreVu Telephony Services implementation of
JTAPI and is not available from any other implementation of JTAPI.

This chapter is optional. It contains the Telephony Services extensions to JTAPI
that can be used to program applications for any switch for which there is a
CentreVu Telephony Services driver.

Who Should Be Using These Extensions?

An application programmer who, in addition to using the standard JTAPI
package, wants additional TSAPI-specific information to develop applications
which will be used with any switch for which there is a CentreVu Telephony
Services driver. It is assumed that this individual has a familiarity with the Java
programming language, JTAPI, and TSAPI.

 NOTE:
If you are an application programmer who is using JTAPI to develop
applications for the DEFINITY switch, also refer to Chapter 1, “Telephony
Services Implementation of JTAPI for All Switches and the DEFINITY
Switch.” If you want to take advantage of DEFINITY-specific features that
are not accessible through standard JTAPI, refer to Chapter 3, “Telephony
Services DEFINITY-Specific Extensions to JTAPI.”

Using Telephony Services Extensions to JTAPI

2-2 Issue 1.1 JTAPI Client Programmer’s Guide

 NOTE:
If you are an independent switch vendor who is using the JTAPI private
data programming environment to develop a private data package for non-
DEFINITY switches, or an application programmer who is using or
interpreting private data in a raw form, ignore this chapter and refer to
Chapter 4, “Telephony Services Private Data Extensions to JTAPI.”

What are the Extensions?

There are two types of extensions: extensions to JTAPI exceptions and
extensions to JTAPI Provider events.

Extensions to JTAPI Exceptions
Telephony Services extensions to the JTAPI exceptions provide more detailed
error information than is defined in JTAPI. These extensions consist of the CSTA
and ACS error codes provided by TSAPI.

 NOTE:
For information about Computer-Supported Telecommunications
Applications (CSTA) and API Control Services (ACS) error codes, refer to
the Telephony Services Application Programming Interface (TSAPI)
Version 2.

Extensions to JTAPI Provider Events
Telephony Services defines additional JTAPI Provider events. These events
provide more detailed Provider state changes. These TSAPI Provider states map
to JTAPI Provider states as follows:

Table 2-1. Mapping of TSAPI to JTAPI Provider States

TSAPI Provider State JTAPI Provider State
ITsapiProvider.TSAPI_OUT_OF_SERVICE Provider.OUT_OF_SERVICE
ITsapiProvider.TSAPI_INITIALIZING Provider.OUT_OF_SERVICE
ITsapiProvider.TSAPI_IN_SERVICE Provider.IN_SERVICE
ITsapiProvider.TSAPI_SHUTDOWN Provider.SHUTDOWN

package com.lucent.jtapi.tsapi

Interface Index

ITsapiException

Exception Index

TsapiInvalidArgumentException
TsapiInvalidObjectException
TsapiInvalidPartyException
TsapiInvalidStateException
TsapiMethodNotSupportedException
TsapiPlatformException
TsapiPrivilegeViolationException
TsapiProviderUnavailableException
TsapiResourceUnavailableException

Interface com.lucent.jtapi.tsapi.ITsapiException

public interface ITsapiException

The ITsapiException interface adds an errorType and errorCode to all Jtapi exceptions.
When the errorType is ACS or CSTA, the errorCode will contain the Tsapi ACS or CSTA
error code which is documented in the Troubleshooting section of the Telephony Services
Administration and Maintenance document (netmangd.pdf).

Variable Index

o ACS
Error Type of ACS.

o CSTA
Error Type of CSTA.

o EC_INVALID_CONF
Error Code implying confirmation is invalid.

o EC_NORMAL
Error Code of NORMAL.

o EC_PROVIDER_OUT_OF_SERVICE
Error Code implying Provider is OUT_OF_SERVICE.

o INTERNAL
Failure is internal to this Jtapi implementation.

o JTAPI
Failed to meet some Jtapi condition.

o NORMAL
Error Type of Normal.

Method Index

o getErrorCode()
Returns the error code.

o getErrorType()
Returns the error type.

Variables

o NORMAL

 public static final int NORMAL

Error Type of Normal.

o ACS

 public static final int ACS

Error Type of ACS.

o CSTA

 public static final int CSTA

Error Type of CSTA.

o JTAPI

 public static final int JTAPI

Failed to meet some Jtapi condition.

o INTERNAL

 public static final int INTERNAL

Failure is internal to this Jtapi implementation.

o EC_NORMAL

 public static final int EC_NORMAL

Error Code of NORMAL.

o EC_INVALID_CONF

 public static final int EC_INVALID_CONF

Error Code implying confirmation is invalid.

o EC_PROVIDER_OUT_OF_SERVICE

 public static final int EC_PROVIDER_OUT_OF_SERVICE

Error Code implying Provider is OUT_OF_SERVICE.

Methods

o getErrorType

 public abstract int getErrorType()

Returns the error type.

o getErrorCode

 public abstract int getErrorCode()

Returns the error code.

Class com.lucent.jtapi.tsapi.TsapiInvalidArgumentException

java.lang.Object
 |
 +−−−−java.lang.Throwable
 |
 +−−−−java.lang.Exception
 |
 +−−−−javax.telephony.InvalidArgumentException
 |
 +−−−−com.lucent.jtapi.tsapi.TsapiInvalidArgumentException

public final class TsapiInvalidArgumentException
extends InvalidArgumentException
implements ITsapiException

TsapiInvalidArgumentException extends Jtapi InvalidArgumentException to add
implementation specific errorType and errorCode.

See ITsapiException for details on errorType and errorCode.

Method Index

o getErrorCode()
Returns the error code.

o getErrorType()
Returns the error type.

Methods

o getErrorType

 public int getErrorType()

Returns the error type.

o getErrorCode

 public int getErrorCode()

Returns the error code.

Class com.lucent.jtapi.tsapi.TsapiInvalidPartyException

java.lang.Object
 |
 +−−−−java.lang.Throwable
 |
 +−−−−java.lang.Exception
 |
 +−−−−javax.telephony.InvalidPartyException
 |
 +−−−−com.lucent.jtapi.tsapi.TsapiInvalidPartyException

public final class TsapiInvalidPartyException
extends InvalidPartyException
implements ITsapiException

TsapiInvalidPartyException extends Jtapi InvalidPartyException to add implementation
specific errorType and errorCode.

See ITsapiException for details on errorType and errorCode.

Method Index

o getErrorCode()
Returns the error code.

o getErrorType()
Returns the error type.

Methods

o getErrorType

 public int getErrorType()

Returns the error type.

o getErrorCode

 public int getErrorCode()

Returns the error code.

Class com.lucent.jtapi.tsapi.TsapiInvalidStateException

java.lang.Object
 |
 +−−−−java.lang.Throwable
 |
 +−−−−java.lang.Exception
 |
 +−−−−javax.telephony.InvalidStateException
 |
 +−−−−com.lucent.jtapi.tsapi.TsapiInvalidStateException

public final class TsapiInvalidStateException
extends InvalidStateException
implements ITsapiException

TsapiInvalidStateException extends Jtapi InvalidStateException to add implementation
specific errorType and errorCode.

See ITsapiException for details on errorType and errorCode.

Method Index

o getErrorCode()
Returns the error code.

o getErrorType()
Returns the error type.

Methods

o getErrorType

 public int getErrorType()

Returns the error type.

o getErrorCode

 public int getErrorCode()

Returns the error code.

Class
com.lucent.jtapi.tsapi.TsapiMethodNotSupportedException

java.lang.Object
 |
 +−−−−java.lang.Throwable
 |
 +−−−−java.lang.Exception
 |
 +−−−−javax.telephony.MethodNotSupportedException
 |
 +−−−−com.lucent.jtapi.tsapi.TsapiMethodNotSupportedException

public final class TsapiMethodNotSupportedException
extends MethodNotSupportedException
implements ITsapiException

TsapiMethodNotSupportedException extends MethodNotSupportedException to add
implementation specific errorType and errorCode.

See ITsapiException for details on errorType and errorCode.

Method Index

o getErrorCode()
Returns the error code.

o getErrorType()
Returns the error type.

Methods

o getErrorType

 public int getErrorType()

Returns the error type.

o getErrorCode

 public int getErrorCode()

Returns the error code.

Class com.lucent.jtapi.tsapi.TsapiPlatformException

java.lang.Object
 |
 +−−−−java.lang.Throwable
 |
 +−−−−java.lang.Exception
 |
 +−−−−java.lang.RuntimeException
 |
 +−−−−javax.telephony.PlatformException
 |
 +−−−−com.lucent.jtapi.tsapi.TsapiPlatformException

public final class TsapiPlatformException
extends PlatformException
implements ITsapiException

TsapiPlatformException extends Jtapi PlatformException to add implementation
specific errorType and errorCode.

See ITsapiException for details on errorType and errorCode.

Method Index

o getErrorCode()
Returns the error code.

o getErrorType()
Returns the error type.

Methods

o getErrorType

 public int getErrorType()

Returns the error type.

o getErrorCode

 public int getErrorCode()

Returns the error code.

Class
com.lucent.jtapi.tsapi.TsapiPrivilegeViolationException

java.lang.Object
 |
 +−−−−java.lang.Throwable
 |
 +−−−−java.lang.Exception
 |
 +−−−−javax.telephony.PrivilegeViolationException
 |
 +−−−−com.lucent.jtapi.tsapi.TsapiPrivilegeViolationException

public final class TsapiPrivilegeViolationException
extends PrivilegeViolationException
implements ITsapiException

TsapiPrivilegeViolationException extends PrivilegeViolationException to add acs / csta
error codes.

Method Index

o getErrorCode()
Returns the error code.

o getErrorType()
Returns the error type.

Methods

o getErrorType

 public int getErrorType()

Returns the error type.

o getErrorCode

 public int getErrorCode()

Returns the error code.

Class
com.lucent.jtapi.tsapi.TsapiProviderUnavailableException

java.lang.Object
 |
 +−−−−java.lang.Throwable
 |
 +−−−−java.lang.Exception
 |
 +−−−−java.lang.RuntimeException
 |
 +−−−−javax.telephony.ProviderUnavailableException
 |
 +−−−−com.lucent.jtapi.tsapi.TsapiProviderUnavailableException

public final class TsapiProviderUnavailableException
extends ProviderUnavailableException
implements ITsapiException

TsapiProviderUnavailableException extends Jtapi ProviderUnavailableException to add
implementation specific errorType and errorCode.

See ITsapiException for details on errorType and errorCode.

Method Index

o getErrorCode()
Returns the error code.

o getErrorType()
Returns the error type.

Methods

o getErrorType

 public int getErrorType()

Returns the error type.

o getErrorCode

 public int getErrorCode()

Returns the error code.

Class
com.lucent.jtapi.tsapi.TsapiResourceUnavailableException

java.lang.Object
 |
 +−−−−java.lang.Throwable
 |
 +−−−−java.lang.Exception
 |
 +−−−−javax.telephony.ResourceUnavailableException
 |
 +−−−−com.lucent.jtapi.tsapi.TsapiResourceUnavailableException

public final class TsapiResourceUnavailableException
extends ResourceUnavailableException
implements ITsapiException

TsapiResourceUnavailableException extends Jtapi ResourceUnavailableException to
add implementation specific errorType and errorCode.

See ITsapiException for details on errorType and errorCode.

Method Index

o getErrorCode()
Returns the error code.

o getErrorType()
Returns the error type.

Methods

o getErrorType

 public int getErrorType()

Returns the error type.

o getErrorCode

 public int getErrorCode()

Returns the error code.

Using Telephony Services
DEFINITY-Specific Extensions
to JTAPI

Contents

JTAPI Client Programmer’s Guide Issue 1.1 3-i

Using Telephony Services DEFINITY-Specific
Extensions 3-1

n Who Should Be Using These Extensions? 3-1
n How Should the Extensions be Used? 3-2

Using Telephony Services
DEFINITY-Specific Extensions
to JTAPI

JTAPI Client Programmer’s Guide Issue 1.1 3-1

Using Telephony Services DEFINITY-
Specific Extensions

 NOTE:
This chapter describes non-standard additions to JTAPI. This package is
available only from the CentreVu Telephony Services implementation of
JTAPI and is not available from any other implementation of JTAPI.

This chapter is optional. It is an intermediate private data package that allows
programmers to access private data via Java interfaces rather than through raw
private data bytes. It contains the DEFINITY-specific feature extensions that
support the Telephony Services implementation of JTAPI intended for
applications that operate solely with the DEFINITY switch.

Who Should Be Using These Extensions?

An application programmer using JTAPI to develop applications that will be used
with the DEFINITY switch and the associated CentreVu Telephony Services
driver (i.e., the G3PD). In addition, these applications will take advantage of
DEFINITY-specific features that are not accessible through standard JTAPI. It is
assumed that this individual has a familiarity with both the Java programming
language and JTAPI.

 NOTE:
If you are an application programmer who is using JTAPI to develop
applications for any switch for which there is a CentreVu Telephony
Services driver, ignore this chapter and refer to Chapter 1, “Telephony
Services Implementation of JTAPI for All Switches and the DEFINITY
Switch.” If you want additional TSAPI-specific information that is not
accessible through standard JTAPI, refer to Chapter 2, “ Using Telephony
Services Extensions to JTAPI.”

Using Telephony Services DEFINITY-Specific
Extensions to JTAPI

3-2 Issue 1.1 JTAPI Client Programmer’s Guide

 NOTE:
If you are an independent switch vendor who is using the JTAPI private
data programming environment to develop a private data package for non-
DEFINITY switches, or an application programmer who is using or
interpreting private data in a raw form, ignore this chapter and refer to
Chapter 4, “Telephony Services Private Data Extensions to JTAPI.”

How Should the Extensions be Used?

The DEFINITY-specific extensions to JTAPI make available DEFINITY features
beyond those provided by the standard Telephony Services implementation of
JTAPI. The following table lists each DEFINITY feature that is available as an
extension to JTAPI, its description, its associated class or interface, and the
methods returned or used by methods in each appropriate class or interface.

Table 3-1. DEFINITY Features Provided by DEFINITY-Specific Extensions to JTAPI

Feature Name and Description Class or Interface Returned/Used by Methods in
Class or Interface

Advice of Charge Reports
network charges incurred by
outgoing trunk calls (supported
by G3V5)

LucentChargeAdviceEvent LucentV5Provider

Agent Work Mode�Specifies the
overriding mode of the Agent;
affects the cycle of the possibly
occurring Agents states.
G3V5 adds support for: reason
code.

LucentAgent
LucentAgentStateInfo
LucentTerminal
LucentV5Terminal
LucentV5AgentStateInfo

Call Classifier Information
Provides information on call
classifier port usage

CallClassifierInfo LucentProvider

Collect Digits Allows a route
request to wait for a specified
number of digits to be collected

LucentRouteSession

Using Telephony Services DEFINITY-Specific
Extensions to JTAPI

JTAPI Client Programmer’s Guide Issue 1.1 3-3

Feature Name and Description Class or Interface Returned/Used by Methods in
Class or Interface

Dial-Ahead Digits�Allows a route
request to place digits in a dial-
ahead buffer

LucentRouteSession

Direct Agent Calls�Allows calls
to be made to and from specific
logged-in ACD Agents

LucentCall
LucentRouteSession

Dropping Resources�Allows
specific switch resources to be
dropped from the call

LucentConnection
LucentTerminalConnection

Flexible Billing Allows changing
the billing rate for incoming 900-
type calls (supported by G3V5)

LucentV5Call

Integrated Directory Name
Allows the G3 Integrated
Directory Database name to be
returned

LucentAddress
LucentTerminal

Look-Ahead Interflow
Information�May be used by a
routing server application to
determine the proper destination
of a call

LookaheadInfo LucentCallInfo
OriginalCallInfo

Lucent Call Information
Provides Lucent-specific call
information on Call and
CallControlCall events;
information includes delivering
ACD, distributing Address,
originating Trunk, reason for last
Call event, and other information.
G3V5 adds support for: Universal
Call ID, Originator Type, and Flex
Billing Flag.

LucentCallInfo
LucentV5CallInfo

Implemented by Lucent call
objects, route session objects,
and CallControlCall events.

Message Waiting Application
Information Indicates which
types of applications have
enabled message waiting

LucentAddress
LucentAddressMsgWaitingEvent

Network Progress Information
Contains supplementary call
progress information from the
ISDN Progress Indicator
Information Element
G3V5 adds support for: trunk.

