
CentreVu Computer-Telephony

Release 10.1, Version 1
TSAPI Version 2
Private Data Version 6

Programmer’s Guide
for
DEFINITY

Enterprise Communications Server

Issue 1
December 2001

Copyright © 2001 Avaya, Inc.
All Rights Reserved
Printed in USA
Notice
Every effort was made to ensure that the information in this book
was complete and accurate at the time of printing. However,
information is subject to change.
Preventing Toll Fraud
“Toll fraud” is the unauthorized use of your telecommunications sys-
tem by an unauthorized party (for example, a person who is not a
corporate employee, agent, subcontractor, or working on your com-
pany’s behalf). Be aware that there may be a risk of toll fraud asso-
ciated with your system and that, if toll fraud occurs, it can result in
substantial additional charges for your telecommunications services.
Avaya Fraud Intervention
If you suspect you are being victimized by toll fraud and you need
technical support or assistance, call the appropriate BCS National
Customer Care Center telephone number. Users of the MERLIN®,
PARTNER®, and System 25 products should call 1 800 628-2888.
Users of the System 75, System 85, DEFINITY® Generic 1, 2 and 3,
and DEFINITY® ECS products should call 1 800 643-2353.
Providing Telecommunications Security
Telecommunications security (of voice, data, and/or video communi-
cations) is the prevention of any type of intrusion to (that is, either
unauthorized or malicious access to or use of your company’s tele-
communications equipment) by some party.

Your company’s “telecommunications equipment” includes both this
Avaya product and any other voice/data/video equipment that could
be accessed via this Avaya product (that is, “networked equip-
ment”).

An “outside party” is anyone who is not a corporate employee,
agent, subcontractor, or working on your company’s behalf.
Whereas, a “malicious party” is anyone (including someone who
may be otherwise authorized) who accesses your telecommunica-
tions equipment with either malicious or mischievous intent.

Such intrusions may be either to/through synchronous (time-multi-
plexed and/or circuit-based) or asynchronous (character-, mes-
sage-, or packet-based) equipment or interfaces for reasons of:

• Utilization (of capabilities special to the accessed equipment)
• Theft (such as, of intellectual property, financial assets, or

toll-facility access)
• Eavesdropping (privacy invasions to humans)
• Mischief (troubling, but apparently innocuous, tampering)
• Harm (such as harmful tampering, data loss or alteration,

regardless of motive or intent)
Be aware that there may be a risk of unauthorized intrusions associ-
ated with your system and/or its networked equipment. Also realize
that, if such an intrusion should occur, it could result in a variety of
losses to your company (including, but not limited to, human/data
privacy, intellectual property, material assets, financial resources,
labor costs, and/or legal costs).
Your Responsibility for Your Company’s
Telecommunications Security
The final responsibility for securing both this system and its net-
worked equipment rests with you – an Avaya customer’s system
administrator, your telecommunications peers, and your managers.
Base the fulfillment of your responsibility on acquired knowledge
and resources from a variety of sources including but not limited to:

• Installation documents
• System administration documents
• Security documents
• Hardware-/software-based security tools
• Shared information between you and your peers
• Telecommunications security experts

To prevent intrusions to your telecommunications equipment, you
and your peers should carefully program and configure your:

• Avaya provided telecommunications systems and their inter-
faces

• Avaya provided software applications, as well as their underly-
ing hardware/software platforms and interfaces

• Any other equipment networked to your Avaya products
Avaya does not warrant that this product or any of its networked
equipment is either immune from or will prevent either unauthorized
or malicious intrusions. Avaya will not be responsible for any
charges, losses, or damages that result from such intrusions.
Trademarks
Adobe, Adobe Acrobat, and the Adobe logo are registered

trademarks of Adobe Systems, Inc.
CallVisor, CentreVu, DEFINITY, and the Avaya logotype are

registered trademarks of Avaya, Inc.
DEFINITY ONE, and DEFINTY PROLOGIX are trademarks of

Avaya, Inc.
Novell and NetWare are registered trademarks of Novell, Inc.
Microsoft, Windows, Windows NT, and the Microsoft logo are

registered trademarks and Windows 95 is a trademark of
Microsoft.

All products and company names are trademarks or registered
trademarks of their respective holders.

Obtaining Products
To learn more about Avaya products and to order products, contact
Avaya at: 1 800 451 2100
Warranty
Avaya provides a limited warranty on this product. Refer to the
"Avaya Network Software License Agreement" provided with your
package.
Comments
If you have comments, complete and return the comment card at the
end of this document.

Contents
1 Introduction 1-1

■ Purpose and Scope 1-1

■ Intended Audience 1-2

■ Terminology 1-2

■ Conventions 1-4

■ Related Documents 1-5

CSTA Services Documents 1-5

■ New Features for Private Data
Version 6 1-6

■ Customer Support 1-6

■ How to Comment on This Document 1-6

2 TSAPI Architecture Overview 2-1

■ Purpose of CSTA 2-1

■ CSTA Standard and API Specification 2-1

■ CSTA Communication Layers Model 2-2

CSTA Client/Server Operational Model 2-3

■ CSTA Client/Server Session and Operation
Invocation Model 2-4

■ Call Control and Call Events 2-4

■ G3 CSTA System Overview 2-4

■ G3 CSTA Software Overview 2-5

DEFINITY Generic 3 PBX Driver (G3PD) 2-6

■ G3 Private Data Library Overview 2-7

■ TSAPI Software Components Overview 2-8

TSAPI Library 2-8

Telephony Server (Tserver) EXE/NLM 2-8

Multiple CTI Links to a G3PD 2-9

■ Progress and Status of the CTI Link on NetWare 2-11

■ Progress and Status of the CTI Link on Windows NT 2-13
Issue 1 — December 2001

iiiDEFPROG.PDF R10.1 V1

Contents
3 G3 CSTA Service Groups 3-1

■ Supported Services and Service Groups 3-1

■ Transferring or Conferencing a Call Together with
Screen Pop Information 3-7

CSTA Services Used to Conference or
Transfer Calls 3-8

Using Original Call Information to Pop a Screen 3-9

Using UUI to Pass Information to
Remote Applications 3-10

■ TSAPI Version Control 3-11

■ Private Data Version Control 3-12

Private Data Version Feature Support 3-13

CSTAGetAPICaps Confirmation Interface Structures
for Private Data Versions 4, 5, and 6 3-14

Private Data Feature Summary 3-15

■ Migration from Private Data Version 5 to Private Data
Version 6 3-19

Private Data Function Changes 3-20

Set Agent State 3-21

Private Data Sample Code 3-22

Sample Code 1 3-22
Sample Code 2 3-24
Sample Code 3 3-26

■ G3 CSTA Objects 3-28

CSTA Object: Device 3-28

Device Type 3-28
Device Class 3-29
Device Identifier 3-29
Device Identifier Syntax 3-31

CSTA Device ID Type
(Private Data Version 4 and Earlier) 3-32

CSTA Device ID Type
(with Private Data Version 5 and Later) 3-32

CSTA Object: Call 3-35

Call Identifier (callID) 3-35
Call Identifier Syntax 3-35
Call State 3-35

CSTA Object: Connection 3-35
Issue 1 — December 2001

DEFPROG.PDF R10.1 V1iv

Contents
Connection Identifier (connectionID) 3-36
Connection Identifier Conflict 3-36
Connection Identifier Syntax 3-36
Connection State 3-37
Connection State Syntax 3-39