NetworkProgressInfo
V5NetworkProgressInfo

LucentConnNetworkReachedEvent

Using Telephony Services DEFINITY-Specific
Extensions to JTAPI

3-4 Issue 1.1 JTAPI Client Programmer’s Guide

Feature Name and Description Class or Interface Returned/Used by Methods in
Class or Interface

Original Call Information
Contains information about the
original call in conjunction with
the Call.consult() service.
G3V5 adds support for: Universal
Call ID, Originator Type, and Flex
Billing Flag.

OriginalCallInfo
V5OriginalCallInfo

LucentCallInfo
LucentV5CallInfo

Priority Calls�Enables priority
calling

LucentCall
LucentRouteSession

Selective Listen Allows control of
listen paths between parties on a
conference call (supported by
G3V5)

LucentV5TerminalConnection

Single Step Conference Adds
another party to a call (added
party does not alert; used mainly
for service observing) (supported
by G3V5)

LucentV5Call

Supervisor Assist Calls Allows
logged-in ACD Agents to place
calls to a supervisor’s extension

LucentCall

Switch Date and Time
Information�Returns the current
date and time from the switch

LucentProvider

Trunk Group Information
Provides information on trunk
group usage

TrunkGroupInfo LucentProvider

Universal Call ID A call identifier
that is globally unique across
switches and the public network
(supported by G3V5)

LucentV5CallInfo (extended by
LucentV5Call)

User Entered Code The
code/digits that may have been
entered by the caller through the
G3 Call Prompting feature of the
Collected Digits feature

UserEnteredCode LucentCallInfo
OriginalCallInfo

User-to-User Information�An
ISDN feature that allows end-to-
end transmission of application
data during call setup/teardown

UserToUserInfo LucentCall
LucentCallInfo
LucentConnection
LucentRouteSession
LucentTerminalConnection
OriginalCallInfo

package com.lucent.jtapi.tsapi

Interface Index

ITsapiAddress
ITsapiAddressMsgWaitingEvent
ITsapiAgent
ITsapiCall
ITsapiCallInfo
ITsapiConnNetworkReachedEvent
ITsapiConnection
ITsapiRouteSession
ITsapiTerminal
ITsapiTerminalConnection
LucentAddress
LucentAddressMsgWaitingEvent
LucentAgent
LucentCall
LucentCallInfo
LucentConnNetworkReachedEvent
LucentConnection
LucentProvider
LucentRouteSession
LucentTerminal
LucentTerminalConnection
LucentV5Call
LucentV5CallInfo
LucentV5Connection
LucentV5Provider
LucentV5Terminal
LucentV5TerminalConnection

Class Index

CallClassifierInfo
LookaheadInfo
LucentAgentStateInfo
LucentBillType
LucentChargeAdviceEvent
LucentChargeError
LucentChargeType
LucentV5AgentStateInfo
NetworkProgressInfo
OriginalCallInfo
TrunkGroupInfo

UserEnteredCode
UserToUserInfo
V5NetworkProgressInfo
V5OriginalCallInfo

Interface com.lucent.jtapi.tsapi.ITsapiAddress

public interface ITsapiAddress
extends Address, CallControlAddress, CallCenterAddress, RouteAddress

ITsapiAddress extends Jtapi Address, CallControlAddress, CallCenterAddress,
RouteAddress.

This interface was added so that LucentAddress could extend it and migration of
methods from LucentAddress to ITsapiAddress would not affect applications using
LucentAddress. Methods in LucentAddress currently map to Tsapi Data for Definity. It
is expected that once the functionality is part of Tsapi the methods will migrate.

Interface
com.lucent.jtapi.tsapi.ITsapiAddressMsgWaitingEvent

public interface ITsapiAddressMsgWaitingEvent
extends CallCtlAddrMessageWaitingEv

ITsapiAddressMsgWaitingEvent implements Jtapi CallCtlAddrMessageWaitingEv.

This interface was added so that LucentAddressMsgWaitingEvent could extend it and
migration of methods from LucentAddressMsgWaitingEvent to
ITsapiAddressMsgWaitingEvent would not affect applications using
LucentAddressMsgWaitingEvent. Methods in LucentAddressMsgWaitingEvent
currently map to Tsapi Data for Definity. It is expected that once the functionality is
part of Tsapi the methods will migrate.

Interface com.lucent.jtapi.tsapi.ITsapiAgent

public interface ITsapiAgent
extends Agent

ITsapiAgent extends Agent.

This interface was added so that LucentAgent could extend it and migration of methods
from LucentAgent to ITsapiAgent would not affect applications using LucentAgent.
Methods in LucentAgent currently map to Tsapi Data for Definity. It is expected that
once the functionality is part of Tsapi the methods will migrate.

Interface com.lucent.jtapi.tsapi.ITsapiCall

public interface ITsapiCall
extends ITsapiCallInfo, Call, CallControlCall, CallCenterCall

ITsapiCall extends Jtapi Call, CallControlCall, CallCenterCall.

This interface was added so that LucentCall could extend it and migration of methods
from LucentCall to ITsapiCall would not affect applications using LucentCall. Methods
in LucentCall currently map to Tsapi Data for Definity. It is expected that once the
functionality is part of Tsapi the methods will migrate.

Interface com.lucent.jtapi.tsapi.ITsapiCallInfo

public interface ITsapiCallInfo

ITsapiCallInfo adds new call information for Call and events

This interface was added so that LucentCallInfo could extend it and migration of
methods from LucentCallInfo to ITsapiCallInfo would not affect applications using
LucentCallInfo. Methods in LucentCallInfo currently map to Tsapi Data for Definity. It
is expected that once the functionality is part of Tsapi the methods will migrate.

Interface
com.lucent.jtapi.tsapi.ITsapiConnNetworkReachedEvent

public interface ITsapiConnNetworkReachedEvent
extends CallCtlConnNetworkReachedEv

ITsapiConnNetworkReachedEvent extends Jtapi CallCtlConnNetworkReachedEv.

This interface was added so that LucentConnNetworkReachedEvent could extend it and
migration of methods from LucentConnNetworkReachedEvent to
ITsapiConnNetworkReachedEvent would not affect applications using
LucentConnNetworkReachedEvent.Methods in LucentConnNetworkReachedEvent
currently map to Tsapi Data for Definity. It is expected that once the functionality is
part of Tsapi the methods will migrate.

Interface com.lucent.jtapi.tsapi.ITsapiConnection

public interface ITsapiConnection
extends Connection, CallControlConnection

ITsapiConnection extends Jtapi Connection and CallControlConnection.

This interface was added so that LucentConnection could extend it and migration of
methods from LucentConnection to ITsapiConnection would not affect applications using
LucentConnection. Methods in LucentConnection currently map to Tsapi Data for
Definity. It is expected that once the functionality is part of Tsapi the methods will
migrate.

Interface com.lucent.jtapi.tsapi.ITsapiRouteSession

public interface ITsapiRouteSession
extends RouteSession, ITsapiCallInfo

ITsapiRouteSession extends Jtapi RouteSession to return the Call object associated with
the RouteSession.

Method Index

o getCall()
Returns the Call object associated with this RouteSession.

Methods

o getCall

 public abstract Call getCall()

Returns the Call object associated with this RouteSession. This Call reference
remains valid throughout the lifetime of the RouteSession object, despite the state
of the RouteSession object. This Call reference does not change once the
RouteSession object has been created.

Returns:
The call object associated with this RouteSession.

Interface com.lucent.jtapi.tsapi.ITsapiTerminal

public interface ITsapiTerminal
extends Terminal, CallControlTerminal, AgentTerminal

ITsapiTerminal extends Terminal, CallControlTerminal and AgentTerminal.

This interface was added so that LucentTerminal could extend it and migration of
methods from LucentTerminal to ITsapiTerminal would not affect applications using
LucentTerminal. Methods in LucentTerminal currently map to Tsapi Data for Definity.
It is expected that once the functionality is part of Tsapi the methods will migrate.

Interface com.lucent.jtapi.tsapi.ITsapiTerminalConnection

public interface ITsapiTerminalConnection
extends TerminalConnection, CallControlTerminalConnection,
MediaTerminalConnection

ITsapiTerminalConnection extends TerminalConnection,
CallControlTerminalConnection, and MediaTerminalConnection.

This interface was added so that LucentTerminalConnection could extend it and
migration of methods from LucentTerminalConnection to ITsapiTerminalConnection
would not affect applications using LucentTerminalConnection. Methods in
LucentTerminalConnection currently map to Tsapi Data for Definity. It is expected that
once the functionality is part of Tsapi the methods will migrate.

Interface com.lucent.jtapi.tsapi.LucentAddress

public interface LucentAddress
extends ITsapiAddress

This interface add Lucent−specific methods to the Address interface.

Variable Index

o MWI_CTI
The message waiting indicator has been enabled via CTI.

o MWI_LWC
The message waiting indicator has been enabled via Leave Word Calling.

o MWI_MCS
The message waiting indicator has been enabled via Message Center.

o MWI_PROPMGT
The message waiting indicator has been enabled via Property Management.

o MWI_VOICE
The message waiting indicator has been enabled via Voice Messaging.

Method Index

o getDirectoryName()
Returns the DEFINITY G3 PBX Integrated Directory Database name
corresponding to this Address.

o getMessageWaitingBits()
Returns a bit−mask indicating which applications have enabled the message
waiting indicator at this Address.

Variables

o MWI_MCS

 public static final int MWI_MCS

The message waiting indicator has been enabled via Message Center.

o MWI_VOICE

 public static final int MWI_VOICE

The message waiting indicator has been enabled via Voice Messaging.

o MWI_PROPMGT

 public static final int MWI_PROPMGT

The message waiting indicator has been enabled via Property Management.

o MWI_LWC

 public static final int MWI_LWC

The message waiting indicator has been enabled via Leave Word Calling.

o MWI_CTI

 public static final int MWI_CTI

The message waiting indicator has been enabled via CTI.

Methods

o getMessageWaitingBits

 public abstract int getMessageWaitingBits() throws TsapiMethodNotSupportedException

Returns a bit−mask indicating which applications have enabled the message
waiting indicator at this Address. Its value is a logical−OR combination of
MWI_MCS, MWI_VOICE, MWI_PROPMGT, MWI_LWC, and/or MWI_CTI. If the
return value is 0, then the message waiting indicator is OFF.

o getDirectoryName

 public abstract String getDirectoryName()

Returns the DEFINITY G3 PBX Integrated Directory Database name
corresponding to this Address.

Interface
com.lucent.jtapi.tsapi.LucentAddressMsgWaitingEvent

public interface LucentAddressMsgWaitingEvent
extends ITsapiAddressMsgWaitingEvent

This interface add Lucent−specific methods to the CallCtlAddrMessageWaitingEv
interface.

Method Index

o getMessageWaitingBits()
Returns a bit−mask indicating which applications have enabled the message
waiting indicator at this Address.

Methods

o getMessageWaitingBits

 public abstract int getMessageWaitingBits()

Returns a bit−mask indicating which applications have enabled the message
waiting indicator at this Address. Its value is a logical−OR combination of
MWI_MCS, MWI_VOICE, MWI_PROPMGT, MWI_LWC, and/or MWI_CTI. If the
return value is 0, then the message waiting indicator is OFF.

See Also:
LucentAddress

Interface com.lucent.jtapi.tsapi.LucentAgent

public interface LucentAgent
extends ITsapiAgent

The LucentAgent interface extends the ITsapiAgent interface.

Variable Index

o MODE_AUTO_IN
In this work mode the agent is put into the Agent.READY state immediately after
disconnecting from a previous call and can be delivered a new call .

o MODE_MANUAL_IN
In this work mode the agent is put into the Agent.WORK_NOT_READY
immediately after disconnecting from a previous call and cannot be delivered a
new call .

o MODE_NONE
This implies the agent’s work mode is not being set.

Method Index

o getStateInfo()
This returns this Agent’s state and workMode.

o setState(int, int)
This method overrides Agent.setState() to add the Lucent−specific parameter
workMode.

Variables

o MODE_NONE

 public static final int MODE_NONE

This implies the agent’s work mode is not being set.

o MODE_AUTO_IN

 public static final int MODE_AUTO_IN

In this work mode the agent is put into the Agent.READY state immediately after

disconnecting from a previous call and can be delivered a new call .

o MODE_MANUAL_IN

 public static final int MODE_MANUAL_IN

In this work mode the agent is put into the Agent.WORK_NOT_READY
immediately after disconnecting from a previous call and cannot be delivered a
new call .

Methods

o setState

 public abstract void setState(int state,
 int workMode) throws TsapiInvalidArgumentException , TsapiInvalidStateE

This method overrides Agent.setState() to add the Lucent−specific parameter
workMode. It changes the state and workMode of a previously added Agent.

The post and pre conditions are as follows:

The pre−condition predicates for this method are:
1. this.getTerminal.getProvider().getState() == IN_SERVICE
2. this.getStateInfo (appropriate state and workMode)

The post−condition predicates for this method are:
1. this.getTerminal.getProvider().getState() == IN_SERVICE
2. this.getStateInfo() == state and workMode (specified as a parameter)

Parameters:
state − specifies the state this Agent should be set to. Valid states are
READY, NOT_READY, WORK_READY and WORK_NOT_READY.
workMode − specifies the state this Agent should be set to. Valid workModes
are MODE_AUTO_IN and MODE_MANUAL_IN.

Throws:TsapiInvalidArgumentException
At least one of the arguments passed in is not valid.

Throws:TsapiInvalidStateException
Implementation determined Agent was in an invalid state for this method.

o getStateInfo

 public abstract LucentAgentStateInfo getStateInfo()

This returns this Agent’s state and workMode.

Valid values of state returned are UNKNOWN, BUSY, READY, NOT_READY,
WORK_READY, WORK_NOT_READY, LOG_IN and LOG_OUT. Valid values of

workModes are MODE_AUTO_IN and MODE_MANUAL_IN.

Interface com.lucent.jtapi.tsapi.LucentCall

public interface LucentCall
extends ITsapiCall, LucentCallInfo

The LucentCall interface extends ITsapiCall with Lucent−specific features. When a
Provider is bound to a Lucent switch, this interface may be used to access additional
capabilities.

Direct−agent calling may be used by an application to place a call to a specific logged−in
ACD agent. Supervisor−assist calling may be used by an application to place a call from
a logged−in ACD agent to a supervisor. These features are also available on consultation
calls. These types of calls may be tracked separately by ACD measurement software in
the PBX.

User−to−user information is an ISDN feature which allows end−to−end transmission of
application data during call setup/teardown. This information may be a customer
number, credit card number, alphanumeric digits, or a binary string. It is propagated
with the call whether the call is made to a destination on the local switch or to a
destination on a remote switch over PRI trunks. The switch sends the UUI in the ISDN
SETUP message over the PRI trunk to establish the call. The local and the remote
switch include the UUI in the alerting, connected, disconnected and route request
events.

See Also:
UserToUserInfo

Method Index

o connect(LucentTerminal, LucentAddress, String, boolean, UserToUserInfo)
Similar to the standard connect(), with the addition of Lucent−specific call
parameters.

o connectDirectAgent(LucentTerminal, LucentAddress, LucentAgent, boolean,
UserToUserInfo)

Places a direct call to a specific logged−in ACD agent.
o connectPredictive(LucentTerminal, LucentAddress, String, int, int, int, int, boolean,
UserToUserInfo)

Similar to the standard connectPredictive(), with the addition of Lucent−specific
call parameters.

o connectSupervisorAssist(LucentAgent, String, UserToUserInfo)
Places a call from a logged−in ACD agent to a supervisor’s extension.

o consult(LucentTerminalConnection, String, boolean, UserToUserInfo)
Similar to the standard consult(), with the addition of Lucent−specific call
parameters.

o consultDirectAgent(LucentTerminalConnection, LucentAgent, boolean,
UserToUserInfo)

Places a consultation call with a specific logged−in ACD agent.
o consultSupervisorAssist(LucentTerminalConnection, ACDAddress, String,
UserToUserInfo)

Places a consultation call from a logged−in ACD agent to a supervisor’s extension.

Methods

o connect

 public abstract Connection[] connect(LucentTerminal origterm,
 LucentAddress origaddr,
 String dialedDigits,
 boolean priorityCall,
 UserToUserInfo userInfo) throws TsapiResourceUnavailableExcepti

Similar to the standard connect(), with the addition of Lucent−specific call
parameters.

Parameters:
origterm − The originating Terminal for this telephone call.
origaddr − The originating Address for this telephone call.
dialedDigits − The dialable destination string for this telephone call.
priorityCall − If true, attempt to place a priority call
userInfo − Associate caller information, up to 32 bytes, with the call.

See Also:
UserToUserInfo

o connectDirectAgent

 public abstract Connection[] connectDirectAgent(LucentTerminal origterm,
 LucentAddress origaddr,
 LucentAgent calledAgent,
 boolean priorityCall,
 UserToUserInfo userInfo) throws TsapiResourceUnavail

Places a direct call to a specific logged−in ACD agent.

Parameters:
origterm − The originating Terminal for this telephone call.
origaddr − The originating Address for this telephone call.
calledAgent − The ACD agent extension to be called.
priorityCall − If true, attempt to place a priority call
userInfo − Associate caller information, up to 32 bytes, with the call.

See Also:

UserToUserInfo

o connectSupervisorAssist

 public abstract Connection[] connectSupervisorAssist(LucentAgent callingAgent,
 String dialedDigits,
 UserToUserInfo userInfo) throws TsapiResourceUn

Places a call from a logged−in ACD agent to a supervisor’s extension.

Parameters:
callingAgent − The ACD agent extension from which to originate the call.
dialedDigits − The supervisor’s extension.
userInfo − Associate caller information, up to 32 bytes, with the call.

See Also:
UserToUserInfo

o connectPredictive

 public abstract Connection[] connectPredictive(LucentTerminal originatorTerminal,
 LucentAddress origAddress,
 String dialedDigits,
 int connectionState,
 int maxRings,
 int answeringTreatment,
 int answeringEndpointType,
 boolean priorityCall,
 UserToUserInfo userInfo) throws TsapiResourceUnavaila

Similar to the standard connectPredictive(), with the addition of Lucent−specific
call parameters.

Parameters:
originatorTerminal − The originating Terminal of the telephone call. This is
optional when the originator is for example an ACDAddress.
origAddress − The originating Address of the telephone call.
dialedDigits − This must be a complete and valid telephone number.
connectionState − The application may set this to CONNECTED
ALERTING, NETWORK_REACHED or NETWORK_ALERTING.
maxRings − This specifies the the number of rings that are allowed before
classifying the call as no answer. The allowed range is from MIN_RINGS of 2
to MAX_RINGS of 15.
answeringTreatment − This specifies the call treatment when an answering
endpoint is detected. The set includes
ANSWERING_TREATMENT_PROVIDER_DEFAULT,
ANSWERING_TREATMENT_DROP,
ANSWERING_TREATMENT_CONNECT and
ANSWERING_TREATMENT_NONE.
answeringEndpointType − This specifies the type of answering endpoint.
The set includes ENDPOINT_ANSWERING_MACHINE,

ENDPOINT_FAX_MACHINE, ENDPOINT_HUMAN_INTERVENTION,
ENDPOINT_ANY.
priorityCall − If true, attempt to place a priority call
userInfo − Associate caller information, up to 32 bytes, with the call.

See Also:
UserToUserInfo

o consult

 public abstract Connection[] consult(LucentTerminalConnection termconn,
 String address,
 boolean priorityCall,
 UserToUserInfo userInfo) throws TsapiInvalidStateException , Tsa

Similar to the standard consult(), with the addition of Lucent−specific call
parameters.

Parameters:
termconn − The controlling TerminalConnection for the consultation call.
address − The dialable destination string for this telephone call.
priorityCall − If true, attempt to place a priority call
userInfo − Associate caller information, up to 32 bytes, with the call.

See Also:
UserToUserInfo

o consultDirectAgent

 public abstract Connection[] consultDirectAgent(LucentTerminalConnection termconn,
 LucentAgent calledAgent,
 boolean priorityCall,
 UserToUserInfo userInfo) throws TsapiInvalidStateExc

Places a consultation call with a specific logged−in ACD agent.

Parameters:
termconn − The controlling TerminalConnection for the consultation call.
calledAgent − The ACD agent extension to be called.
priorityCall − If true, attempt to place a priority call
userInfo − Associate caller information, up to 32 bytes, with the call.

See Also:
UserToUserInfo

o consultSupervisorAssist

 public abstract Connection[] consultSupervisorAssist(LucentTerminalConnection termconn,
 ACDAddress split,
 String address,
 UserToUserInfo userInfo) throws TsapiInvalidSta

Places a consultation call from a logged−in ACD agent to a supervisor’s extension.

Parameters:
termconn − The controlling TerminalConnection for the consultation call.
split − The split which the originating ACD agent is logged into.
address − The supervisor’s extension.
userInfo − Associate caller information, up to 32 bytes, with the call.

See Also:
UserToUserInfo

Interface com.lucent.jtapi.tsapi.LucentCallInfo

public interface LucentCallInfo
extends ITsapiCallInfo

The LucentCallInfo interface provides access methods for Lucent−specific call
information. These methods are implemented on the call object, the route session object,
and on certain call control call events. For example, if a CallControlCallObserver
receives a CallCtlConnAlertingEv, it may be cast to LucentCallInfo to use the
getUserToUserInfo() method. These methods may return null if the requested data is not
available.

Variable Index

o AR_ANSWER_MACHINE_DETECTED
o AR_ANSWER_NORMAL
o AR_ANSWER_TIMED
o AR_ANSWER_VOICE_ENERGY
o AR_IN_QUEUE
o AR_NONE
o AR_SIT_INEFFECTIVE_OTHER
o AR_SIT_INTERCEPT
o AR_SIT_NO_CIRCUIT
o AR_SIT_REORDER
o AR_SIT_UNKNOWN
o AR_SIT_VACANT_CODE

Method Index

o getDeliveringACDAddress()
For a connection to an AgentTerminal, getDeliveringACDAddress returns the
ACDAddress that this call was delivered through to the AgentTerminal.

o getDistributingAddress()
For a connection to an AgentTerminal, getDistributingAddress returns the
ACDAddress or ACDManagerAddress that was an intermediate endpoint before
the call terminated at the AgentTerminal.

o getLookaheadInfo()
Returns lookahead interflow information associated with the call event.

o getOriginalCallInfo()
Returns original call information associated with the call event.

o getReason()
Specifies the reason for the last event sent for Connections and
TerminalConnections on the Call or the Call.

o getTrunk()
Returns the trunk from which the call originated.

o getUserEnteredCode()
Returns call prompting digits associated with the call event.

o getUserToUserInfo()
Returns user−to−user information associated with the call event.

Variables

o AR_NONE

 public static final short AR_NONE

o AR_ANSWER_NORMAL

 public static final short AR_ANSWER_NORMAL

o AR_ANSWER_TIMED

 public static final short AR_ANSWER_TIMED

o AR_ANSWER_VOICE_ENERGY

 public static final short AR_ANSWER_VOICE_ENERGY

o AR_ANSWER_MACHINE_DETECTED

 public static final short AR_ANSWER_MACHINE_DETECTED

o AR_SIT_REORDER

 public static final short AR_SIT_REORDER

o AR_SIT_NO_CIRCUIT

 public static final short AR_SIT_NO_CIRCUIT

o AR_SIT_INTERCEPT

 public static final short AR_SIT_INTERCEPT

o AR_SIT_VACANT_CODE

 public static final short AR_SIT_VACANT_CODE

o AR_SIT_INEFFECTIVE_OTHER

 public static final short AR_SIT_INEFFECTIVE_OTHER

o AR_SIT_UNKNOWN

 public static final short AR_SIT_UNKNOWN

o AR_IN_QUEUE

 public static final short AR_IN_QUEUE

Methods

o getUserToUserInfo

 public abstract UserToUserInfo getUserToUserInfo()

Returns user−to−user information associated with the call event.

o getLookaheadInfo

 public abstract LookaheadInfo getLookaheadInfo()

Returns lookahead interflow information associated with the call event.

o getUserEnteredCode

 public abstract UserEnteredCode getUserEnteredCode()

Returns call prompting digits associated with the call event.

o getOriginalCallInfo

 public abstract OriginalCallInfo getOriginalCallInfo()

Returns original call information associated with the call event.

o getDistributingAddress

 public abstract CallCenterAddress getDistributingAddress()

For a connection to an AgentTerminal, getDistributingAddress returns the
ACDAddress or ACDManagerAddress that was an intermediate endpoint before
the call terminated at the AgentTerminal.

o getDeliveringACDAddress

 public abstract ACDAddress getDeliveringACDAddress()

For a connection to an AgentTerminal, getDeliveringACDAddress returns the
ACDAddress that this call was delivered through to the AgentTerminal.

o getTrunk

 public abstract CallCenterTrunk getTrunk()

Returns the trunk from which the call originated.

o getReason

 public abstract short getReason()

Specifies the reason for the last event sent for Connections and
TerminalConnections on the Call or the Call.

Interface
com.lucent.jtapi.tsapi.LucentConnNetworkReachedEvent

public interface LucentConnNetworkReachedEvent
extends ITsapiConnNetworkReachedEvent

Returns supplementary call progress information from the ISDN Progress Indicator
Information Element.

Method Index

o getNetworkProgressInfo()
Get the supplementary call progress information

Methods

o getNetworkProgressInfo

 public abstract NetworkProgressInfo getNetworkProgressInfo()

Get the supplementary call progress information

Interface com.lucent.jtapi.tsapi.LucentConnection

public interface LucentConnection
extends ITsapiConnection

The LucentConnection interface extends ITsapiConnection with Lucent−specific
features. When a Provider is bound to a Lucent switch, this interface may be used to
access additional capabilities.

Variable Index

o DR_CALL_CLASSIFIER
Drop a call classifier from the call.

o DR_NONE
o DR_TONE_GENERATOR

Drop a tone generator from the call.

Method Index

o disconnect(short, UserToUserInfo)
Similar to the standard disconnect(), with the addition of Lucent−specific
parameters.

Variables

o DR_NONE

 public static final short DR_NONE

o DR_CALL_CLASSIFIER

 public static final short DR_CALL_CLASSIFIER

Drop a call classifier from the call.

o DR_TONE_GENERATOR

 public static final short DR_TONE_GENERATOR

Drop a tone generator from the call.

Methods

o disconnect

 public abstract void disconnect(short dropResource,
 UserToUserInfo userInfo) throws TsapiPrivilegeViolationException , Ts

Similar to the standard disconnect(), with the addition of Lucent−specific
parameters.

Parameters:
dropResource − The resource to be dropped from the call. Possible values are
DR_CALL_CLASSIFIER, DR_TONE_GENERATOR, and DR_NONE.
userInfo − Associate caller information, up to 32 bytes, with the call.

See Also:
UserToUserInfo

Interface com.lucent.jtapi.tsapi.LucentProvider

public interface LucentProvider
extends ITsapiProvider

LucentProvider adds methods to obtain Lucent−specific switch information.

Method Index

o getCallClassifierInfo()
Returns information on call classifier port usage.

o getSwitchDateAndTime()
Returns current date and time from the switch.

o getTrunkGroupInfo(String)
Returns trunk usage information on the specified trunk group.

Methods

o getTrunkGroupInfo

 public abstract TrunkGroupInfo getTrunkGroupInfo(String trunkAccessCode) throws TsapiMethodNotSuppor

Returns trunk usage information on the specified trunk group.

o getCallClassifierInfo

 public abstract CallClassifierInfo getCallClassifierInfo() throws TsapiMethodNotSupportedException

Returns information on call classifier port usage.

o getSwitchDateAndTime

 public abstract Date getSwitchDateAndTime() throws TsapiMethodNotSupportedException

Returns current date and time from the switch.

Interface com.lucent.jtapi.tsapi.LucentRouteSession

public interface LucentRouteSession
extends ITsapiRouteSession

The LucentRouteSession interface extends ITsapiRouteSession with Lucent−specific
features. When a Provider is bound to a Lucent switch, this interface may be used to
access additional capabilities.

The route session object which implements this interface also implements the
LucentCallInfo interface.

Method Index

o selectRoute(String, boolean, UserToUserInfo)
Similar to the standard selectRoute(), with the addition of Lucent−specific call
parameters.

o selectRouteAndCollect(String, int, int, boolean, UserToUserInfo)
Routes a call and requests DTMF digit collection.

o selectRouteDirectAgent(LucentAgent, boolean, UserToUserInfo)
Routes a direct agent call to a specific logged−in ACD agent.

o selectRouteWithDigits(String, String, boolean, UserToUserInfo)
Routes a call and places digits in a dial−ahead digit buffer.

Methods

o selectRoute

 public abstract void selectRoute(String routeSelected,
 boolean priorityCall,
 UserToUserInfo userInfo) throws TsapiMethodNotSupportedException

Similar to the standard selectRoute(), with the addition of Lucent−specific call
parameters.

Parameters:
routeSelected − The selected route for this call. (Note that this is NOT an
array.)
priorityCall − If true, attempt to place a priority call
userInfo − Associate caller information, up to 32 bytes, with the call.

See Also:
UserToUserInfo

o selectRouteDirectAgent

 public abstract void selectRouteDirectAgent(LucentAgent calledAgent,
 boolean priorityCall,
 UserToUserInfo userInfo) throws TsapiMethodNotSupportedE

Routes a direct agent call to a specific logged−in ACD agent.

Parameters:
calledAgent − The ACD agent extension to route to.
priorityCall − If true, attempt to place a priority call
userInfo − Associate caller information, up to 32 bytes, with the call.

See Also:
UserToUserInfo

o selectRouteAndCollect

 public abstract void selectRouteAndCollect(String routeSelected,
 int digitsToBeCollected,
 int timeout,
 boolean priorityCall,
 UserToUserInfo userInfo) throws TsapiMethodNotSupportedEx

Routes a call and requests DTMF digit collection.

Parameters:
routeSelected − The selected route for this call. (Note that this is NOT an
array.)
digitsToBeCollected − The number of digits to be collected (up to 24).
timeout − The number of seconds to wait (up to 63) before digit collection
times out.
priorityCall − If true, attempt to place a priority call
userInfo − Associate caller information, up to 32 bytes, with the call.

See Also:
UserToUserInfo

o selectRouteWithDigits

 public abstract void selectRouteWithDigits(String routeSelected,
 String digits,
 boolean priorityCall,
 UserToUserInfo userInfo) throws TsapiMethodNotSupportedEx

Routes a call and places digits in a dial−ahead digit buffer.

Parameters:
routeSelected − The selected route for this call. (Note that this is NOT an

array.)
digits − A string of up to 24 characters (0−9, *, and # only) to place in the
dial−ahead digit buffer.
priorityCall − If true, attempt to place a priority call
userInfo − Associate caller information, up to 32 bytes, with the call.

See Also:
UserToUserInfo

Interface com.lucent.jtapi.tsapi.LucentTerminal

public interface LucentTerminal
extends ITsapiTerminal

The LucentTerminal interface extends the ITsapiTerminal interface.

Method Index

o addAgent(LucentAddress, ACDAddress, int, int, String, String)
This method overrides Terminal.addAgent() to add the Lucent−specific parameter
workMode.

o getDirectoryName()
Return Directory name of this Terminal.

Methods

o addAgent

 public abstract Agent addAgent(LucentAddress agentAddress,
 ACDAddress acdAddress,
 int initialState,
 int workMode,
 String agentID,
 String password) throws TsapiInvalidArgumentException , TsapiInvalidSt

This method overrides Terminal.addAgent() to add the Lucent−specific parameter
workMode. It creates an Agent object, adds it to this AgentTerminal and returns
the Agent object.

An Agent object represents an AgentTerminal logged into an ACDAddress.

If the getAgents() method is invoked subsequently it will return this Agent object.

The Agent can be removed from this AgentTerminal by invoking the
removeAgent() method.

The pre−condition predicates for this method are:
1. this.getProvider().getState() == IN_SERVICE

The post−condition predicates for this method are:

1. this.getProvider().getState() == IN_SERVICE
2. (this.getAgents() union agent) == agent
3. agent.getStateInfo == initial state and workMode (specified as a parameter)

Parameters:
agentAddress − specifies that Address on this Terminal that this request is
for, where the Terminal may support several addresses.
acdAddress − specifies the address of the ACD that the Terminal is
requested to be logged in to (may be null).
initialState − specifies the initial state of the agent. Valid states are
Agent.READY, Agent.NOT_READY and Agent.LOG_IN.
workMode − specifies the work mode this Agent should be set to. Valid
workModes are LucentAgent.MODE_AUTO_IN and
LucentAgent.MODE_MANUAL_IN.
agentID − is the Agent’s ID.
password − is the Agent’s password.

Returns:
An Agent object representing the association between this AgentTerminal
and the ACDAddress specified in the request.

Throws:TsapiInvalidArgumentException
At least one of the arguments provided is not valid.