■ G3 CSTA System Capacity 3-40

■ Multiple Telephony Server Considerations 3-43

■ Multiple CTI Link Considerations 3-43

■ Format and Conventions 3-45

■ Common ACS Parameter Syntax 3-48

■ CSTAUniversalFailureConfEvent 3-49

■ ACSUniversalFailureConfEvent 3-55

4 Call Control Service Group 4-1

■ Overview 4-1

Alternate Call Service 4-2

Answer Call Service 4-2

Clear Call Service 4-3

Clear Connection Service 4-3

Conference Call Service 4-3

Consultation Call Service 4-4

Consultation Direct-Agent Call Service 4-4

Consultation Supervisor-Assist Call Service 4-5

Deflect Call Service 4-5

Hold Call Service 4-5

Make Call Service 4-6

Make Direct-Agent Call Service 4-6

Make Predictive Call Service 4-7

Make Supervisor-Assist Call Service 4-7

Pickup Call Service 4-7

Reconnect Call Service 4-8

Retrieve Call Service 4-8

Transfer Call Service 4-8

■ Alternate Call Service 4-9
Issue 1 — December 2001

vDEFPROG.PDF R10.1 V1

Contents
■ Answer Call Service 4-13

■ Clear Call Service 4-18

■ Clear Connection Service 4-20

■ Conference Call Service 4-27

■ Consultation Call Service 4-33

■ Consultation Direct-Agent Call Service 4-42

■ Consultation Supervisor-Assist Call Service 4-51

■ Deflect Call Service 4-60

■ Hold Call Service 4-65

■ Make Call Service 4-69

■ Make Direct-Agent Call Service 4-82

■ Make Predictive Call Service 4-91

■ Make Supervisor-Assist Call Service 4-103

■ Pickup Call Service 4-113

■ Reconnect Call Service 4-118

■ Retrieve Call Service 4-126

■ Send DTMF Tone Service
(Private Data Version 4 and Later) 4-130

■ Selective Listening Hold Service
(Private Data Version 5 and Later) 4-137

■ Selective Listening Retrieve Service
(Private Data Version 5 and Later) 4-143

■ Single Step Conference Call Service
(Private Data Version 5 and Later) 4-148

■ Transfer Call Service 4-157

5 Set Feature Service Group 5-1

■ Overview 5-1

■ Set Advice of Charge Service
(Private Data Version 5 and Later) 5-2

■ Set Agent State Service 5-6

■ Set Billing Rate Service
(Private Data Version 5 and Later) 5-18

■ Set Do Not Disturb Feature Service 5-23
Issue 1 — December 2001

DEFPROG.PDF R10.1 V1vi

Contents
■ Set Forwarding Feature Service 5-26

■ Set Message Waiting Indicator (MWI) Feature Service 5-31

6 Query Service Group 6-1

■ Overview 6-1

■ Query ACD Split Service 6-2

■ Query Agent Login Service 6-6

■ Query Agent State Service 6-13

■ Query Call Classifier Service 6-22

■ Query Device Info 6-25

■ Query Device Name Service 6-32

■ Query Do Not Disturb Service 6-41

■ Query Forwarding Service 6-43

■ Query Message Waiting Service 6-46

■ Query Station Status Service 6-50

■ Query Time Of Day Service 6-53

■ Query Trunk Group Service 6-56

■ Query Universal Call ID Service (Private) 6-60

7 Snapshot Service Group 7-1

■ Overview 7-1

■ Snapshot Call Service 7-2

■ Snapshot Device Service 7-6

8 Monitor Service Group 8-1

■ Overview 8-1

Change Monitor Filter Service
— cstaChangeMonitorFilter() 8-1

Monitor Call Service — cstaMonitorCall() 8-1
Issue 1 — December 2001

viiDEFPROG.PDF R10.1 V1

Contents
Monitor Calls Via Device Service
— cstaMonitorCallsViaDevice 8-2

Monitor Device Service — cstaMonitorDevice() 8-2

Monitor Ended Event — CSTAMonitorEndedEvent 8-2

Monitor Stop On Call Service (Private)
— attMonitorStopOnCall() 8-2

Monitor Stop Service — cstaMonitorStop() 8-3

Event Filters and Monitor Services 8-3

Local Connection Info and Monitor Services 8-5

■ Change Monitor Filter Service 8-6

■ Monitor Call Service 8-13

■ Monitor Calls Via Device Service 8-22

■ Monitor Device Service 8-31

■ Monitor Ended Event Report 8-40

■ Monitor Stop On Call Service (Private) 8-42

■ Monitor Stop Service 8-46

9 Event Report Service Group 9-1

■ CSTAEventCause and LocalConnectionState 9-1

Event Minimization Feature on G3 PBX 9-2

■ Call Cleared Event 9-3

■ Charge Advice Event (Private) 9-8

■ Conferenced Event 9-13

■ Connection Cleared Event 9-32

■ Delivered Event 9-39

■ Diverted Event 9-73

■ Entered Digits Event (Private) 9-77

■ Established Event 9-80

■ Failed Event 9-109

■ Held Event 9-114

■ Logged Off Event 9-116

■ Logged On Event 9-119

■ Network Reached Event 9-122
Issue 1 — December 2001

DEFPROG.PDF R10.1 V1viii

Contents
■ Originated Event 9-129

■ Queued Event 9-135

■ Retrieved Event 9-139

■ Service Initiated Event 9-142

■ Transferred Event 9-146

■ Event Report Detailed Information 9-165

Analog Sets 9-165

Redirection 9-165
Redirection on No Answer 9-165
Switch Hook Operation 9-165

ANI Screen Pop Application Requirements 9-166

Announcements 9-167

Answer Supervision 9-167

Attendants and Attendant Groups 9-167

Attendant Specific Button Operation 9-168

Attendant Auto-Manual Splitting 9-168

Attendant Call Waiting 9-168

Attendant Control of Trunk Group Access 9-169

AUDIX 9-169

Automatic Call Distribution (ACD) 9-169

Announcements 9-169
Interflow 9-169
Night Service 9-170
Service Observing 9-170
Auto-Available Split 9-170

Bridged Call Appearance 9-170

Busy Verification of Terminals 9-171

Call Coverage 9-171

Call Coverage Path Containing VDNs 9-172

Call Forwarding All Calls 9-172

Call Park 9-172

Call Pickup 9-173

Call Vectoring 9-173

Call Prompting 9-175
Lookahead Interflow 9-175
Multiple Split Queueing 9-175

Call Waiting 9-175
Issue 1 — December 2001

ixDEFPROG.PDF R10.1 V1

Contents
Conference 9-176

Consult 9-176

CTI Link Failure 9-176

Data Calls 9-176

DCS 9-177

Direct Agent Calling and Number of Calls In Queue 9-177

Drop Button Operation 9-177

Expert Agent Selection (EAS) 9-177

Logical Agents 9-177

Hold 9-178

Integrated Services Digital Network (ISDN) 9-178

Multiple Split Queueing 9-178

Personal Central Office Line (PCOL) 9-179

Primary Rate Interface (PRI) 9-179

Ringback Queueing 9-180

Send All Calls (SAC) 9-180

Service-Observing 9-180

Temporary Bridged Appearances 9-180

Terminating Extension Group (TEG) 9-181

Transfer 9-181

Trunk-to-Trunk Transfer 9-181

10 Routing Service Group 10-1

■ Overview 10-1

■ Route End Event 10-2

■ Route End Service (TSAPI Version 2) 10-6

■ Route End Service (TSAPI Version 1) 10-10

■ Route Register Abort Event 10-12

■ Route Register Cancel Service 10-14

■ Route Register Service 10-17

■ Route Request Service (TSAPI Version 2) 10-20

■ Route Request Service (TSAPI Version 1) 10-36

■ Route Select Service (TSAPI Version 2) 10-39
Issue 1 — December 2001

DEFPROG.PDF R10.1 V1x

Contents
■ Route Select Service (TSAPI Version 1) 10-49

■ Route Used Event (TSAPI Version 2) 10-51

■ Route Used Event (TSAPI Version 1) 10-54

11 System Status Service Group 11-1

■ Overview 11-1

System Status Request Service — cstaSysStatReq() 11-1

System Status Start Service — cstaSysStatStart() 11-1

System Status Stop Service — cstaSysStatStop() 11-1

Change System Status Filter Service
— cstaChangeSysStatFilter() 11-2

System Status Event — CSTASysStatEvent 11-2

System Status Events — Not Supported 11-2

■ System Status Request Service 11-3

■ System Status Start Service 11-10

■ System Status Stop Service 11-19

■ Change System Status Filter Service 11-21

■ System Status Event 11-29

A Enhanced Voice Terminal Display 37

IN Index IN-1
Issue 1 — December 2001

xiDEFPROG.PDF R10.1 V1

Contents
Issue 1 — December 2001

DEFPROG.PDF R10.1 V1xii

Issue 1 — December 2001

DEFPROG.PDF R10.1 V1
1

Introduction
Purpose and Scope

This document provides application developers with detailed information about
the Computer- Supported Telecommunications Applications (CSTA) services and
the Telephony Services Application Programming Interface (TSAPI) for the
DEFINITY® Enterprise Communications Server (ECS) Generic 3 (G3) PBX in a
Telephony Services environment.

The following information is included:

■ Supported CSTA Services and TSAPI functions

■ Parameter semantics

■ Interactions with G3 PBX features

■ TSAPI syntax

■ G3 private services, private events, and private data syntax (services and
functions provided by a specific switch vendor in addition to CSTA
definitions).

The Telephony Services (Tserver) and the G3 PBX Driver (G3PD) software were
originally developed for the NetWare® environment. Later they were developed
for the Windows NT® environment. Information in this document applies to
Microsoft® Windows® and the Windows NT platform as well as for the NetWare
environment. Support for the NetWare environment was only provided up to
Release 2.2.
1-1

Introduction
Intended Audience

This document is intended for Telephony Services application developers
programming in a DEFINITY G3 PBX environment. The document assumes
familiarity with CSTA architecture and services defined in Technical Report ECMA
TR/52 and Standard ECMA-179. It also assumes familiarity with DEFINITY G3
PBX features and procedures as described in the documents contained in the
DEFINITY ECS Release 8 Documentation Library, 555-230-833.

Terminology

NOTE:
The following terms are used in this document: “DEFINITY Generic 3” or
“Generic 3” for DEFINITY Communications System Generic 3, and “G3PD”
for the DEFINITY Generic 3 PBX Driver. The terms “PBX” and “switch” are
used interchangeably to mean “private branch exchange.” The phrase
“SECURITY ALERT” warns you of possible security and toll fraud issues.

The definitions below explain some important terms. More detailed definitions
appear in context when key concepts, functions, and services are described.

API Control Services (ACS)

An application uses a subset of TSAPI known as ACS to open, close, and control
a communication channel (stream) to a Telephony Server (Tserver). Once a
stream is open, the application may use the stream to request CSTA services
from the Tserver.

EXE, DLL, and NLM

An EXE is an executable program and a DLL is a Dynamic Link Library software
module on the Microsoft Windows/Windows NT platform. An NLM is a NetWare
Loadable Module in the NetWare environment. Table 1-1 shows the software (i.e.,
the Tserver and the G3PD), the platform, and the associated file extensions for
each.

Table 1-1. Platforms and Associated File Extensions

Software Platform File Extension

Telephony Services (Tserver) Windows NT EXE

Telephony Services (Tserver) NetWare NLM

G3 PBX Driver (G3PD) Windows NT DLL

G3 PBX Driver (G3PD) NetWare NLM
Issue 1 — December 2001

DEFPROG.PDF R10.1 V11-2

Terminology
G3 CSTA Services

These services consist of the features and functions available to applications
using the DEFINITY Generic 3 (G3) PBX together with the G3 PBX Driver (G3PD)
software. The functions include those CSTA Services supported by the G3 PBX
as well as private G3 PBX services. The G3 CSTA 3.30 implementation supports
DEFINITY Communications System PBXs of version 8 or later for G3i, G3r, and
G3s (Premier Business Package [PBP] only). While the latest version G3 PBXs
support all the private services, earlier G3 PBXs do not.

This document defines the set of G3 CSTA Services.

G3 PBX Driver (G3PD)

The G3 PBX Driver, abbreviated as G3PD, is a Dynamic Link Library (DLL) on a
Microsoft Windows NT Server. The G3PD software communicates with both the
DEFINITY G3 PBX and the Tserver to provide switch services to Telephony
Services applications.

PBX Driver

A switch-dependent Dynamic Link Library (DLL) that provides vendor-specific
telephony services to the client applications. This DLL is provided by the vendor
supplying the PBX and CSTA services for that switch.

Private Data

A mechanism that allows a switch vendor to provide value-added services that go
beyond those defined in CSTA. The G3PD provides a number of private data
services (for example, switch- collected call prompter digits in events or detection
of answering machines on predictive calls). Private data features are specific to a
given switch manufacturer.

Private data is available in the privateData parameter, which is an option in all
CSTA requests, responses, and events. This document defines a C structure for
use with the G3 PBX that overlays the privateData parameter in those request,
response, and event messages where the G3 PBX provides or accepts private
data. In addition, the G3 PBX provides several services not defined by CSTA. In
these cases, CSTA Escape Services carry private data to provide these services.

Telephony Services API (TSAPI)

The Telephony Services C language definition of CSTA services, data types
(parameters and structures), and event messages that enable applications to
access Telephony Services. TSAPI is switch-independent and supports any
Telephony Services-compliant driver. TSAPI includes CSTA Escape Services and
private data allowing PBX vendors to provide value-added services within TSAPI.
Issue 1 — December 2001

1-3DEFPROG.PDF R10.1 V1

Introduction
Telephony Services (Tserver)

The software module that provides communication between telephony-enabled
applications and the PBX driver. For convenience, an instance of the Telephony
Services EXE software running on a particular server is referred to as a Tserver.
The Tserver is responsible for processing the open and close requests of
communications channels for all clients connected to the local area network
(LAN). The Telephony Services EXE (on a Microsoft Windows NT machine)
routes messages from the PBX driver to applications waiting for telephony events
and passes the messages received from applications (TSAPI Service Requests)
to the PBX driver. The Telephony Services EXE enforces user restrictions
administered in the Tserver’s Security Database (SDB). The Tserver is
switch-independent and supports all Telephony Services PBX drivers.

Conventions

Please familiarize yourself with the following terms since they appear often in this
document.