Throws:TsapiInvalidStateException
Implementation determined AgentTerminal was in an invalid state for this
method.

o getDirectoryName

 public abstract String getDirectoryName()

Return Directory name of this Terminal.

Interface com.lucent.jtapi.tsapi.LucentTerminalConnection

public interface LucentTerminalConnection
extends ITsapiTerminalConnection

The LucentTerminalConnection interface extends ITsapiTerminalConnection with
Lucent−specific features. When a Provider is bound to a Lucent switch, this interface
may be used to access additional capabilities.

Variable Index

o DR_CALL_CLASSIFIER
Drop a call classifier from the call..

o DR_NONE
o DR_TONE_GENERATOR

Drop a tone generator from the call..

Method Index

o leave(short, UserToUserInfo)
Similar to the standard leave(), with the addition of Lucent−specific parameters.

Variables

o DR_NONE

 public static final short DR_NONE

o DR_CALL_CLASSIFIER

 public static final short DR_CALL_CLASSIFIER

Drop a call classifier from the call..

o DR_TONE_GENERATOR

 public static final short DR_TONE_GENERATOR

Drop a tone generator from the call..

Methods

o leave

 public abstract void leave(short dropResource,
 UserToUserInfo userInfo) throws TsapiInvalidStateException , TsapiMethodNo

Similar to the standard leave(), with the addition of Lucent−specific parameters.

Parameters:
dropResource − The resource to be dropped from the call. Possible values are
DR_CALL_CLASSIFIER, DR_TONE_GENERATOR, and DR_NONE.
userInfo − Associate caller information, up to 32 bytes, with the call.

See Also:
disconnect, UserToUserInfo

Interface com.lucent.jtapi.tsapi.LucentV5Call

public interface LucentV5Call
extends ITsapiCall, LucentCall, LucentV5CallInfo

The LucentV5Call interface extends ITsapiCall with Lucent−specific features. When a
Provider is bound to a Lucent DEFINITY switch with PBX Driver Version 5 private
data, this interface may be used to access additional capabilities.

Method Index

o addParty(String, boolean)
Adds a new party to an active Call, without alerting at the added party (intended
mainly for service observing).

o setBillRate(short, float)
This service supports the AT&T MultiQuest 900 Vari−A−Bill Service to change the
rate for an incoming 900−type call.

Methods

o addParty

 public abstract Connection addParty(String newParty,
 boolean isActive) throws TsapiInvalidStateException , TsapiInvali

Adds a new party to an active Call, without alerting at the added party (intended
mainly for service observing). If isActive is false, the added party will have its talk
path disabled. This "Single−Step Conference" feature is specific to DEFINITY
G3V6.

Parameters:
newParty − The telephone address of the party to be added.
isActive − Specifies whether the party is added in active or silent mode.

Returns:
The new Connection associated with the added party.

o setBillRate

 public abstract void setBillRate(short billType,
 float billRate) throws TsapiInvalidArgumentException , TsapiMethodNo

This service supports the AT&T MultiQuest 900 Vari−A−Bill Service to change the
rate for an incoming 900−type call. The client application can request this service
at any time after the call has been answered and before the call is cleared.

Parameters:
billType − Specifies the rate treatment for the call. See LucentBillType for
allowed values.
billRate − Specifies the rate according to the treatment indicated by billType.
If BT_FREE_CALL is specified, billRate is ignored. This is a floating point
number. The rate should not be less than zero, and a maximum is set for
each 900−number as part of the provisioning process (in the 4E switch).

See Also:
LucentBillType

Interface com.lucent.jtapi.tsapi.LucentV5CallInfo

public interface LucentV5CallInfo
extends LucentCallInfo

The LucentV5CallInfo interface provides access to call information from Lucent
DEFINITY switches with PBX Driver Version 5 private data. These methods are
implemented on the call object, the route session object, and on certain call control call
events. For example, if a CallControlCallObserver receives a CallCtlConnAlertingEv, it
may be cast to LucentV5CallInfo to use the getUCID() method. These methods may
return null if the requested data is not available.

Method Index

o canSetBillRate()
Returns the Flexible Billing flag, which indicates whether the setBillRate() method
is valid for this call

o getCallOriginatorType()
Get the originator type for this call, such as coin call, 800 service call, or cellular
call.

o getUCID()
Get the Universal Call ID for this call.

o hasCallOriginatorType()
Query whether CallOriginatorType is available for this call.

Methods

o getUCID

 public abstract String getUCID()

Get the Universal Call ID for this call. (This feature requires DEFINITY G3V6).

o getCallOriginatorType

 public abstract int getCallOriginatorType()

Get the originator type for this call, such as coin call, 800 service call, or cellular
call. This information is from the network, not from the DEFINITY switch. The
type is defined in the Bell Communications Research (Bellcore) publication, "Local

Exchange Routing Guide," (document number TR−EOP−000085). A list of defined
codes, as of June 1994, follows:

00 Identified line − no special treatment
01 Multiparty − ANI cannot be provided
02 ANI failure
06 Hotel/Motel − DN not accompanied by automatic room ID
07 Special operator handling required
20 AIOD − Listed DN of PBX sent
23 Coin or Non−Coin − line status unknown
24 800 Service Call
27 Coin Call
29 Prison/Inmate Service
30−32 Intercept
34 Telco Operator Handled Call
40−49 Locally determined by carrier
52 Out WATS
60 Telecommunication Relay Service (TRS) − Station Paid
61 Type 1 Cellular
62 Type 2 Cellular
63 Romer Cellular
66 TRS − From Hotel/Motel
67 TRS − From restricted line
70 pay station
93 Virtual Network call

o hasCallOriginatorType

 public abstract boolean hasCallOriginatorType()

Query whether CallOriginatorType is available for this call.

o canSetBillRate

 public abstract boolean canSetBillRate()

Returns the Flexible Billing flag, which indicates whether the setBillRate() method
is valid for this call

Interface com.lucent.jtapi.tsapi.LucentV5Connection

public interface LucentV5Connection
extends LucentConnection

The LucentV5Connection interface extends LucentConnection with features specific to
DEFINITY G3 PBX Driver Version 5 private data. When a Provider is bound to a
DEFINITY switch which supports V5 private data, this interface may be used to access
additional capabilities.

The Selective Listening service allows an application to prevent a specific party on a call
from hearing anything said by another specific party (or all other parties) on the call. It
allows an application to put a non−bridged Connection’s listening path on listen−hold
with respect to a selected TerminalConnection or non−bridged Connection (
partyToHold), or to all other parties. The selected party(s) may be stations or trunks. A
party that has been listen−held may continue to talk and be heard by other connected
parties on the call since this service does not affect the talking or listening path of any
other party. A party will be able to hear parties on the call from which it has not been
listen−held, but will not be able to hear any party from which it has been listen−held.
This service will also allow the listen−held party to be unheld (i.e., to again hear the
other party(s) on the call).

The Selective Listening service is also available on LucentV5TerminalConnection.

Method Index

o listenHold(LucentConnection)
Places a non−bridged Connection’s listening path on listen−hold with respect to
the specified non−bridged Connection.

o listenHold(LucentTerminalConnection)
Places a non−bridged Connection’s listening path on listen−hold with respect to
the specified TerminalConnection.

o listenUnhold(LucentConnection)
Takes a non−bridged Connection’s listening path off listen−hold with respect to the
specified non−bridged Connection.

o listenUnhold(LucentTerminalConnection)
Takes a non−bridged Connection’s listening path off listen−hold with respect to the
specified TerminalConnection.

Methods

o listenHold

 public abstract void listenHold(LucentTerminalConnection partyToHold) throws TsapiInvalidStateExcept

Places a non−bridged Connection’s listening path on listen−hold with respect to
the specified TerminalConnection. If partyToHold is null, the operation applies to
all other parties on the call. If the Connection has multiple TerminalConnections,
a TsapiInvalidArgumentException is thrown; in this case, use a
TerminalConnection instead.

o listenUnhold

 public abstract void listenUnhold(LucentTerminalConnection partyToUnhold) throws TsapiInvalidStateEx

Takes a non−bridged Connection’s listening path off listen−hold with respect to the
specified TerminalConnection. If partyToUnhold is null, the operation applies to
all other parties on the call. If the Connection has multiple TerminalConnections,
a TsapiInvalidArgumentException is thrown; in this case, use a
TerminalConnection instead.

o listenHold

 public abstract void listenHold(LucentConnection partyToHold) throws TsapiInvalidStateException , Tsa

Places a non−bridged Connection’s listening path on listen−hold with respect to
the specified non−bridged Connection. If partyToHold is null, the operation
applies to all other parties on the call. If either Connection has multiple
TerminalConnections, a TsapiInvalidArgumentException is thrown; in this case,
use a TerminalConnection instead.

o listenUnhold

 public abstract void listenUnhold(LucentConnection partyToUnhold) throws TsapiInvalidStateException ,

Takes a non−bridged Connection’s listening path off listen−hold with respect to the
specified non−bridged Connection. If partyToUnhold is null, the operation
applies to all other parties on the call. If either Connection has multiple
TerminalConnections, a TsapiInvalidArgumentException is thrown; in this case,
use a TerminalConnection instead.

Interface com.lucent.jtapi.tsapi.LucentV5Provider

public interface LucentV5Provider
extends LucentProvider

LucentV5Provider adds the Advice Of Charge feature.

Method Index

o setAdviceOfCharge(boolean)
Activate or deactivate the Advice Of Charge feature.

Methods

o setAdviceOfCharge

 public abstract void setAdviceOfCharge(boolean flag) throws TsapiMethodNotSupportedException

Activate or deactivate the Advice Of Charge feature. Setting the flag to true will
enable Charge Advice Events.

Interface com.lucent.jtapi.tsapi.LucentV5Terminal

public interface LucentV5Terminal
extends LucentTerminal

The LucentV5Terminal interface extends the LucentTerminal interface.

Method Index

o addAgent(LucentAddress, ACDAddress, int, int, int, String, String)
This method overrides Terminal.addAgent() to add the Lucent DEFINITY G3 PBX
Driver Version 5 private data−specific parameter reasonCode.

Methods

o addAgent

 public abstract Agent addAgent(LucentAddress agentAddress,
 ACDAddress acdAddress,
 int initialState,
 int workMode,
 int reasonCode,
 String agentID,
 String password) throws TsapiInvalidArgumentException , TsapiInvalidSt

This method overrides Terminal.addAgent() to add the Lucent DEFINITY G3 PBX
Driver Version 5 private data−specific parameter reasonCode. It creates an Agent
object, adds it to this AgentTerminal and returns the Agent object.

An Agent object represents an AgentTerminal logged into an ACDAddress.

If the getAgents() method is invoked subsequently it will return this Agent object.

The Agent can be removed from this AgentTerminal by invoking the
removeAgent() method.

The pre−condition predicates for this method are:
1. this.getProvider().getState() == IN_SERVICE

The post−condition predicates for this method are:
1. this.getProvider().getState() == IN_SERVICE

2. (this.getAgents() union agent) == agent
3. agent.getStateInfo == initial state and workMode (specified as a parameter)

Parameters:
agentAddress − specifies that Address on this Terminal that this request is
for, where the Terminal may support several addresses.
acdAddress − specifies the address of the ACD that the Terminal is
requested to be logged in to (may be null).
initialState − specifies the initial state of the agent. Valid states are
Agent.READY, Agent.NOT_READY and Agent.LOG_IN.
workMode − specifies the work mode this Agent should be set to. Valid
workModes are LucentAgent.MODE_AUTO_IN and
LucentAgent.MODE_MANUAL_IN.
reasonCode − Application−defined reason code (1−9).
agentID − is the Agent’s ID.
password − is the Agent’s password.

Returns:
An Agent object representing the association between this AgentTerminal
and the ACDAddress specified in the request.

Throws:TsapiInvalidArgumentException
At least one of the arguments provided is not valid.

Throws:TsapiInvalidStateException
Implementation determined AgentTerminal was in an invalid state for this
method.

Interface
com.lucent.jtapi.tsapi.LucentV5TerminalConnection

public interface LucentV5TerminalConnection
extends LucentTerminalConnection

The LucentV5TerminalConnection interface extends LucentTerminalConnection with
features specific to DEFINITY G3 PBX Driver Version 5 private data. When a Provider
is bound to a DEFINITY switch which supports V5 private data, this interface may be
used to access additional capabilities.

The Selective Listening service allows an application to prevent a specific party on a call
from hearing anything said by another specific party (or all other parties) on the call. It
allows an application to put a TerminalConnection’s listening path on listen−hold with
respect to a selected TerminalConnection or non−bridged Connection (partyToHold), or
to all other parties. The selected party(s) may be stations or trunks. A party that has
been listen−held may continue to talk and be heard by other connected parties on the
call since this service does not affect the talking or listening path of any other party. A
party will be able to hear parties on the call from which it has not been listen−held, but
will not be able to hear any party from which it has been listen−held. This service will
also allow the listen−held party to be unheld (i.e., to again hear the other party(s) on the
call).

The Selective Listening service is also available on LucentV5Connection.

Method Index

o listenHold(LucentConnection)
Places a TerminalConnection’s listening path on listen−hold with respect to the
specified non−bridged Connection.

o listenHold(LucentTerminalConnection)
Places a TerminalConnection’s listening path on listen−hold with respect to the
specified TerminalConnection.

o listenUnhold(LucentConnection)
Takes a TerminalConnection’s listening path off listen−hold with respect to the
specified non−bridged Connection.

o listenUnhold(LucentTerminalConnection)
Takes a TerminalConnection’s listening path off listen−hold with respect to the
specified TerminalConnection.

Methods

o listenHold

 public abstract void listenHold(LucentTerminalConnection partyToHold) throws TsapiInvalidStateExcept

Places a TerminalConnection’s listening path on listen−hold with respect to the
specified TerminalConnection. If partyToHold is null, the operation applies to all
other parties on the call.

o listenUnhold

 public abstract void listenUnhold(LucentTerminalConnection partyToUnhold) throws TsapiInvalidStateEx

Takes a TerminalConnection’s listening path off listen−hold with respect to the
specified TerminalConnection. If partyToUnhold is null, the operation applies to
all other parties on the call.

o listenHold

 public abstract void listenHold(LucentConnection partyToHold) throws TsapiInvalidStateException , Tsa

Places a TerminalConnection’s listening path on listen−hold with respect to the
specified non−bridged Connection. If partyToHold is null, the operation applies to
all other parties on the call. If the Connection has multiple TerminalConnections,
a TsapiInvalidArgumentException is thrown; in this case, specify a
TerminalConnection instead.

o listenUnhold

 public abstract void listenUnhold(LucentConnection partyToUnhold) throws TsapiInvalidStateException ,

Takes a TerminalConnection’s listening path off listen−hold with respect to the
specified non−bridged Connection. If partyToUnhold is null, the operation
applies to all other parties on the call. If the Connection has multiple
TerminalConnections, a TsapiInvalidArgumentException is thrown; in this case,
specify a TerminalConnection instead.

Class com.lucent.jtapi.tsapi.CallClassifierInfo

java.lang.Object
 |
 |
 +−−−−com.lucent.jtapi.tsapi.CallClassifierInfo

public final class CallClassifierInfo

Provides information on call classifier port usage.

Variable Index

o numAvailPorts
The number of available call classifier ports.

o numInUsePorts
The number of in−use call classifier ports.

Variables

o numAvailPorts

 public int numAvailPorts

The number of available call classifier ports.

o numInUsePorts

 public int numInUsePorts

The number of in−use call classifier ports.

Class com.lucent.jtapi.tsapi.LookaheadInfo

java.lang.Object
 |
 +−−−−com.lucent.jtapi.tsapi.LookaheadInfo

public class LookaheadInfo

Lookahead interflow is a DEFINITY G3 switch feature that routes some of the incoming
calls from one switch to another so that they can be handled more efficiently and will not
be lost. The lookahead interflow information is provided by the switch that overflows the
call. The routing server application may use the lookahead interflow information to
determine the destination of the call.

This information, when available, is obtained via the LucentCallInfo.getLookaheadInfo()
method.

See Also:
LucentCallInfo

Variable Index

o LAI_ALL_INTERFLOW
o LAI_HIGH
o LAI_LOW
o LAI_MEDIUM
o LAI_NOT_IN_QUEUE
o LAI_THRESHOLD_INTERFLOW
o LAI_TOP
o LAI_VECTORING_INTERFLOW

Method Index

o getHours()
Gets the ’hours’ part of the event timestamp.

o getMinutes()
Gets the ’minutes’ part of the event timestamp.

o getPriority()
Priority of the interflowed call.

o getSeconds()
Gets the ’seconds’ part of the event timestamp.

o getSourceVDN()
Returns the address of the VDN which overflowed the call.

o getType()
Type of interflow.