Party, Connection, ConnectionID

These terms, which are used interchangeably, all refer to a telephony user * a
human, an application, or another resource such as a port on a voice-response
unit.

Client, Client Application, Application, Process

These terms, which are used interchangeably, refer to a TSAPI application, a
cooperative process distributed between a switching function and a computing
function.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V11-4

Related Documents
Related Documents

For a list of related DEFINITY and Centre Vu Computer Telephony documents,
see the Preface ("About This Document") of CentreVu Computer Telephony,
Telephony Services and CallVisor PC Installation (INSTALL.PDF). Following is a
list of documents specifically related to CSTA services.

CSTA Services Documents

Following is a list of documents related to CSTA services:

■ Standard ECMA-179 Services For Computer Supported
Telecommunications Applications (CSTA), European Computer
Manufacturers Association, June 1992

Defines CSTA services for Open Systems Interconnection (OSI) Layer 7
communication between a computing network and a telecommunications
network. This standard, plus its companion Standard ECMA-180, reflects
agreements of ECMA member companies on the first phase of CSTA
standards. Optional reading for a G3 CSTA application developer.

■ Standard ECMA-180 Protocol For Computer Supported
Telecommunications Applications (CSTA), European Computer
Manufacturers Association, June 1992

Defines a CSTA protocol for OSI Layer 7 communication between a
computing network and a telecommunications network. Optional reading
for a G3 CSTA application developer.

■ Computer Supported Telecommunications Applications ECMA TR/52,
European Computer Manufacturers Association, June 1990

Foundation for the OSI Layer 7 service protocol message interface
communication between computing applications and switching
applications. Recommended reading for a G3 CSTA application system
engineer who designs the CSTA application.

■ Telephony Services Application Programming Interface (TSAPI), Version 2

The Telephony Services Application Programming Interface (TSAPI)
provides a programming environment that may be used with any PBX for
which there is a CentreVu Computer-Telephony PBX driver. This document
defines the CSTA application programming interface specification for the
CentreVu Computer-Telephony platform. It defines the TSAPI
programming interface and provides a tutorial on the CSTA client-server
operational model. It is required reading for a CTI application developer.

This document is included on the CVCT CD-ROM as TSAPI.PDF.
Issue 1 — December 2001

1-5DEFPROG.PDF R10.1 V1

Introduction
New Features for Private Data
Version 6

Release 3.30 of the G3PD provides an expanded set of private data features
called private data version 6. If your DEFINITY switch supports these new
features, you will be able to use them in your API. Most of these new features
were introduced in DEFINITY G3V7 or G3V8.

See Table 3-3 (Private Data Summary) in the “Private Data Version Control”
section within Chapter 3 for a complete list of private data features and the
associated switch versions that support them.

Customer Support

For questions about Telephony Services, Tserver operation, or the DEFINITY G3
PBX Driver, call 1-800-344-9670 and follow the voice prompts for Call Center
Solutions (CentreVu Products) and then for PassageWay® Computer-Telephony
Integration.

How to Comment on This Document

Avaya welcomes your comments on this document. Please complete the reader
comment card at the end of this document and return it.

You may send additional comments to:

Avaya, Inc.
Avaya University
Call Center Segment
Room 2G-528
101 Crawfords Corner Rd.
Holmdel, NJ 07733-3030
Issue 1 — December 2001

DEFPROG.PDF R10.1 V11-6

Issue 1 — December 2001

DEFPROG.PDF R10.1 V1
2

TSAPI Architecture Overview
Purpose of CSTA

The Computer Supported Telecommunications Applications (CSTA) standard lets
computer applications control switch devices, monitor switch devices, route calls,
activate switch features, and integrate with switch functions in a variety of ways.
Switches and computers can connect using Computer-Telephony Integration
(CTI) technology.

When a computer and a switch are connected by CTI, each can then use the
other’s services. The computer might run an application that controls call
distribution. Conversely, the switch might run an application that uses a database
management system available on the computer. Neither system could implement
these capabilities independently. CSTA provides an architectural framework that
enables switch and computer systems to enhance network capabilities using CTI
technology.

CSTA Standard and API Specification

Standard ECMA-179 defines the CSTA services. Standard ECMA-180 defines
the application protocol data units for the CSTA services. Together, these
documents form the basis of the Telephony Services CSTA implementation. They
provide switch and computer vendors with a specification that supports the same
set of telephony services. However, the CSTA standards documents do not
provide programming specifics. Telephony Services Application Programming
Interface (TSAPI) provides the necessary programming specifications for the
Windows NT and NetWare Telephony Services products.
2-1

TSAPI Architecture Overview
Each service described in ECMA-179 has a corresponding CSTA Service in
TSAPI. Each TSAPI function specifies the application program syntax for the
corresponding CSTA.

A vendor may provide more services than are defined in the CSTA standard.
CSTA provides a “private data” mechanism that allows for the support of
vendor-specific services. Conversely, there are various optional protocol
elements defined in the CSTA standard that a vendor may not provide. One
important purpose of this guide is to specify which optional elements the G3 PBX
does and does not support. In addition, the guide defines the programming
interface for the G3 private data and private services.

CSTA Communication Layers Model

A CSTA application resides partially on a computer (providing data management)
and partially on a switch (providing Telephony Services). The CSTA protocol
defines the communications interface between the application layers of the switch
and computer. The CSTA standard defines an OSI application layer
communication protocol that provides a client/server relationship between the
computer and the switch. The low-level communication protocol (“Lower Layer
Interconnection System”) is implementation-dependent and is transparent to the
application layer services.

Figure 2-1. CSTA Communications Model

Application
Layer

Functionality

Lower Layer Interconnection System

CSTA Service Boundary

Application Layer

Switch
Services

Computer
Services

Application
Layer

Functionality
Issue 1 — December 2001

DEFPROG.PDF R10.1 V12-2

CSTA Communication Layers Model
CSTA Client/Server Operational Model

The CSTA standard defines a client/server operational model as a relationship
between two peer application layer processes where one process is able to
perform a service for another. A “server” process performs a service for a “client”
process.1 In Telephony Services, a client application typically makes requests to
manipulate various telecommunication objects on a switch.

The CSTA client/server relationship allows for bi-directional services. Both
switching and computer applications can assume the role of either client or server.
The computer or switch application that makes a request for service is a client.
The switch or computer application that provides the service is the server.
Currently, Routing Service is the only CSTA service in which the switch
application is the client. In all other CSTA services, the computer application is
the client.

Figure 2-2. CSTA Architecture: Bi-directional Services

When an application requests a service, a local communications component in
the client communicates the request to the server. Each instance of a request
creates a new client/server relationship.

1. In this document, the terms “application” and “process” are used interchangeably.

connection

call

CSTA
Objects

Client

Computing FunctionsSwitching Functions

service requests

Client Serverservice requests Routing
Data
Base

device

Server

CSTA Service Boundary
Issue 1 — December 2001

2-3DEFPROG.PDF R10.1 V1

TSAPI Architecture Overview
CSTA Client/Server Session and
Operation Invocation Model

A client must establish a communication channel to a Tserver before it can
request service from that Tserver. In Telephony Services, this communication
channel is an API Control Service stream. This stream establishes a session
between a TSAPI application (at a client PC) and the server. An application uses
the acsOpenStream function to open a stream. The function returns an
acsHandle that the application uses to identify the stream. At that time, the
application may use the invokeID in some other request.

When a client application requests a CSTA Service, it passes an invokeID that it
may use later to associate a response from the server with a specific request. A
client’s request for service is also called an operation invocation. The server
replies (via a service response) to the client’s request with either confirmation
(result) or failure (error/rejection) and includes the invokeID in the response.

Some services (such as monitoring a call or device) continue their operation
beyond the service response. Since the invokeID no longer identifies the service
invocation after an acknowledgment, an additional identifier is necessary for such
services. These services return a cross-referenceID in their acknowledgment.
The cross-referenceID is a unique value that an application can use to associate
event reports with the initiating service request. The cross- reference terminates
when the service stops.

Call Control and Call Events

CSTA Call Control Services allow a client application to control a call or
connections on a switch.

Although client applications can manipulate switch objects, Call Control Services
do not provide CSTA Event Reports as objects change state. To monitor switch
object state changes (that is, to receive CSTA Event Report Services from a
switch), a client must request a CSTA Monitor Service for an object before it
requests Call Control Services for that object.

G3 CSTA System Overview

In a G3 CSTA environment, the G3 PBX is connected to a Tserver via one or more
CTI links. The CTI links can terminate on a Basic Rate Interface (BRI) circuit pack
(PC/ISDN Card) in a 386/486/Pentium® (or later) NetWare Telephony Server, or
on an Ethernet adapter card on a 386/486/Pentium (or later) Windows NT or
NetWare Telephony Server.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V12-4

G3 CSTA Software Overview
NOTE:
NOTE: The PC/ISDN Card does not work on a 100 MHz or higher speed
computer and it is not supported on a Windows NT Tserver. Desktop PCs
connect to the Windows NT or the NetWare Tserver on a LAN. Voice
terminals connect directly to the G3 PBX and can be analog, digital, or
ISDN.

Figure 2-3. CSTA System

G3 CSTA Software Overview

The G3 PBX software and the G3 PBX Driver (G3PD) DLL/NLM running on a
Windows NT or NetWare Tserver provide G3 CSTA services. The G3PD software
passes the CSTA requests and responses between client applications and the call
processing software on the G3 PBX. The CTI link between the G3 PBX and the
Tserver provides the interface for the G3 CSTA functions.

The client application uses a TSAPI library. This library is available for various
desktop PC operating system environments. The client application uses the
TSAPI to establish a CSTA session with a Tserver EXE or NLM on the Tserver.

The Tserver EXE/NLM manages the communication between client applications
and the G3PD.

CTI Link

Telephony Server

Client Desktop
LAN

DEFINITY
Generic 3

Public Switching
Network
Issue 1 — December 2001

2-5DEFPROG.PDF R10.1 V1

TSAPI Architecture Overview
Figure 2-4. Communications Between Client PCs and the DEFINITY G3PD

DEFINITY Generic 3 PBX Driver (G3PD)

A PBX driver is a switch-dependent Windows NT DLL or NetWare NLM that
provides vendor- specific Telephony Services to client applications. The Windows
NT or NetWare Telephony Services product provides a G3 PBX Driver DLL or
NLM for the DEFINITY Generic 3 PBX switches.

A G3 PBX Driver communicates with both a DEFINITY PBX and the Tserver
EXE/NLM. The G3PD communicates with the G3 PBX via an interface known as
a CTI link with the CTI protocol stack software. The CTI link connectivity is
supported by either a BRI link (NetWare platform only) or an Ethernet LAN. A
major function of the G3PD is to translate between the CSTA protocol and the G3
PBX CTI link protocol.

NOTE:
The number of CTI links available for your system depends on the version
and type of platform being used.

The main functions of the G3 PBX Driver DLL/NLM are as follows:

■ to handle CSTA telephony requests from the Tserver EXE/NLM, translate
them into the appropriate G3 protocol requests, and send the protocol
requests to a G3 PBX

■ to communicate with the G3 PBX

■ to handle requests, responses, and events from the G3 PBX, translate
them into corresponding CSTA messages, and send the messages to the
Tserver EXE/NLM

■ to provide administration and maintenance for the G3 CTI link

Client

DesktopLANTelephony Server

CSTA

Processing

DEFINITY

Generic 3

Windows

Application

Telephony

Services API

Library

CTI

Link

EXE/NLM

G3 PBX Driver DLL/NLM Telephony Server

EXE/NLM

Windows NT or NetWare

CallVisor
ASAI
Issue 1 — December 2001

DEFPROG.PDF R10.1 V12-6

G3 Private Data Library Overview
When the G3PD is loaded, it initializes the CTI protocol stack with the G3 PBX.
The G3PD then registers its services with the Tserver. After establishing
communications to the Tserver, the G3PD then begins to service application
requests.

For most CSTA services, the G3 switch is the server. However, for the Routing
Service, the client/server relationship reverses. In this case, the Telephony
Services application becomes a routing server.

A single G3PD can support a maximum of eight CTI links. On the NetWare
platform, the maximum number of BRI links is four and the total BRI and LAN links
cannot be more than eight. Each BRI link requires a separate hardware interface
card.

Release 2 G3 PBX Driver on NetWare or a Release 3 G3 PBX Driver on Windows
NT provides multiple links and multiple PBX functionality using the following
configurations:

■ multiple ISDN BRI (NetWare only) or LAN CTI links, or both, between a
single G3 switch and the G3PD

■ multiple links between a single G3PD and a maximum of eight different G3
switches, each with its own links

G3 Private Data Library Overview

For each G3 private service and each CSTA Service that contains private data, a
private data function is defined and provided in the ATTPRIV.DLL for client
applications on each client platform. If the private service is an extension of a
defined CSTA Service, the private data function sets up the private parameters in
the private data portion of the standard CSTA Service request. If the private
service is not defined in the CSTA standard, the CSTA Escape Service is used for
the service request and the private data function sets up the private service type
and parameters in the private data portion of the Escape Service request. Any
private parameters of a service request confirmation are provided in the private
data portion of the confirmation event. A private event is sent to the client via the
CSTA Private Status Event. The event type and associated parameters are
provided in the private data portion of the CSTA Private Status Event.

The G3 PBX Private Data API interface (function calls, data structures, etc.)
follows the TSAPI programming interface model. This document describes the
G3 private data functions and their parameters.
Issue 1 — December 2001

2-7DEFPROG.PDF R10.1 V1

TSAPI Architecture Overview
TSAPI Software Components
Overview

This section describes the TSAPI Library, the Telephony Server (Tserver)
EXE/NLM, the DEFINITY Generic 3 PBX Driver (G3PD), and multiple CTI links to
the G3PD.

TSAPI Library

The TSAPI Library provides the CSTA Services to applications running on client
workstations, Windows NT, or NetWare servers. Application software can use the
library to communicate with a G3 switch.

The client TSAPI Library comprises various communication layers. These layers
are responsible for:

■ providing the API Control Services and the CSTA API

■ encoding/decoding data to and from a client operating system (OS)
independent byte stream

■ sending/receiving data from the network

Telephony Server (Tserver) EXE/NLM

The Tserver is a switch-independent Windows NT EXE or NetWare NLM that runs
on a server connected to a LAN. The Tserver processes the open and close
stream requests for all clients, thereby managing communications sessions (ACS
streams) between client applications and PBX drivers.