Variables

o LAI_ALL_INTERFLOW

 public static final short LAI_ALL_INTERFLOW

o LAI_THRESHOLD_INTERFLOW

 public static final short LAI_THRESHOLD_INTERFLOW

o LAI_VECTORING_INTERFLOW

 public static final short LAI_VECTORING_INTERFLOW

o LAI_NOT_IN_QUEUE

 public static final short LAI_NOT_IN_QUEUE

o LAI_LOW

 public static final short LAI_LOW

o LAI_MEDIUM

 public static final short LAI_MEDIUM

o LAI_HIGH

 public static final short LAI_HIGH

o LAI_TOP

 public static final short LAI_TOP

Methods

o getType

 public short getType()

Type of interflow. Possible values are LAI_ALL_INTERFLOW,
LAI_THRESHOLD_INTERFLOW, and LAI_VECTORING_INTERFLOW.

o getPriority

 public short getPriority()

Priority of the interflowed call. Possible values are LAI_NOT_IN_QUEUE,
LAI_LOW, LAI_MEDIUM, LAI_HIGH, and LAI_TOP.

o getHours

 public int getHours()

Gets the ’hours’ part of the event timestamp.

o getMinutes

 public int getMinutes()

Gets the ’minutes’ part of the event timestamp.

o getSeconds

 public int getSeconds()

Gets the ’seconds’ part of the event timestamp.

o getSourceVDN

 public ACDManagerAddress getSourceVDN()

Returns the address of the VDN which overflowed the call.

Class com.lucent.jtapi.tsapi.LucentAgentStateInfo

java.lang.Object
 |
 +−−−−com.lucent.jtapi.tsapi.LucentAgentStateInfo

public class LucentAgentStateInfo
extends Object

This is the object that is returned by the query getStateInfo() in LucentAgent. It returns
both the state and workMode for the Agent.

See Also:
LucentAgent

Variable Index

o state
State of Agent.

o workMode
Work Mode for Agent.

Variables

o state

 public int state

State of Agent.

o workMode

 public int workMode

Work Mode for Agent.

Class com.lucent.jtapi.tsapi.LucentBillType

java.lang.Object
 |
 +−−−−com.lucent.jtapi.tsapi.LucentBillType

public final class LucentBillType

This class defines constants used with the LucentV5Call.setBillRate() method.

See Also:
LucentV5Call

Variable Index

o BT_FLAT_RATE
time independent

o BT_FREE_CALL
no charge

o BT_NEW_RATE
new rate

o BT_PREMIUM_CHARGE
a flat charge in addition to the existing rate

o BT_PREMIUM_CREDIT
a flat negative charge in addition to the existing rate

Variables

o BT_NEW_RATE

 public static final short BT_NEW_RATE

new rate

o BT_FLAT_RATE

 public static final short BT_FLAT_RATE

time independent

o BT_PREMIUM_CHARGE

 public static final short BT_PREMIUM_CHARGE

a flat charge in addition to the existing rate

o BT_PREMIUM_CREDIT

 public static final short BT_PREMIUM_CREDIT

a flat negative charge in addition to the existing rate

o BT_FREE_CALL

 public static final short BT_FREE_CALL

no charge

Class com.lucent.jtapi.tsapi.LucentChargeAdviceEvent

java.lang.Object
 |
 +−−−−com.lucent.jtapi.tsapi.LucentChargeAdviceEvent

public final class LucentChargeAdviceEvent

Method Index

o getCall()
The call for which this Charge Advice event is being reported

o getCalledAddress()
The external address which was dialed

o getCharge()
The number of units charged

o getChargeError()
Charge−related error.

o getChargeType()
The type of charge being reported

o getChargingAddress()
The address being charged for this call

o getTrunk()
The trunk reporting the charge

Methods

o getCall

 public final LucentCall getCall()

The call for which this Charge Advice event is being reported

o getCalledAddress

 public final LucentAddress getCalledAddress()

The external address which was dialed

o getChargingAddress

 public final LucentAddress getChargingAddress()

The address being charged for this call

o getTrunk

 public final CallCenterTrunk getTrunk()

The trunk reporting the charge

o getCharge

 public final int getCharge()

The number of units charged

o getChargeType

 public final short getChargeType()

The type of charge being reported

See Also:
LucentChargeType

o getChargeError

 public final short getChargeError()

Charge−related error.

See Also:
LucentChargeError

Class com.lucent.jtapi.tsapi.LucentChargeError

java.lang.Object
 |
 +−−−−com.lucent.jtapi.tsapi.LucentChargeError

public final class LucentChargeError

This class defines constants used with the LucentChargeAdviceEvent.getChargeError()
method.

See Also:
LucentChargeAdviceEvent

Variable Index

o CE_CHARGE_TOO_LARGE
Charge provide by the network is too large

o CE_LESS_FINAL_CHARGE
Final charge provide by the network is less than a previous charge

o CE_NETWORK_BUSY
Too many calls are waiting for their final charge from the network

o CE_NO_FINAL_CHARGE
Network failed to provide a final charge for the call

o CE_NONE
No error

Variables

o CE_NONE

 public static final short CE_NONE

No error

o CE_NO_FINAL_CHARGE

 public static final short CE_NO_FINAL_CHARGE

Network failed to provide a final charge for the call

o CE_LESS_FINAL_CHARGE

 public static final short CE_LESS_FINAL_CHARGE

Final charge provide by the network is less than a previous charge

o CE_CHARGE_TOO_LARGE

 public static final short CE_CHARGE_TOO_LARGE

Charge provide by the network is too large

o CE_NETWORK_BUSY

 public static final short CE_NETWORK_BUSY

Too many calls are waiting for their final charge from the network

Class com.lucent.jtapi.tsapi.LucentChargeType

java.lang.Object
 |
 +−−−−com.lucent.jtapi.tsapi.LucentChargeType

public final class LucentChargeType

This class defines constants used with the LucentChargeAdviceEvent.getChargeType()
method.

See Also:
LucentChargeAdviceEvent

Variable Index

o CT_FINAL_CHARGE
This charge is send by the trunk when a call is dropped.

o CT_INTERMEDIATE_CHARGE
This is a charge sent by the trunk while the call is active.

o CT_SPLIT_CHARGE
CDR outgoing call splitting is used to divide the charge for a call among different
users.

Variables

o CT_INTERMEDIATE_CHARGE

 public static final short CT_INTERMEDIATE_CHARGE

This is a charge sent by the trunk while the call is active. The charge amounts
reported are cumulative. If a call receives two or more consecutive intermediate
charges, then the amount from the last intermediate charge replaces the
amount(s) of the previous intermediate charges. The amounts are not added to
produce a total charge.

o CT_FINAL_CHARGE

 public static final short CT_FINAL_CHARGE

This charge is send by the trunk when a call is dropped. If call CDR outgoing call
splitting is not enabled, then the final charge reflects the charge for the entire call.

o CT_SPLIT_CHARGE

 public static final short CT_SPLIT_CHARGE

CDR outgoing call splitting is used to divide the charge for a call among different
users. For example, if an outgoing call is placed by one station and transferred to a
second station, and if CDR call splitting is enabled, then CDR and the Charge
Advice Events would charge the first station up to the time of the transfer, and
second station after that. A split charge reflects the charge for the call up to the
time the split charge is sent (starting at the beginning of the call, or at the
previous split charge). Any Charge Advice Event received after a split charge will
reflect only that portion of the charge that took place after the split charge. If split
charges are received for a call, then the total charge for the call can be computed
by adding the split charges and the final charge.

Class com.lucent.jtapi.tsapi.LucentV5AgentStateInfo

java.lang.Object
 |
 +−−−− com.lucent.jtapi.tsapi.LucentAgentStateInfo
 |
 +−−−−com.lucent.jtapi.tsapi.LucentV5AgentStateInfo

public final class LucentV5AgentStateInfo
extends LucentAgentStateInfo

This is the object that is returned by the query getStateInfo in LucentAgent. It returns
the state, workMode, and application−defined reasonCode for the Agent.

See LucentAgent for details.

Variable Index

o reasonCode
Application−defined reason code (1−9)

Variables

o reasonCode

 public int reasonCode

Application−defined reason code (1−9)

Class com.lucent.jtapi.tsapi.NetworkProgressInfo

java.lang.Object
 |
 +−−−−com.lucent.jtapi.tsapi.NetworkProgressInfo

public class NetworkProgressInfo

Contains supplementary call progress information from the ISDN Progress Indicator
Information Element.

Variable Index

o PD_CALL_OFF_ISDN
o PD_CALL_ON_ISDN
o PD_DEST_NOT_ISDN
o PD_INBAND
o PD_ORIG_NOT_ISDN
o PL_PRIV_REMOTE
o PL_PUB_LOCAL
o PL_PUB_REMOTE
o PL_USER
o progressDescription

Specifies the progress description in a Progress Indicator Information Element
from the PRI network.

o progressLocation
Specifies the progress location in a Progress Indicator Information Element from
the PRI network.

Variables

o PL_USER

 public static final short PL_USER

o PL_PUB_LOCAL

 public static final short PL_PUB_LOCAL

o PL_PUB_REMOTE

 public static final short PL_PUB_REMOTE

o PL_PRIV_REMOTE

 public static final short PL_PRIV_REMOTE

o PD_CALL_OFF_ISDN

 public static final short PD_CALL_OFF_ISDN

o PD_DEST_NOT_ISDN

 public static final short PD_DEST_NOT_ISDN

o PD_ORIG_NOT_ISDN

 public static final short PD_ORIG_NOT_ISDN

o PD_CALL_ON_ISDN

 public static final short PD_CALL_ON_ISDN

o PD_INBAND

 public static final short PD_INBAND

o progressLocation

 public short progressLocation

Specifies the progress location in a Progress Indicator Information Element from
the PRI network. Possible values are PL_USER, PL_PUB_LOCAL,
PL_PUB_REMOTE, PL_PRIV_REMOTE

o progressDescription

 public short progressDescription

Specifies the progress description in a Progress Indicator Information Element
from the PRI network. Possible values are PD_CALL_OFF_ISDN,
PD_DEST_NOT_ISDN, PD_ORIG_NOT_ISDN, PD_CALL_ON_ISDN,
PD_INBAND

Class com.lucent.jtapi.tsapi.OriginalCallInfo

java.lang.Object
 |
 +−−−−com.lucent.jtapi.tsapi.OriginalCallInfo

public class OriginalCallInfo

Original Call Information is made available in conjunction with the consult() service. It
is provided in event reports to observers of the consulted party and contains information
about the original call.

This information, when available, is obtained via the
LucentCallInfo.getOriginalCallInfo() method.

See Also:
LucentCallInfo

Variable Index

o OR_CONFERENCED
o OR_CONSULTATION
o OR_NEW_CALL
o OR_NONE
o OR_TRANSFERRED

Method Index

o getCalledDevice()
Get the original called device for this call.

o getCallingDevice()
Get the original calling device for this call.

o getLookaheadInfo()
Get the original lookahead information for this call.

o getReason()
Get the reason code for this OriginalCallInfo.

o getTrunk()

Get the original trunk device for this call.
o getUserEnteredCode()

Get the original collected digits for this call.
o getUserToUserInfo()

Get the original user−to−user information for this call.

Variables

o OR_NONE

 public static final short OR_NONE

o OR_CONSULTATION

 public static final short OR_CONSULTATION

o OR_CONFERENCED

 public static final short OR_CONFERENCED

o OR_TRANSFERRED

 public static final short OR_TRANSFERRED

o OR_NEW_CALL

 public static final short OR_NEW_CALL

Methods

o getReason

 public short getReason()

Get the reason code for this OriginalCallInfo. Possible values are OR_NONE,
OR_CONSULTATION, OR_CONFERENCED, OR_TRANSFERRED, and
OR_NEW_CALL.

o getCallingDevice

 public Address getCallingDevice()

Get the original calling device for this call.

o getCalledDevice

 public Address getCalledDevice()

Get the original called device for this call.

o getTrunk

 public CallCenterTrunk getTrunk()

Get the original trunk device for this call.

o getUserToUserInfo

 public UserToUserInfo getUserToUserInfo()

Get the original user−to−user information for this call.

o getLookaheadInfo

 public LookaheadInfo getLookaheadInfo()

Get the original lookahead information for this call.

o getUserEnteredCode

 public UserEnteredCode getUserEnteredCode()

Get the original collected digits for this call.

Class com.lucent.jtapi.tsapi.TrunkGroupInfo

java.lang.Object
 |
 +−−−−com.lucent.jtapi.tsapi.TrunkGroupInfo

public final class TrunkGroupInfo

Provides information on trunk group usage.

Variable Index

o idleTrunks
The number of idle trunks.

o usedTrunks
The number of in−use trunks.

Variables

o idleTrunks

 public int idleTrunks

The number of idle trunks.

o usedTrunks

 public int usedTrunks

The number of in−use trunks.

Class com.lucent.jtapi.tsapi.UserEnteredCode

java.lang.Object
 |
 +−−−−com.lucent.jtapi.tsapi.UserEnteredCode

public final class UserEnteredCode

Contains the code/digits that may have been entered by the caller through the
DEFINITY G3 call prompting feature or the collected digits feature.

This information, when available, is obtained via the
LucentCallInfo.getUserEnteredCode() method.

The following are necessary steps for setting up VDNs, simple vector steps and
CallObservers in order for a client application to receive UECs from the switch.

Note: VDNs are represented through the ACDManagerAddress interface.

1. Administer a VDN and a vector on the G3 switch with collect digits step and route
command to a second VDN. See Call Scenario 1 and 2 below.

The purpose of this VDN is to collect UEC, but it will not report the UEC to the
PBX driver, even if the VDN is observed. The route command must redirect the
call to a second VDN. The first VDN doesn´t have to be observed by any client
application.

2. Administer a second VDN and vector to receive the redirected call from the first
VDN.

The purpose of this second VDN is to report the UEC to the PBX driver. Thus a
CallObserver must be placed on the second VDN, using
CallCenterAddress.addCallObserver with the remain flag set to true . This
VDN should redirect the call to its destination. The destination can be a station
extension, an ACD split, or another VDN.

If the destination is a station extension and there is a CallObserver on that
Address, call events for that observer will contain the UEC collected by the first
VDN.

If the destination is an ACD split and there is a CallObserver on an agent station
in the split, call events for that observer will contain the UEC collected by the first
VDN.

If the destination is a VDN, UEC is NOT delivered to observers of that VDN.

If multiple UECs are collected by multiple VDNs in call processing, only the most
recently collected UEC is reported.

Limitations

1. An observed VDN only reports the UEC it receives (UEC collected in a previous
VDN). It will not report UEC it collects or UEC collected after the call is redirected
from the VDN.

2. A CallObserver on a station receives only the UEC that is received by the VDN
that redirects the call to the station, provided that the VDN is observed (see Call
Scenario 2).

Call Scenario 1:

VDN 24101 is mapped to vector 1 and vector 1 has the following steps:

1. collect 16 digits after announcement extension 1000
2. route to 24102
3. stop

VDN 24102 is mapped to vector 2 and vector 2 has the following steps:

1. route to 24103
2. stop

where 24103 is a station extension.

When a call arrives on VDN 24101, the caller will hear the announcement and the
switch will wait for the caller to enter 16 digits. After the 16 digits are collected in time
(if the collect digits step is timed out, next step is executed), the call is routed to VDN
24102. The VDN 24102 routes the call to station 24103.

A CallObserver on VDN 24101 will NOT receive UEC.

If there is a CallObserver on VDN 24102, the 16 digits collected by VDN 24101 will be
reported to that observer. VDN 24101 observing is not required for VDN 24102 to receive
UEC collected by VDN 24101.

If there are CallObservers on VDN 24102 and station 24103, the 16 digits collected by
VDN 24101 will be reported to those observers.

Whether the station 24103 is observed or not, the 16 digits will NOT be reported to the
VDN 24102 observer when call is delivered to station 24103.

Call Scenario 2:

VN 24201 is mapped to vector 11 and vector 11 has the following steps:

1. collect 10 digits after announcement extension 2000
2. route to 24202
3. stop

VDN 24202 is mapped to vector 12 and vector 12 has the following steps:

1. collect 16 digits after announcement extension 3000
2. route to 24203
3. stop

VDN 24203 is mapped to vector 13 and vector 13 has the following steps:

1. queue to main split 2 priority m
2. stop

where split 2 is a vector controlled ACD split that has agent extensions 24301,
24302, 24303.

When a call arrives on VDN 24201, the caller will hear an announcement and the switch
will wait for the caller to enter 10 digits. After the 10 digits are collected in time, the call
is routed to VDN 24202. When the call arrives on VDN 24202, the caller will hear an
announcement and the switch will wait for the caller to enter 16 digits. After the 16
digits are collected in time, the call is routed to VDN 24203. The VDN 24203 queues the
call to ACD Split 2. If the agent at station 24301 is available, the call is sent to station
24301.

A CallObserver on VDN 24201 will NOT receive UEC.

If there is a CallObserver on VDN 24102, the 10 digits collected by VDN 24201 will be
reported to that observer.

If there is a CallObserver on VDN 24203, the 16 digits collected by VDN 24202 will be
reported to that observer. However, the 10 digits collected by VDN 24201 will NOT be
reported to that observer. An observer receives only the most recent UEC.

If VDN 24202 and VDN 24203 and station 24301 are all observed, only the 16 digits
collected by VDN 24202 will be reported to the station 24301 observer. A station
observer will receive the UEC that is received by the VDN that redirects calls to the
station.

NOTE: In order to receive the UEC at a station observer, the VDN that receives the
UEC and redirects calls to the station must be observed. For example, if VDN 24203 is
NOT observed by any client, an observer on station 24301 will NOT receive the 16 digits
collected by VDN 24202.

See Also:
LucentCallInfo

Variable Index

o UE_ANY
o UE_CALL_PROMPTER
o UE_COLLECT
o UE_DATA_BASE_PROVIDED
o UE_ENTERED
o UE_LOGIN_DIGITS
o UE_TONE_DETECTOR

Method Index

o getCollectVDN()
Returns the ACDManagerAddress of the VDN which collected the digits

o getDigits()
Returns the collected digits

o getIndicator()
Returns UE_COLLECT or UE_ENTERED

o getType()
Returns the type of digits collected

Variables

o UE_ANY

 public static final short UE_ANY

o UE_LOGIN_DIGITS

 public static final short UE_LOGIN_DIGITS

o UE_CALL_PROMPTER

 public static final short UE_CALL_PROMPTER

o UE_DATA_BASE_PROVIDED

 public static final short UE_DATA_BASE_PROVIDED

o UE_TONE_DETECTOR

 public static final short UE_TONE_DETECTOR

o UE_COLLECT

 public static final short UE_COLLECT

o UE_ENTERED

 public static final short UE_ENTERED

Methods

o getType

 public short getType()

Returns the type of digits collected

o getIndicator

 public short getIndicator()

Returns UE_COLLECT or UE_ENTERED

o getDigits

 public String getDigits()

Returns the collected digits

o getCollectVDN

 public ACDManagerAddress getCollectVDN()

Returns the ACDManagerAddress of the VDN which collected the digits

Class com.lucent.jtapi.tsapi.UserToUserInfo

java.lang.Object
 |
 +−−−−com.lucent.jtapi.tsapi.UserToUserInfo

public final class UserToUserInfo

User−to−user information is an ISDN feature which allows end−to−end transmission of
application data during call setup/teardown. This information may be a customer
number, credit card number, alphanumeric digits, or a binary string. It is propagated
with the call whether the call is made to a destination on the local switch or to a
destination on a remote switch over PRI trunks. The switch sends the UUI in the ISDN
SETUP message over the PRI trunk to establish the call. The local and the remote
switch include the UUI in the alerting, connected, disconnected and route request
events.

This information, when available, is obtained via the
LucentCallInfo.getUserToUserInfo() method.

See Also:
LucentCallInfo

Constructor Index

o UserToUserInfo(byte[])
construct a UserToUserInfo object from a byte array

o UserToUserInfo(String)
construct a UserToUserInfo object from an ASCII string

Method Index

o getBytes()
return user−to−user info as a (binary) byte array

o getString()
return user−to−user info as an ASCII string

o isAscii()

query whether sender encoded UUI as ASCII or binary

Constructors

o UserToUserInfo

 public UserToUserInfo(String _data)

construct a UserToUserInfo object from an ASCII string

o UserToUserInfo

 public UserToUserInfo(byte _data[])

construct a UserToUserInfo object from a byte array

Methods

o getString

 public String getString()

return user−to−user info as an ASCII string

o getBytes

 public byte[] getBytes()

return user−to−user info as a (binary) byte array

o isAscii

 public boolean isAscii()

query whether sender encoded UUI as ASCII or binary

Class com.lucent.jtapi.tsapi.V5NetworkProgressInfo

java.lang.Object
 |
 +−−−− com.lucent.jtapi.tsapi.NetworkProgressInfo
 |
 +−−−−com.lucent.jtapi.tsapi.V5NetworkProgressInfo

public final class V5NetworkProgressInfo
extends NetworkProgressInfo

Adds DEFINITY G3V6−specific data to the NetworkProgressInfo event

Variable Index

o trunk

Variables

o trunk

 public TsapiTrunk trunk

Class com.lucent.jtapi.tsapi.V5OriginalCallInfo

java.lang.Object
 |
 +−−−− com.lucent.jtapi.tsapi.OriginalCallInfo
 |
 +−−−−com.lucent.jtapi.tsapi.V5OriginalCallInfo

public final class V5OriginalCallInfo
extends OriginalCallInfo

This class adds DEFINITY G3 PBX Driver Version 5 private data extensions to
OriginalCallInfo.

Method Index

o canSetBillRate()
Returns the Flexible Billing flag, which indicates whether the setBillRate() method
is valid for this call

o getCallOriginatorType()
Get the originator type for this call, such as coin call, 800 service call, or cellular
call.

o getUCID()
Get the Universal Call ID for this call.

o hasCallOriginatorType()
Query whether CallOriginatorType is available for this call.

Methods

o getUCID

 public String getUCID()

Get the Universal Call ID for this call. (Requires DEFINITY G3V6.)

o getCallOriginatorType

 public int getCallOriginatorType()

Get the originator type for this call, such as coin call, 800 service call, or cellular
call. This information is from the network, not from the DEFINITY switch. The
type is defined in the Bell Communications Research (Bellcore) publication, "Local
Exchange Routing Guide," (document number TR−EOP−000085). A list of defined
codes, as of June 1994, follows:

00 Identified line − no special treatment
01 Multiparty − ANI cannot be provided
02 ANI failure
06 Hotel/Motel − DN not accompanied by automatic room ID
07 Special operator handling required
20 AIOD − Listed DN of PBX sent
23 Coin or Non−Coin − line status unknown
24 800 Service Call
27 Coin Call
29 Prison/Inmate Service
30−32 Intercept
34 Telco Operator Handled Call
40−49 Locally determined by carrier
52 Out WATS
60 Telecommunication Relay Service (TRS) − Station Paid
61 Type 1 Cellular
62 Type 2 Cellular
63 Romer Cellular
66 TRS − From Hotel/Motel
67 TRS − From restricted line
70 pay station
93 Virtual Network call

o hasCallOriginatorType

 public boolean hasCallOriginatorType()

Query whether CallOriginatorType is available for this call.

o canSetBillRate

 public boolean canSetBillRate()

Returns the Flexible Billing flag, which indicates whether the setBillRate() method
is valid for this call

Using Telephony Services
Private Data Extensions to
JTAPI

Contents

JTAPI Client Programmer’s Guide Issue 1.1 4-i

Using Telephony Services Private Data Extensions 4-1

n Who Should Be Using These Extensions? 4-1
n How Should the Extensions be Used? 4-2

Initialization of Private Data 4-2
Using TsapiPrivate as a JTAPI Private Data Object 4-3
Converting TSAPI Constructs to JTAPI Objects 4-3
Converting JTAPI Objects to TSAPI Constructs 4-4

Using Telephony Services
Private Data Extensions to
JTAPI

JTAPI Client Programmer’s Guide Issue 1.1 4-1

Using Telephony Services Private
Data Extensions

 NOTE:
This chapter describes non-standard additions to JTAPI. This package is
available only from the CentreVu Telephony Services implementation of
JTAPI and is not available from any other implementation of JTAPI.

This chapter contains the extensions that support Telephony Services
implementation of JTAPI for the private data mechanism for non-DEFINITY
switches and their associated drivers.

Who Should Be Using These Extensions?

An independent switch vendor who is using the JTAPI private data programming
environment to develop a private data package for non-DEFINITY switches, or
an application programmer who is using or interpreting private data in a raw
form, without an intermediate private data package. (An example of an
intermediate private data package that allows programmers to access private
data via Java interfaces rather than through raw private data bytes is contained
in Chapter 3, “Using Telephony Services DEFINITY-Specific Extensions.) It is
assumed that this individual has a familiarity with the Java programming
language, JTAPI, Lucent Technologies Telephony Services Application
Programmer’s Interface (TSAPI) and its private data mechanism.

Using Telephony Services Private Data Extensions to
JTAPI

4-2 Issue 1.1 JTAPI Client Programmer’s Guide

 NOTE:
If you are an application programmer who is using JTAPI to develop
applications for any switch for which there is a CentreVu Telephony
Services driver, ignore this chapter and refer to Chapter 1, “Telephony
Services Implementation of JTAPI for All Switches and the DEFINITY
Switch.” If you want additional TSAPI-specific information that is not
accessible through standard JTAPI, refer to Chapter 2, “ Using Telephony
Services Extensions to JTAPI.”

 NOTE:
If you are an application programmer who is using JTAPI to develop
applications for the DEFINITY switch, ignore this chapter and refer to
Chapter 1, “Telephony Services Implementation of JTAPI for All Switches
and the DEFINITY Switch.” If you want to take advantage of DEFINITY-
specific features that are not accessible through standard JTAPI, refer to
Chapter 3, “Telephony Services DEFINITY-Specific Extensions to JTAPI.”

How Should the Extensions be Used?

The private data extensions to JTAPI assist independent switch vendors in the
creation of a private data package for non-DEFINITY switches, or allow
application programmers to use or interpret private data when they are supplied
with private data in its raw form (i.e., without an intermediate private data
package.)

The following sections describe guidelines for using or interpreting private data
when it is supplied in its raw form.

Initialization of Private Data
In order to use or interpret private data from a particular vendor, the application
must specify the vendor name and the version of the private data that is to be
used. The particular format of the name and version strings used is supplied by
the vendor.

The specification of the vendor name and the version of the private data must be
done after the application creates a JtapiPeer but before it creates the Provider�
The ITsapiPeer.addVendor() method allows vendor names and versions to be
specified to the application. For example, if a JtapiPeer has been created (called
peer) which is an instance of ITsapiPeer, then:

��-8WETM4IIV�TIIV��EHH:IRHSV�l&VERH�<z��l���z�

indicates that the application knows how to interpret private data from vendor
“Brand X” as well as versions 1, 2, and 3 of that private data.

Using Telephony Services Private Data Extensions to
JTAPI

JTAPI Client Programmer’s Guide Issue 1.1 4-3

If the application supports private data produced by multiple vendors, the
application may call addVendor() multiple times before receiving the Provider.

When a String containing the vendor name and version is passed to
JtapiPeer.getProvider(), a particular Provider will be connected to a single
vendor delivering one particular version of private data. The application
determines the connected vendor and version by executing the
ITsapiProvider.getVendor() and ITsapiProvider.getVendorVersion() methods.
Once a particular vendor and version is associated with a particular Provider,
this association will not change for the life of the Provider. If the application wants
a different Provider, the application must call ITsapiPeer.addVendor() again.

Using TsapiPrivate as a JTAPI Private Data
Object

Where JTAPI specifies that a private data Object is to be passed in as an
argument to a method, this implementation of JTAPI requires the Object to be an
instance of TsapiPrivate. Where JTAPI specifies that a private data Object is to
be returned from a method, in this implementation, the returned Object is always
an instance of TsapiPrivate.

When constructing a TsapiPrivate object to be used with the sendPrivateData()
methods, waitForResponse must be set so that the appropriate action is taken.

n A value of true indicates that the implementation should block
sendPrivateData() until a response is received from the switch. This reponse
will be passed back to the application as the return code from
sendPrivateData(). This is equivalent to the TSAPI request
cstaEscapeService().

n A value of false indicates that the implementation should return immediately
(with a null) from sendPrivateData(), without waiting for a response from the
switch. This is equivalent to the TSAPI request cstaSendPrivateEvent().

n When a TsapiPrivate object is passed as an argument to a setPrivateData()
method, the waitForResponse flag is ignored.

Converting TSAPI Constructs to JTAPI Objects
Since private data, by its nature, cannot be interpreted by the implementation,
raw TSAPI constructs may be exposed. The ITsapiProviderPrivate interface
defines methods that allow raw TSAPI constructs to be converted into their JTAPI
equivalents. The following table lists the raw TSAPI constructs that may be
converted into their JTAPI equivalents. It lists the TSAPI constructs, the Java
version (the Java class) of the TSAPI constructs, the JTAPI objects to which they
are converted, and the method to be used for the conversion.

Using Telephony Services Private Data Extensions to
JTAPI

4-4 Issue 1.1 JTAPI Client Programmer’s Guide

Table 4-1. Mapping of TSAPI Constructs to JTAPI Objects

TSAPI Construct Java Class JTAPI Object Conversion Method
 in

 TsapiProviderPrivate
ExtendedDeviceID_t ExtendedDeviceID Address getAddress()
ExtendedDeviceID_t ExtendedDeviceID Terminal getTerminal()
ConnectionID_t ConnectionID Connection getConnection()
ConnectionID_t ConnectionID TerminalConnection getTerminalConnection()
callID (field in a
ConnectionID_t)

int Call getCall()

 NOTE:
TSAPI constructs such as DeviceID may be converted to JTAPI objects via
standard JTAPI methods such as Provider.getAddress(String) and
Provider.getTerminal(String).

Converting JTAPI Objects to TSAPI Constructs

Just as receiving TSAPI private data may expose raw TSAPI constructs, sending
TSAPI private data may require raw TSAPI constructs as well. The
ITsapiConnIDPrivate and ITsapiRoutePrivate interfaces have been defined to
retrieve TSAPI constructs from JTAPI objects.

The following table lists the JTAPI objects that may be converted into their
equivalent TSAPI constructs. It lists the JTAPI objects, the TSAPI constructs to
which they are converted, the Java version (the Java class) of the TSAPI
constructs, and the method to be used for the conversion.

Table 4-2. Mapping JTAPI Objects to TSAPI Constructs

JTAPI Object TSAPI Construct Java Class Conversion Method
Connection ConnectionID_t ConnectionID ITsapiConnIDPrivate.

getTsapiConnectionID()
TerminalConnection ConnectionID_t ConnectionID ITsapiConnIDPrivate.

getTsapiConnectionID()
RouteSession RouteRegisterReqID_t int ITsapiRoutePrivate.

getRouteRegisterID()
RouteSession RouteCrossRefID_t int ITsapiRoutePrivate.

getRouteCrossRefID()

package com.lucent.jtapi.tsapi

Interface Index

ITsapiConnIDPrivate
ITsapiPeer
ITsapiProvider
ITsapiProviderPrivate
ITsapiRoutePrivate

Class Index

ConnectionID
ExtendedDeviceID
TsapiPrivate

Interface com.lucent.jtapi.tsapi.ITsapiConnIDPrivate

public interface ITsapiConnIDPrivate

ITsapiConnIDPrivate lets you retrieve TSAPI information associated with a JTAPI
Connection or TerminalConnection.

See Also:
ConnectionID

Method Index

o getTsapiConnectionID()
Retrieves the TSAPI ConnectionID associated with a JTAPI Connection or
TerminalConnection.

Methods

o getTsapiConnectionID

 public abstract ConnectionID getTsapiConnectionID()

Retrieves the TSAPI ConnectionID associated with a JTAPI Connection or
TerminalConnection.

See Also:
ConnectionID

Interface com.lucent.jtapi.tsapi.ITsapiPeer

public interface ITsapiPeer
extends JtapiPeer

ITsapiPeer extends JtapiPeer to allow applications a mechanism to specify the vendor(s)
they want to negotiate data with.

Method Index

o addVendor(String, String)
This method can be used to set the vendor the application wants to exchange data
with.

Methods

o addVendor

 public abstract void addVendor(String vendorName,
 String versions)

This method can be used to set the vendor the application wants to exchange data
with. The interfaces for data are in javax.telephony.privatedata.