The Tserver also authenticates client service requests, checks for permissions in
the SDB, and passes requests to the appropriate PBX driver. The Tserver returns
the PBX Driver responses to the requesting client.

PBX drivers register their services with the Tserver. In turn, the Tserver advertises
these services to clients or places this information in an SDB. When a driver
unregisters, the Tserver no longer advertises the driver’s services to clients.

The Tserver uses the SDB to authenticate the user privileges for various devices
and Telephony Services combinations such as controlling a given phone,
controlling a call, monitoring a given device, querying, and routing incoming calls
to a given device. When an application opens a stream on behalf of a user, the
Tserver verifies that the user has a valid login.

Administration and maintenance capabilities are also available from the Tserver.

While only one Tserver can be loaded onto a Windows NT or NetWare server, the
Tserver is capable of supporting multiple PBX drivers.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V12-8

TSAPI Software Components Overview
Multiple CTI Links to a G3PD

Release 3 G3PD supports up to eight CTI links for Windows NT. Multiple LAN CTI
links can run on the same physical Ethernet link.

Release 2 G3PD supports up to eight CTI links for Novell® NetWare. Among
these links, a maximum of four can be PC/ISDN links and a maximum of eight can
be LAN CTI links. PC/ISDN links and LAN CTI links can be used at the same
time, but the maximum of PC/ISDN links and LAN CTI links is eight. Each
PC/ISDN link requires a physical BRI link and PC/ISDN Card hardware, but
multiple LAN CTI links can run on the same physical Ethernet link.

These CTI links can go to as many as eight different G3 PBXs, can all go to the
same PBX, or can be grouped in any other manner.

Having multiple CTI links to a G3 PBX provides the following advantages over a
single link:

■ throughput — multiple links can service more requests per unit of time than
a single link

■ redundancy — if one link goes out of service, others still provide service to
the G3 PBX

■ load balancing — G3PD balances the load among multiple links. The
balancing is as even as the mapping from TSAPI to the G3 CTI link
protocols will permit.

The following diagrams show some of the possible ways that four CTI links can
connect from a G3PD to one or more G3 PBXs.

NOTE:
Although a G3PD supports multiple CTI links, there is a limit of one G3PD
per Tserver.
Issue 1 — December 2001

2-9DEFPROG.PDF R10.1 V1

TSAPI Architecture Overview
Figure 2-5. Example 1: Multiple CTI Link Connections — One Switch

Figure 2-6. Example 2: Multiple CTI Link Connections — Two Switches
Issue 1 — December 2001

DEFPROG.PDF R10.1 V12-10

Progress and Status of the CTI Link on NetWare
Figure 2-7. Example 3: Multiple CTI Link Connections — Two G3PDs and Tservers

When a G3PD has multiple CTI links to one or more G3 PBXs, each set of links to
a different PBX must register a separate service with the Tserver EXE/NLM. If
there are multiple links to any one PBX, then the G3PD will register at least one
service, and optionally more than one; but no more than one service per CTI link.
The G3PD behavior in this case is specified when the G3PD is installed. Both
options are useful. Aggregating the links in a single registered service effectively
provides wider bandwidth for a single CTI link.

Progress and Status of the CTI Link on
NetWare

The G3PD NLM (not on Windows NT) reports the progress and status of each CTI
link on the system console. The messages are as follows:

■ G3PD: Initializing Board(s). Please Wait!

This message indicates that the G3PD is pumping the PC/ISDN
communication board(s) that provide(s) CTI connectivity to the G3 switch.
The G3PD will not display this message for a system with all CTI links over
an Ethernet LAN.

■ G3PD: Connecting CTI Link(s). Please Wait!

G3PD is attempting to establish the CTI connectivity to the G3 switch.
Issue 1 — December 2001

2-11DEFPROG.PDF R10.1 V1

TSAPI Architecture Overview
■ G3PD: CTI Link 1 is up and establishing service with the switch.
Please Wait!

Communication Layer 3 is established to the switch and waiting for the
Application Layer to come up.

■ G3PD: CTI Link 1 is connected to a G3V4 switch.

The indicated CTI link is connected to a G3V4 (or other version) switch. All
CTI links connected to the same switch should report the same switch
version in this message.

■ G3PD: CTI Link 1 is in service.

The Application Layer is up and the G3PD can send messages to and
receive messages from the switch via the indicated CTI link. This is the
last message for a working CTI link.

■ G3PD WARNING: CTI LINK 2 IS NOT UP.

Communication Layer 3 of the indicated CTI link is not established to the
switch. Check the link hardware, switch administration, and G3PD.INI for
link parameters. This will be the last message for a failed CTI link. If the
problem persists, the G3PD will keep trying to bring the link up. When the
problem is resolved and the link comes up and is in service, progress and
status messages will be displayed.

NOTE:
Any change to G3PD.INI requires reloading the G3PD to bring the
G3PD.INI into effect.

■ G3PD WARNING: CTI LINK 3 IS NOT IN SERVICE.
G3PD WARNING: Please check switch administration or link
connection.

Communication Layer 3 of the indicated CTI link is established to the
switch, but the Application Layer is not up. The G3PD cannot send
messages to or receive messages from the switch via the indicated CTI
link. Check switch administration of the link or link connection. This will be
the last message for a failed CTI link. If the problem persists, the link
needs to be taken down (taken off-line via G3OAM, busied out via switch
administration, or unplugged) and then brought up (brought on-line via
G3OAM, unbusied by switch administration, or plugged in) again, before it
can be put in service. When the link comes up and is in service, progress
and status messages will be displayed.

■ G3PD WARNING: CTI Link 1 is DOWN.

The indicated CTI link is down (the link was up before) and out of service.
The G3PD will try to bring the link up again. When it comes up and is in
service, progress and status messages will be displayed.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V12-12

Progress and Status of the CTI Link on Windows NT
NOTE:
For NetWare, the G3PD.DLL does not provide a system console
display; therefore, these messages cannot be viewed when using the
G3PD.DLL alone.

Progress and Status of the CTI Link on
Windows NT

The G3PD.DLL reports the progress and status of each CTI link in the error log
(errlog.txt or g3pdlog.txt, depending on the registry setting). The following is an
example of messages in error log recording progress and status (1 link only)
between G3PD.DLL start (at 16:47:40) and end (stop at 17:57:54).

Figure 2-8. Sample Messages in Error Log

3/30/98 16:47:40 G3PD 17 2619 WARNING: ========== G3PD: Started. Elvis is ... ==========

3/30/98 16:47:40 G3PD 58256 0 AUDIT_TRAIL: g3pdInitProtocolStack has started.

3/30/98 16:47:40 G3PD 58256 0 AUDIT_TRAIL: asai mtce server thread id 265

3/30/98 16:47:40 G3PD 58256 0 AUDIT_TRAIL: oam server thread id 147

3/30/98 16:47:40 G3PD 6 2203 AUDIT_TRAIL: [main]: PBX PING'S_SWITCH creation succeeded.

3/30/98 16:47:40 G3PD 17234 220 AUDIT_TRAIL: [PBX_PING'S_SWITCH]: TDI Driver Register succeeded -

524288 bytes (HWM=419430 bytes)

3/30/98 16:47:41 G3PD 61012 0 AUDIT_TRAIL: Poll_maint_server: Sent Heartbeat Confirmation to switch

3/30/98 16:47:42 G3PD 290 2017 WARNING: [SLO.CPP]: CTI Link 1 is UP.