This method should be invoked before the application invokes getProvider().

To set multiple vendors an application must invoke this method multiple times.

Interface com.lucent.jtapi.tsapi.ITsapiProvider

public interface ITsapiProvider
extends Provider, CallCenterProvider

ITsapiProvider adds methods to obtain vendor−specific version information.

See Also:
addVendor

Variable Index

o TSAPI_IN_SERVICE
The ITsapiProvider.TSAPI_IN_SERVICE state maps to the core JTAPI
Provider.IN_SERVICE state.

o TSAPI_INITIALIZING
The ITsapiProvider.TSAPI_OUT_OF_SERVICE and
ITsapiProvider.TSAPI_INITIALIZING states map to the core JTAPI
Provider.OUT_OF_SERVICE state.

o TSAPI_OUT_OF_SERVICE
The ITsapiProvider.TSAPI_OUT_OF_SERVICE and
ITsapiProvider.TSAPI_INITIALIZING states map to the core JTAPI
Provider.OUT_OF_SERVICE state.

o TSAPI_SHUTDOWN
The ITsapiProvider.TSAPI_SHUTDOWN state maps to the core JTAPI
Provider.SHUTDOWN state.

Method Index

o getTsapiState()
Returns the TSAPI state of the provider.

o getVendor()
Returns the data vendor name.

o getVendorVersion()
Returns the negotiated vendor data version.

o updateAddresses()
Query the TServer to update the list of Addresses returned by getAddresses()

Variables

o TSAPI_OUT_OF_SERVICE

 public static final int TSAPI_OUT_OF_SERVICE

The ITsapiProvider.TSAPI_OUT_OF_SERVICE and
ITsapiProvider.TSAPI_INITIALIZING states map to the core JTAPI
Provider.OUT_OF_SERVICE state.

o TSAPI_INITIALIZING

 public static final int TSAPI_INITIALIZING

The ITsapiProvider.TSAPI_OUT_OF_SERVICE and
ITsapiProvider.TSAPI_INITIALIZING states map to the core JTAPI
Provider.OUT_OF_SERVICE state. The
ITsapiProvider.TSAPI_INITIALIZING state implies that the provider is
available to perform most actions, but hasn’t completed its entire initialization. In
this state, actions such as provider.getAddress(String) and
provider.getTerminal(String) may succeed when the resulting Address or
Terminal is actually outside of the provider’s domain (and, hence, the request
should really fail). Other actions, such as provider.getAddresses() and
provider.getTerminals() may be requested in this state but will block until
the provider goes ITsapiProvider.TSAPI_IN_SERVICE .

o TSAPI_IN_SERVICE

 public static final int TSAPI_IN_SERVICE

The ITsapiProvider.TSAPI_IN_SERVICE state maps to the core JTAPI
Provider.IN_SERVICE state.

o TSAPI_SHUTDOWN

 public static final int TSAPI_SHUTDOWN

The ITsapiProvider.TSAPI_SHUTDOWN state maps to the core JTAPI
Provider.SHUTDOWN state.

Methods

o getTsapiState

 public abstract int getTsapiState()

Returns the TSAPI state of the provider.

o getVendor

 public abstract String getVendor()

Returns the data vendor name.

o getVendorVersion

 public abstract byte[] getVendorVersion()

Returns the negotiated vendor data version.

o updateAddresses

 public abstract void updateAddresses()

Query the TServer to update the list of Addresses returned by getAddresses()

Interface com.lucent.jtapi.tsapi.ITsapiProviderPrivate

public interface ITsapiProviderPrivate

ITsapiProviderPrivate lets you retrieve or create JTAPI objects from TSAPI constructs.

See Also:
ConnectionID, ExtendedDeviceID

Method Index

o getAddress(ExtendedDeviceID)
Returns a JTAPI Address associated with a TSAPI Extended Device ID.

o getCall(int)
Returns a JTAPI Call associated with a TSAPI Call ID.

o getConnection(ConnectionID, Address)
Returns a JTAPI Connection associated with a TSAPI Connection ID and the
specified JTAPI Address.

o getTerminal(ExtendedDeviceID)
Returns a JTAPI Terminal associated with a TSAPI Extended Device ID.

o getTerminalConnection(ConnectionID, Terminal)
Returns a JTAPI TerminalConnection associated with a TSAPI Connection ID and
the specified JTAPI Terminal.

Methods

o getCall

 public abstract Call getCall(int callID)

Returns a JTAPI Call associated with a TSAPI Call ID.

Parameters:
callID − The Call ID.

o getAddress

 public abstract Address getAddress(ExtendedDeviceID deviceID)

Returns a JTAPI Address associated with a TSAPI Extended Device ID.

Parameters:
deviceID − The Extended Device ID.

See Also:
ExtendedDeviceID

o getTerminal

 public abstract Terminal getTerminal(ExtendedDeviceID deviceID)

Returns a JTAPI Terminal associated with a TSAPI Extended Device ID.

Parameters:
deviceID − The Extended Device ID.

See Also:
ExtendedDeviceID

o getConnection

 public abstract Connection getConnection(ConnectionID connID,
 Address address)

Returns a JTAPI Connection associated with a TSAPI Connection ID and the
specified JTAPI Address.

Parameters:
connID − The Connection ID.
address − The Address to associate with the Connection to be created.

See Also:
ConnectionID

o getTerminalConnection

 public abstract TerminalConnection getTerminalConnection(ConnectionID connID,
 Terminal terminal)

Returns a JTAPI TerminalConnection associated with a TSAPI Connection ID and
the specified JTAPI Terminal.

Parameters:
connID − The Connection ID.
terminal − The Terminal to associate with the TerminalConnection to be
created.

See Also:
ConnectionID

Interface com.lucent.jtapi.tsapi.ITsapiRoutePrivate

public interface ITsapiRoutePrivate

ITsapiRoutePrivate lets you retrieve TSAPI information associated with a JTAPI Route
Session.

Method Index

o getRouteCrossRefID()
Retrieves the TSAPI RouteCrossReferenceID associated with a JTAPI Route
Session.

o getRouteRegisterID()
Retrieves the TSAPI RouteRegisterID with a JTAPI Route Session.

Methods

o getRouteRegisterID

 public abstract int getRouteRegisterID()

Retrieves the TSAPI RouteRegisterID with a JTAPI Route Session.

o getRouteCrossRefID

 public abstract int getRouteCrossRefID()

Retrieves the TSAPI RouteCrossReferenceID associated with a JTAPI Route
Session.

Class com.lucent.jtapi.tsapi.ConnectionID

java.lang.Object
 |
 +−−−−com.lucent.jtapi.tsapi.ConnectionID

public final class ConnectionID

Variable Index

o DYNAMIC_ID
o STATIC_ID

Method Index

o equals(Object)
o hashCode()
o toString()

Variables

o STATIC_ID

 public static final short STATIC_ID

o DYNAMIC_ID

 public static final short DYNAMIC_ID

Methods

o hashCode

 public int hashCode()

Overrides:

hashCode in class Object

o equals

 public boolean equals(Object anObject)

Overrides:
equals in class Object

o toString

 public String toString()

Overrides:
toString in class Object

Class com.lucent.jtapi.tsapi.ExtendedDeviceID

java.lang.Object
 |
 +−−−−com.lucent.jtapi.tsapi.ExtendedDeviceID

public final class ExtendedDeviceID

A TSAPI Extended Device ID. This class should be used for interpretation of TSAPI
data. Once an Extended Device ID has been constructed from TSAPI data, a JTAPI
Address or Terminal object should be created using the appropriate method in
ITsapiProviderPrivate.

See Also:
ITsapiProviderPrivate

Variable Index

o DEVICE_IDENTIFIER
Device ID Type.

o EXPLICIT_PRIVATE_ABBREVIATED
Device ID Type.

o EXPLICIT_PRIVATE_LEVEL1_REGIONAL_NUMBER
Device ID Type.

o EXPLICIT_PRIVATE_LEVEL2_REGIONAL_NUMBER
Device ID Type.

o EXPLICIT_PRIVATE_LEVEL3_REGIONAL_NUMBER
Device ID Type.

o EXPLICIT_PRIVATE_LOCAL_NUMBER
Device ID Type.

o EXPLICIT_PRIVATE_PTN_SPECIFIC_NUMBER
Device ID Type.

o EXPLICIT_PRIVATE_UNKNOWN
Device ID Type.

o EXPLICIT_PUBLIC_ABBREVIATED
Device ID Type.

o EXPLICIT_PUBLIC_INTERNATIONAL
Device ID Type.

o EXPLICIT_PUBLIC_NATIONAL
Device ID Type.

o EXPLICIT_PUBLIC_NETWORK_SPECIFIC
Device ID Type.

o EXPLICIT_PUBLIC_SUBSCRIBER
Device ID Type.

o EXPLICIT_PUBLIC_UNKNOWN
Device ID Type.

o ID_NOT_KNOWN
Device ID Status of ID_NOT_KNOWN indicates the Device ID is not known.

o ID_NOT_REQUIRED
Device ID Status of ID_NOT_REQUIRED indicates the Device ID is not required.

o ID_PROVIDED
Device ID Status of ID_PROVIDED indicates the Device ID is valid

o IMPLICIT_PRIVATE
Device ID Type.

o IMPLICIT_PUBLIC
Device ID Type.

o OTHER_PLAN
Device ID Type.

o TRUNK_GROUP_IDENTIFIER
Device ID Type.

o TRUNK_IDENTIFIER
Device ID Type.

Constructor Index

o ExtendedDeviceID(String, short, short)
Construct an ExtendedDeviceID.

Method Index

o toString()

Variables

o DEVICE_IDENTIFIER

 public static final short DEVICE_IDENTIFIER

Device ID Type. Ignored if Device ID Status is not ID_PROVIDED

o IMPLICIT_PUBLIC

 public static final short IMPLICIT_PUBLIC

Device ID Type. Ignored if Device ID Status is not ID_PROVIDED

o EXPLICIT_PUBLIC_UNKNOWN

 public static final short EXPLICIT_PUBLIC_UNKNOWN

Device ID Type. Ignored if Device ID Status is not ID_PROVIDED

o EXPLICIT_PUBLIC_INTERNATIONAL

 public static final short EXPLICIT_PUBLIC_INTERNATIONAL

Device ID Type. Ignored if Device ID Status is not ID_PROVIDED

o EXPLICIT_PUBLIC_NATIONAL

 public static final short EXPLICIT_PUBLIC_NATIONAL

Device ID Type. Ignored if Device ID Status is not ID_PROVIDED

o EXPLICIT_PUBLIC_NETWORK_SPECIFIC

 public static final short EXPLICIT_PUBLIC_NETWORK_SPECIFIC

Device ID Type. Ignored if Device ID Status is not ID_PROVIDED

o EXPLICIT_PUBLIC_SUBSCRIBER

 public static final short EXPLICIT_PUBLIC_SUBSCRIBER

Device ID Type. Ignored if Device ID Status is not ID_PROVIDED

o EXPLICIT_PUBLIC_ABBREVIATED

 public static final short EXPLICIT_PUBLIC_ABBREVIATED

Device ID Type. Ignored if Device ID Status is not ID_PROVIDED

o IMPLICIT_PRIVATE

 public static final short IMPLICIT_PRIVATE

Device ID Type. Ignored if Device ID Status is not ID_PROVIDED

o EXPLICIT_PRIVATE_UNKNOWN

 public static final short EXPLICIT_PRIVATE_UNKNOWN

Device ID Type. Ignored if Device ID Status is not ID_PROVIDED

o EXPLICIT_PRIVATE_LEVEL3_REGIONAL_NUMBER

 public static final short EXPLICIT_PRIVATE_LEVEL3_REGIONAL_NUMBER

Device ID Type. Ignored if Device ID Status is not ID_PROVIDED

o EXPLICIT_PRIVATE_LEVEL2_REGIONAL_NUMBER

 public static final short EXPLICIT_PRIVATE_LEVEL2_REGIONAL_NUMBER

Device ID Type. Ignored if Device ID Status is not ID_PROVIDED

o EXPLICIT_PRIVATE_LEVEL1_REGIONAL_NUMBER

 public static final short EXPLICIT_PRIVATE_LEVEL1_REGIONAL_NUMBER

Device ID Type. Ignored if Device ID Status is not ID_PROVIDED

o EXPLICIT_PRIVATE_PTN_SPECIFIC_NUMBER

 public static final short EXPLICIT_PRIVATE_PTN_SPECIFIC_NUMBER

Device ID Type. Ignored if Device ID Status is not ID_PROVIDED

o EXPLICIT_PRIVATE_LOCAL_NUMBER

 public static final short EXPLICIT_PRIVATE_LOCAL_NUMBER

Device ID Type. Ignored if Device ID Status is not ID_PROVIDED

o EXPLICIT_PRIVATE_ABBREVIATED

 public static final short EXPLICIT_PRIVATE_ABBREVIATED

Device ID Type. Ignored if Device ID Status is not ID_PROVIDED

o OTHER_PLAN

 public static final short OTHER_PLAN

Device ID Type. Ignored if Device ID Status is not ID_PROVIDED

o TRUNK_IDENTIFIER

 public static final short TRUNK_IDENTIFIER

Device ID Type. Ignored if Device ID Status is not ID_PROVIDED

o TRUNK_GROUP_IDENTIFIER

 public static final short TRUNK_GROUP_IDENTIFIER

Device ID Type. Ignored if Device ID Status is not ID_PROVIDED

o ID_PROVIDED

 public static final short ID_PROVIDED

Device ID Status of ID_PROVIDED indicates the Device ID is valid

o ID_NOT_KNOWN

 public static final short ID_NOT_KNOWN

Device ID Status of ID_NOT_KNOWN indicates the Device ID is not known. The
Device ID and Device Type fields are ignored.

o ID_NOT_REQUIRED

 public static final short ID_NOT_REQUIRED

Device ID Status of ID_NOT_REQUIRED indicates the Device ID is not required.
The Device ID and Device Type fields are ignored.

Constructors

o ExtendedDeviceID

 public ExtendedDeviceID(String _deviceID,
 short _deviceIDType,
 short _deviceIDStatus)

Construct an ExtendedDeviceID.

Parameters:
_deviceID − The Device ID.
_deviceIDType − The Device ID Type.
_deviceIDStatus − The status of the Device ID (ID_PROVIDED,
ID_NOT_KNOWN, ID_NOT_REQUIRED).

Methods

o toString

 public String toString()

Overrides:
toString in class Object

Class com.lucent.jtapi.tsapi.TsapiPrivate

java.lang.Object
 |
 +−−−−com.lucent.jtapi.tsapi.TsapiPrivate

public final class TsapiPrivate
extends Object

The TsapiPrivate object is used to pass vendor−specific information between an
application and the service provider, via the JTAPI data interfaces. Where JTAPI
specifies that a data Object is to be passed in as an argument to a method, this
implementation requires the Object to be an instance of TsapiPrivate. Where JTAPI
specifies that a data Object is to be returned from a method, in this implementation the
returned Object is always an instance of TsapiPrivate.

An application must first use the ITsapiPeer.addVendor() method so that when a
provider is created it may negotiate the version of data to be used.

See Also:
addVendor

Variable Index

o data
o tsType
o vendor

Constructor Index

o TsapiPrivate(byte[])
Construct a TSAPI data object.

o TsapiPrivate(byte[], boolean)
Construct a TSAPI data object.

Method Index

o getData()
Return the byte array containing the raw data.

Variables

o vendor

 public String vendor

o data

 public byte data[]

o tsType

 public int tsType

Constructors

o TsapiPrivate

 public TsapiPrivate(byte _data[])

Construct a TSAPI data object. This version of the constructor should be used
when this object will be passed in a setPrivateData() method OR when
sendPrivateData() can return immediately (with a null) without waiting for a
response from the switch (this is equivalent to the TSAPI request
cstaSendPrivateEvent()).

o TsapiPrivate

 public TsapiPrivate(byte _data[],
 boolean waitForResponse)

Construct a TSAPI data object. If this object is to be used with the
sendPrivateData() methods, waitForResponse must be set so that the appropriate
action is taken. true indicates that the implementation should block in
sendPrivateData() until a response is received from the switch. This response will
be passed back to the application as the return code from sendPrivateData(). This
is equivalent to the TSAPI request cstaEscapeService(). false indicates that the
implementation should return immediately (with a null) from sendPrivateData()
without waiting for a response from the switch. This is equivalent to the TSAPI
request cstaSendPrivateEvent(). When a TSAPI data object is passed as an
argument to a setPrivateData() method, the waitForResponse flag is ignored

Methods

o getData

 public byte[] getData()

Return the byte array containing the raw data.

Telephony Services
Implementation of JTAPI for
Private Data

Contents

JTAPI Client Programmer’s Guide Issue 1.1 A-i

Telephony Services Implementation of JTAPI for
Private Data A-2

n TSAPI Requests with Associated JTAPI Interfaces and
Methods A-4

n TSAPI Requests without Associated JTAPI Mapping A-5
n Mapping of Possible JTAPI Events to TSAPI Events A-6

Telephony Services
Implementation of JTAPI for
Private Data

JTAPI Client Programmer’s Guide Issue 1.1 A-1

This appendix describes the level of support the CentreVu Telephony Services
implementation of JTAPI provides for the private data mechanism for non-
DEFINITY switches and their associated drivers. It contains the mappings of
Telephony Services Application Programming Interface (TSAPI) requests with
the JTAPI interfaces and associated methods, along with the mappings between
TSAPI and typically occurring JTAPI events.

It is suggested reading for an independent switch vendor who is using the JTAPI
private data programming environment to develop a private data package for
non-DEFINITY switches, or an application programmer who is using or
interpreting private data in a raw form, without an intermediate private data
package. (An example of an intermediate private data package that allows
programmers to access private data via Java interfaces rather than through raw
private data bytes is contained in Chapter 3, “Using Telephony Services
DEFINITY-Specific Extensions.”)

 NOTE:
If you are an application programmer who is using JTAPI to develop
applications for any switch for which there is a CentreVu Telephony
Services driver, ignore this appendix and refer to Chapter 1, “Telephony
Services Implementation of JTAPI for All Switches and the DEFINITY
Switch.” If you want additional TSAPI-specific information that is not
accessible through standard JTAPI, refer to Chapter 2, “Using Telephony
Services Extensions to JTAPI.”

 NOTE:
If you are an application programmer who is using JTAPI to develop
applications for the DEFINITY switch, ignore this appendix and refer to
Chapter 1, “Telephony Services Implementation of JTAPI for All Switches
and the DEFINITY Switch.” If you want to take advantage of DEFINITY-
specific features that are not accessible through standard JTAPI, refer to
Chapter 3, “Telephony Services DEFINITY-Specific Extensions to JTAPI.”

Telephony Services Implementation of JTAPI
for Private Data

A-2 Issue 1.1 JTAPI Client Programmer’s Guide

Telephony Services Implementation
of JTAPI for Private Data

JTAPI’s private data mechanism is defined in the java.telephony.privatedata
package.

The Lucent Technologies Telephony Services Application Programmer’s
Interface (TSAPI) implementation adds the ITsapiPeer and ITsapiProvider
interfaces to allow an application to set one or more vendors with which it might
want to negotiate private data. Applications must invoke the addVendor method
on the ITsapiPeer interface before invoking the getProvider method on the
interface.

The private data object used is defined as TsapiPrivate. It consists of a vendor
name, a byte array of private data, and a tsType value which specifies the
escape service to be used.

JTAPI has a different model for private data than TSAPI. If you used private data
to program to TSAPI, you have to take the following differences into account to
achieve the same result with JTAPI:

n In TSAPI, every request has private data parameters.

In JTAPI, the associated methods do not have private data parameters. An
application must set private data using the setPrivateData method on an
object prior to invoking a JTAPI method on that object. The setPrivateData
method is defined in the PrivateData interface in the
java.telephony.privatedata package. For example, if the desired effect is to
send a cstaMakeCall with a private parameter to the switch, the way to
achieve that in JTAPI is to first invoke setPrivateData on a Call object and
then invoke connect on the Call object.

Many TSAPI requests have corresponding JTAPI interfaces and methods, as
listed in Table A-1. Table A-2 lists the TSAPI requests that do not have
corresponding JTAPI interfaces and methods. Therefore, there is no access
to the private data for these TSAPI requests.

n In TSAPI, if private data accompanies a confirmation, then it is returned via
the acsGetEventBlock or acsGetEventPoll function.

Telephony Services Implementation of JTAPI
for Private Data

JTAPI Client Programmer’s Guide Issue 1.1 A-3

In JTAPI, there are no confirmation events. An application can get the private
data from a confirmation event by using the getPrivateData method on an
object after returning from invocation of a method in the object. The
getPrivateData method is defined in the PrivateData interface in the
java.telephony.privatedata package. For example, if the desired effect is to
get the private data from the confirmation, CSTAMakeCallConfEvent; the way
to achieve that in JTAPI is to invoke getPrivateData on the Call object after
invoking connect on a Call object.

n In TSAPI, if private data accompanies an event, then it is copied via the
acsGetEventBlock or acsGetEventPoll function.

In JTAPI, there are PrivateEvents which are delivered to the observers. The
PrivateEvent interface is defined in the java.telephony.privatedata.events
package. For example, if the desired effect is to get private data that is
associated with cstaDeliveredEvent, the way to achieve that in JTAPI is to
extract it from the PrivateEvent that is delivered in an event array to a
CallObserver.

 NOTE:
A cstaDeliveredEvent sets the connection state to ALERTING. If this is a
state change, a ConnAlertingEv and PrivateEvent will be in the event array
delivered to the CallObserver. If the state was already ALERTING, the
PrivateEvent will be in the event array by itself.

Table A-3 lists TSAPI events and corresponding JTAPI events that might be
in the event array in which the PrivateEvent is delivered.

Telephony Services Implementation of JTAPI
for Private Data

A-4 Issue 1.1 JTAPI Client Programmer’s Guide

TSAPI Requests with Associated JTAPI
Interfaces and Methods

Table A-1 lists the TSAPI requests and associated JTAPI interfaces and
methods.

Table A-1. TSAPI Requests with Associated JTAPI Interfaces and Methods

TSAPI Requests JTAPI Interfaces JTAPI Methods
cstaMakeCall Call connect
cstaClearConnection Connection disconnect
acsEnumServerNames JtapiPeer getServices
acsOpenStream JtapiPeer getProvider
acsCloseStream Provider shutdown
cstaAnswerCall TerminalConnection answer
cstaSetAgentState AgentTerminal

Agent
addAgent
setState

cstaQueryAgentState Agent getState
cstaMakePredictiveCall CallCenterCall connectPredictive
cstaRouteRegisterReq RouteAddress registerRouteCallback
cstaRouteRegisterCancel RouteAddress cancelRouteCallback
cstaRouteSelectInv RouteSession selectRoute
cstaRouteEndInv RouteSession endRoute
cstaSetForwarding CallControlAddress setForwarding

cancelForwarding
cstaQueryForwarding CallControlAddress getForwarding
cstaQueryDoNotDisturb CallControlAddress getDoNotDisturb
cstaSetDoNotDisturb CallControlAddress setDoNotDisturb
cstaQueryMsgWaitingInd CallControlAddress getMessageWaiting
cstaSetMsgWaitingInd CallControlAddress setMessageWaiting
cstaClearCall CallControlCall drop
cstaConferenceCall CallControlCall conference
cstaTransferCall CallControlCall transfer
cstaConsultationCall CallControlCall consult
cstaDeflectCall CallControlConnection redirect
cstaQueryDoNotDisturb CallControlTerminal getDoNotDisturb
cstaSetDnd CallControlTerminal setDoNotDisturb
cstaPickupCall CallControlTerminal pickup
cstaGroupPickupCall CallControlTerminal pickupFromGroup
cstaHoldCall CallControlTerminalCon

nection
hold

cstaRetrieveCall CallControlTerminalCon
nection

unhold

cstaSendPrivateEvent Private Data sendPrivateData

Telephony Services Implementation of JTAPI
for Private Data

JTAPI Client Programmer’s Guide Issue 1.1 A-5

TSAPI Requests without Associated JTAPI
Mapping

Table A-2 lists the TSAPI requests that do not have corresponding JTAPI
interfaces and methods. Therefore, there is no access to the private data for
these TSAPI requests.

Table A-2. TSAPI Requests Without Associated JTAPI Mapping

TSAPI Requests
Call Control Services
cstaAlternateCall
cstaCallCompletion
cstaReconnectCall
Supplementary Services
cstaQueryLastNumber
cstaQueryDeviceInfo
Monitor Services
cstaChangeMonitorFilter
FeatureEventReport
CSTACallInfoEvent
Escape Services
cstaEscapeServiceConf
CSTA_ESCAPE_SVC_REQ
Maintenance Services
cstaSysStatReq
cstaSysStatStart
cstaSysStatStop
cstaChangeSysStatFilter
cstaSysStatReqConf
cstaSysStatEvent

Telephony Services Implementation of JTAPI
for Private Data

A-6 Issue 1.1 JTAPI Client Programmer’s Guide

Mapping of Possible JTAPI Events to TSAPI
Events

Table A-3 lists TSAPI events and the associated possible JTAPI events that might
be in the event array in which the PrivateEvent is delivered.

 NOTE:
A cstaDeliveredEvent sets the connection state to ALERTING. If this is a
state change, a ConnAlertingEv and PrivateEvent will be in the event array
delivered to the CallObserver. If the state was already ALERTING, the
PrivateEvent will be in the event array by itself.

Table A-3. Mapping of Possible JTAPI Events to TSAPI Events

TSAPI Events Possible JTAPI Event in Array with
Private Event

CSTACallClearedEvent CallInvalidEv
CSTAMonitorEndedEvent CallObservationEndedEv
CSTADeliveredEvent ConnAlertingEv
CSTAEstablishedEvent ConnConnectedEv
CSTAConnectionClearedEvent ConnDisconnectedEv
CSTAFailedEvent ConnFailedEv
CSTADoNotDisturbEvent CallCtlAddrDoNotDisturbEv
CSTAForwardingEvent CallCtlAddrForwardEv
CSTAMessageWaitingEvent CallCtlAddrMessageWaitingEv
CSTAServiceInitiatedEvent CallCtlConnInitiatedEv
CSTANetworkReachedEvent CallCtlConnNetworkReachedEv
CSTAQueuedEvent CallCtlConnQueuedEv
CSTALoggedOffEvent ACDAddrLoggedOffEv

AgentTermLoggedOffEv
CSTALoggedOnEvent ACDAddrLoggedOnEv

AgentTermLoggedOnEv
CSTANotReadyEvent ACDAddrNotReadyEv

AgentTermNotReadyEv
CSTAReadyEvent ACDAddrReadyEv

AgentTermReadyEv
CSTAWorkNotReadyEvent ACDAddrWorkNotReadyEv

AgentTermWorkNotReadyEv
CSTAWorkReadyEvent ACDAddrWorkReadyEv

AgentTermWorkReadyEv
CSTARouteRequestExtEvent RouteEvent
CSTAReRouteRequestEvent ReRouteEvent
CSTARouteUsedExtEvent RouteUsedEvent
CSTARouteEndEvent RouteEndEvent
CSTARouteRegisterAbortEvent RouteCallbackEndedEvent

We’d like your opinion ...

Lucent Technologies welcomes your feedback on this document.
Your comments can be of great value in helping us improve our documentation.

CentreVu® Computer-Telephony
for Windows NT®
Java Telephony API (JTAPI)
Client Programmer’s Guide
Issue 1.1 November 1998

1. Please rate the effectiveness of this document in the following areas:
Excellent Good Fair Poor

Ease of Finding Information ❏ ❏ ❏ ❏
Clarity ❏ ❏ ❏ ❏

Completeness ❏ ❏ ❏ ❏
Accuracy ❏ ❏ ❏ ❏

Organization ❏ ❏ ❏ ❏
Appearance ❏ ❏ ❏ ❏

Examples ❏ ❏ ❏ ❏
Overall Satisfaction ❏ ❏ ❏ ❏

2. Please check the ways you feel we could improve this document:

❏ Improve the overview/introduction ❏ Make it more concise
❏ Improve the table of contents ❏ Add more step-by-step procedures/tutorials
❏ Improve the organization ❏ Add more troubleshooting information
❏ Add more figures ❏ Make it less technical
❏ Add more examples ❏ Add more/better quick reference aids
❏ Add more details ❏ Improve the index

Please add details about your major concerns._______________________________________
__
__

3. What did you like most about this document? ________________________________
 __
 __

4. Feel free to write any comments below or on an attached sheet. __________________
__
__

If we may contact you concerning your comments, please complete the following:
Name: ______________________________________ Telephone Number: (_____) ____________

Company/Organization ___ Date: ______________

Address: __

You may FAX your response to (732) 817-4562. Thank you.

	Title Page
	Copyright
	Main Contents
	About This Guide
	What is JTAPI?
	What is the CentreVu Telephony Services Java Client?
	Purpose and Scope
	Finding What You Need (Generic JTAPI and DEFINITY-Specific)
	Finding What You Need (Non-DEFINITY Private Data)
	Navigating through the Document
	Related Documents

	1 - Contents
	1 - Telephony Services Implementation of JTAPI
	Telephony Services Implementation of JTAPI for All Switches and the DEFINITY Switch
	Support for JTAPI:
	Core Pkg
	Call Center Pkg
	Call Center Capabilities Pkg
	Call Center Events Pkg
	Call Control Pkg
	Call Control Capabilities Pkg
	Call Control Events Pkg
	Capabilities Pkg
	Events Pkg
	Media Pkg
	Media Capabilities Pkg
	Media Events Pkg
	Phone Pkg
	Phone Capabilities Pkg
	Phone Events Pkg
	Private Data Pkg
	Private Data Capabilities Pkg
	Private Data Events Pkg

	2 - Contents
	2 - Using Telephony Services Extensions to JTAPI
	Using Telephony Services Extensions to JTAPI
	Who Should Be Using These Extensions?
	What are the Extensions?
	Extensions to JTAPI Exceptions
	Extensions to JTAPI Provider Events

	Extensions_to_JTAPI_Exceptions
	ITsapiException
	TsapiInvalidArgumentException
	TsapiInvalidPartyException
	TsapiInvalidStateException
	TsapiMethodNotSupportedException
	TsapiPlatformException
	TsapiPrivilegeViolationException
	TsapiProviderUnavailableException
	TsapiResourceUnavailableException

	3 - Contents
	3 - Using Telephony Services DEFINITY-Specific Extensions to JTAPI
	Using Telephony Services DEFINITY-Specific Extensions
	Who Should Be using These Extensions?
	How Should the Extensions be Used?

	DEFINITY-Specific_Extensions
	ITsapiAddress
	ITsapiAddressMsgWaitingEvent
	ITsapiAgent
	ITsapiCall
	ITsapiCallInfo
	ITsapiConnNetworkReachedEvent
	ITsapiConnection
	ITsapiRouteSession
	ITsapiTerminal
	ITsapiTerminalConnection
	LucentAddress
	LucentAddressMsgWaitingEvent
	LucentAgent
	LucentCall
	LucentCallInfo
	LucentConnNetworkReachedEvent
	LucentConnection
	LucentProvider
	LucentRouteSession
	LucentTerminal
	LucentTerminalConnection
	LucentV5Call
	LucentV5CallInfo
	LucentV5Connection
	LucentV5Provider
	LucentV5Terminal
	LucentV5TerminalConnection
	CallClassifierInfo
	LookaheadInfo
	LucentAgentStateInfo
	LucentBillType
	LucentChargeAdviceEvent
	LucentChargeError
	LucentChargeType
	LucentV5AgentStateInfo
	NetworkProgressInfo
	OriginalCallInfo
	TrunkGroupInfo
	UserEnteredCode
	UserToUserInfo
	V5NetworkProgressInfo
	V5OriginalCallInfo

	4 - Contents
	4 - Using Telephony Services Private Data Extensions to JTAPI
	Using Telephony Services Private Data Extensions
	Who Should Be Using These Extensions?
	How Should the Extensions be Used?
	Initialization of Private Data
	Using TsapiPrivate as a JTAPI Private Data Object
	Converting TSAPI Constructs to JTAPI Objects
	Converting JTAPI Objects to TSAPI Constructs

	Private_Data_Extensions
	ITsapiConnIDPrivate
	ITsapiPeer
	ITsapiProvider
	ITsapiProviderPrivate
	ITsapiRoutePrivate
	ConnectionID
	ExtendedDeviceID
	TsapiPrivate

	A - Contents
	A - Telephony Services Implementation of JTAPI for Private Data
	Telephony Services Implementation for Private Data
	TSAPI Requests with Associated JTAPI Interfaces and Methods
	TSAPI Requests without Associated JTAPI Mapping
	Mapping of Possible JTAPI Events to TSAPI Events

	Comment Card