3/30/98 16:47:43 G3PD 921 2020 WARNING: [SLO.CPP]: CTI Link 1 is a Version 3 link.

3/30/98 16:47:43 G3PD 1665 2015 WARNING: [SLO.CPP]: CTI Link 1 is in service.

3/30/98 16:47:43 G3PD 1666 2019 WARNING: [SLO.CPP]: CTI Link 1 is connected to a G3V6 switch.

3/30/98 17:57:54 G3PD 17233 215 AUDIT_TRAIL: [PBX-AUD_PING'S_SWITCH]: PBX thread terminating

3/30/98 17:57:55 G3PD 17233 215 AUDIT_TRAIL: [PBX-SAN_PING'S_SWITCH]: PBX thread terminating

3/30/98 17:57:56 G3PD 58261 0 AUDIT_TRAIL: g3pdUnloadProtocolStack called

3/30/98 17:57:58 G3PD 61010 0 WARNING: Closing the hb server.

3/30/98 17:57:58 G3PD 61010 0 WARNING: Closing the hb server.

3/30/98 16:48:00 G3PD 58262 0 AUDIT_TRAIL: g3pdUnloadProtocolStack complete

3/30/98 16:48:00 G3PD 25002 401 AUDIT_TRAIL: [G3Handlr]: Received Signal SIGTERM - Unloading

G3PD

3/30/98 16:48:00 G3PD 18 2620 WARNING: ========== G3PD: Unloaded. ... dead! ==========
Issue 1 — December 2001

2-13DEFPROG.PDF R10.1 V1

TSAPI Architecture Overview
Issue 1 — December 2001

DEFPROG.PDF R10.1 V12-14

Issue 1 — December 2001

DEFPROG.PDF R10.1 V1
3

G3 CSTA Service Groups
Supported Services and Service
Groups

DEFINITY G3 CSTA Services Release 3.30 supports the service groups defined
in Table 3-1 on DEFINITY Generic 3 PBXs. Services that are not supported are
listed in Table 3-2.
3-1

G3 CSTA Service Groups
Table 3-1. Supported CSTA Services

Service
Group Service Group Definition Supported Service(s)

Call
Control

The services in this group enable a
telephony client application to control
a call or connection on the G3 PBX.
Typical uses of these servicesare
placing calls from a deviceand
controlling a connectionfor a single
call.

■ Alternate Call

■ Answer Call

■ Clear Call

■ Clear Connection

■ Conference Call

■ Consultation Call

■ Consultation-Direct-Agent Call
(private)

■ Consultation Supervisor-Assist
Call (private)

■ Deflect Call

■ Hold Call

■ Make Call

■ Make Direct-Agent Call (private)

■ Make Predictive Call

■ Make Supervisor-Assist Call
(private)

■ Pickup Call

■ Reconnect Call

■ Retrieve Call

■ Selective Listening Hold (private
V5)

■ Selective Listening Retrieve
(private V5)

■ Send DTMF Tone (private)

■ Single Step Conference (private
V5)

■ Transfer Call
Issue 1 — December 2001

DEFPROG.PDF R10.1 V13-2

Supported Services and Service Groups
Set
Feature

The services in this group allow a
client application to set
switch-controlled features or values
on a G3 PBX device.

■ Set Advice Of Charge (private V5)

■ Set Agent State

■ Set Bill Rate (private V5)

■ Set Do Not Disturb

■ Set Forwarding

■ Set Message Waiting Indicator

Query The services in this group allow a
client to query device features and
static attributes of a G3 PBX device.

■ Query ACD Split (private)

■ Query Agent Login (private)

■ Query Agent Measurements
(private)

■ Query Agent State

■ Query Call Classifier (private)

■ Query Device Info

■ Query Device Name

■ Query Do Not Disturb

■ Query Forwarding

■ Query Message Waiting Indicator

■ Query Split/Skill Measurements
(private)

■ Query Time of Day (private)

■ Query Trunk Group (private)

■ Query Trunk Group
Measurements (private)

■ Query Station Status (private)

■ Query Universal Call ID (private
V5)

■ Query VDN Measurements
(private)

Snapshot The services in this group allow a
client applicationto take a snapshot of
a call or device on a G3 PBX.

■ Snapshot Call

■ Snapshot Device

Table 3-1. Supported CSTA Services

Service
Group Service Group Definition Supported Service(s)
Issue 1 — December 2001

3-3DEFPROG.PDF R10.1 V1

G3 CSTA Service Groups
Monitor The services in this group allow a
client application to request and
cancel the reporting of events that
cause a change in the state of a G3
PBX object.

■ Change Monitor Filter

■ Monitor Call

■ Monitor Calls Via Device

■ Monitor Device

■ Monitor Ended Event

■ Monitor Stop on Call (private)

■ Monitor Stop

Event
Report

The services in this group provide a
client application with the reports of
events that cause a change in the
state of a call, a connection, or a
device.

Call Event Reports:

■ Call Cleared

■ Charge Advice (private V5)

■ Connection Cleared

■ Conferenced

■ Delivered

■ Diverted

■ Entered Digits (private)

■ Established

■ Failed

■ Held

■ Network Reached

■ Originated

■ Queued

■ Retrieved

■ Service Initiated

■ Transferred

Agent State Event Reports:

■ Logged On

■ Logged Off

Table 3-1. Supported CSTA Services

Service
Group Service Group Definition Supported Service(s)
Issue 1 — December 2001

DEFPROG.PDF R10.1 V13-4

Supported Services and Service Groups
Routing The services in this group allow a G3
PBX to request and receive routing
instructions for a call from a client
application.

■ Route End Event

■ Route End Service

■ Route Register Abort Event

■ Route Register Cancel Service

■ Route Register Service

■ Route Request Service

■ Route Select Service

■ Route Used Event

Escape The services in this group allow an
application to request a private
service that is not defined by the
CSTA Standard.

■ Escape Service

■ Private Event

■ Private Status Event

Maintenance The services in this group allow an
application to request (1) device
status maintenance events that
provide status information for device
objects, and (2) bi-directional system
status maintenance services that
provide information on the overall
status of the system.

None

System
Status

The services in this group allow an
application to request system status
information from the G3PD.

■ System Status Request

■ System Status Start

■ System Status Stop

■ Change System Status Filter

■ System Status Event

Table 3-2. Unsupported CSTA Services

Service Group
Unsupported Service(s) or Event
Report(s)

Call Control ■ Group Pickup Call

Set Feature None

Query ■ Query Last Number

Snapshot None

Table 3-1. Supported CSTA Services

Service
Group Service Group Definition Supported Service(s)
Issue 1 — December 2001

3-5DEFPROG.PDF R10.1 V1

G3 CSTA Service Groups
Monitor None

Event Reports Call Event Reports: None

Agent State Event Reports:

■ Not Ready Event

■ Ready Event

■ Work Not Ready Event

■ Work Ready Event

Feature Event Reports:

■ Call Info Event

■ Do Not Disturb Event

■ Forwarding Event

■ Message Waiting Event

Routing ■ Re-Route Event

Escape ■ Send Private Event

Maintenance ■ Back in Service Event

■ Out of Service Event

System Status ■ System Status Request Event

■ System Status Ended Event

■ System Status Event Send

Table 3-2. Unsupported CSTA Services

Service Group
Unsupported Service(s) or Event
Report(s)
Issue 1 — December 2001

DEFPROG.PDF R10.1 V13-6

Transferring or Conferencing a Call Together with
Screen Pop Information
Transferring or Conferencing a Call
Together with Screen Pop Information

Many desktop applications involve scenarios where an incoming call arrives at a
monitored phone, (e.g., a claims agent) and the application uses caller
information to pop a screen at that desktop. At some point, the claims agent
realizes that both the call and the data screen need to be shared with some other
person, (e.g., a supervisor). The claims agent may need to conference in the
supervisor, or may need to transfer the call to the supervisor. In both cases, a
similar application running at the supervisor’s desktop that is monitoring the
supervisor’s phone needs to obtain information about the original caller from
CSTA events to pop the same screen at the supervisor’s desktop.

Before designing a screen pop application, an application designer must first
understand the caller information that G3PD makes available. When an incoming
call arrives at a monitored station device, the G3PD provides CSTA Delivered and
Established events that contain a variety of caller information:

■ Calling Number (CSTA parameter) - This parameter contains the calling
number, when known. An application may use the calling number to
access customer records in a database. The Event Report chapter
contains detailed information about the facilities that provide Calling
Number.

■ Called Number (CSTA parameter) - This parameter contains the called
number, when known. Often this parameter contains the "DNIS" for an
incoming call from the public network. An application may use the called
number to pop an appropriate screen when, for example, callers dial
different numbers to order different products.

■ Digits Collected by Call Prompting (G3 private data) - Integrated systems
often route callers to a voice response unit that collects the caller’s account
number. These voice response units can often be integrated with a G3
PBX so that the caller’s account number is made available to the
monitoring application. An application may use the collected digits to
access customer records in a database.

■ User-to-User Information (UUI) (G3 private data) - This parameter contains
information that some other application has associated with the incoming
call. UUI has the important property that it can be passed across certain
facilities (PRI) which can be purchased within the public switched network.
An application may use the calling number to access customer records in a
database.

■ Lookahead Interflow Information (G3 private data) - This parameter
contains information about the call history of an incoming call that is being
forwarded from a remote G3 PBX.
Issue 1 — December 2001

3-7DEFPROG.PDF R10.1 V1

G3 CSTA Service Groups
CSTA Services Used to Conference or Transfer
Calls

Application designers next need to understand the various CSTA services that
might be used to conference or transfer calls and the different event contents that
result from these services.

There are two sequences of TSAPI services that an application may use to
conference or transfer calls:

■ the sequence

1. CSTAConsultationCall;

2. CSTAConferenceCall or CSTATransferCall.

The CSTAConsultationCall service places an active call on hold and then
makes a consultation call (such as the call to the supervisor in the example
above). The CSTAConferenceCall or CSTATransferCall conferences or
transfers the call.

The unique (and important!) attribute of CSTAConsultationCall is that the
consultation service associates the call being placed on hold with the
consultation call.

An application monitoring the phone receiving the consultation call will see
information about the original caller in a G3 private data item called
"Original Call Information" appearing in the CSTA Delivered event.

"Original Call Information" gives an application (such as the supervisor’s)
the information necessary to pop a screen using the original caller’s
information at the time that the call begins alerting at the consultation
desktop.

NOTE:
Applications that need to pass information about the original caller
and have a screen pop when the call alerts at the consultation
desktop should use the CSTAConsultationCall service to place those
calls.

■ the sequence

1. CSTAHold;

2. CSTAMakeCall;

3. CSTAConferenceCall or CSTATransferCall.

This sequence of operations emulates what a user might do manually at a
phone.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V13-8

Transferring or Conferencing a Call Together with
Screen Pop Information
Unlike the CSTAConsultationCall service, these operations do not
associate any information about the call being placed on hold with the call
that is being made. In fact, such an association cannot be made because
the calling station may have multiple calls on hold and the G3PD cannot
anticipate which of those will actually be transferred.

However, using this sequence of operations does, in some cases, pass
information about the original caller in events for the consultation call. This
occurs for transferred calls when the transferring party hangs up before the
consultation call is answered. This is known as a "blind transfer".

Notice that when the consultation party answers the blind transfer, there
are two parties on the call, the original caller and the consultation party.
Therefore, when the calling party answers, G3PD puts information about
the original caller in the CSTA Established event. This sequence allows an
application monitoring the party receiving the consultation call to pop a
screen about the original caller only in the case of a blind transfer and only
when the call is answered.

Using Original Call Information to Pop a Screen

When an incoming call arrives at a monitored desktop (the claims agent in the
example), an application can use any of the caller information listed earlier to pop
a screen. When the application uses CSTAConsultationCall to pass a call to
another phone, the G3PD retains the original caller information in a block of
private data called "Original Call Information". The G3PD passes "Original Call
Information" in the Delivered and Established events for the consultation call.
Thus, an application monitoring the consultation desktop can use any of the
original caller information to pop a screen.

Application designers must be aware that:

■ CSTAConsultationCall is the recommended way of passing calls from
desktop to desktop in such a way that the original caller information is
available for popping screens.

■ G3PD shares "Original Call Information" with applications using that G3PD
to monitor phones.

■ "Original Call Information" cannot be shared across different G3PDs or
shared with other G3 PBX CTI platforms.

When applications use "Original Call Information" to pop screens, the
applications monitoring phones for the community of users among which
calls are transferred (typically call center or service center agents) must
use the same G3PD.

■ An application designer using "Original Call Information" must make sure
that the system is configured so that applications running on behalf of
those users that may pass calls to one another all monitor the user phones
through the same G3PD.
Issue 1 — December 2001

3-9DEFPROG.PDF R10.1 V1

G3 CSTA Service Groups
■ G3PD shifts information into the "Original Call Information" block as the call
information changes. For example, since prompted digits don’t change
because a call is transferred, the original prompted digits may be in the
prompted digit private data parameter rather than the "Original Call
Information" block.

■ Applications using caller information should look first in the "Original Call
Information" block, and if they find nothing there, use the information in the
other private data and CSTA parameters.

Note that, for example, if a call passes through monitored VDN A (which
collects digits) and then passes through monitored VDN B (which also
collects digits) and then is delivered to monitored VDN C, then in the
Delivered event we find the digits from VDN A in the Original Call
Information for the call and the digits from VDN B in the Collected Digits
private data for the call.

NOTE:
Using this approach, the application will always use the original
caller’s information to pop the screen regardless of whether it is
running at the desktop that first receives the call (the claims agent) or
a consultation desktop (the supervisor’s desktop).

Using UUI to Pass Information to Remote
Applications

In addition to providing "Original Call Information" to allow original caller
information to pass among applications using the same G3PD, the G3 PBX
provides advanced private data features that let an application developer
implement an application that passes caller information to applications:

■ monitoring stations using different Tservers

■ monitoring stations using another type of G3 CTI platform

■ residing on a CTI platform at a remote G3 switch that is monitoring stations
on that remote G3.

Since the G3 PBX associates User-to-User Information (UUI) with a call within the
PBX, the G3 PBX makes the UUI for a call available on all of its CTI links. Further,
when a G3 PBX supplies UUI when making a call (such as a consultation call)
across PRI facilities in the public switched network, the UUI passes across the
public network to the remote G3. The remote G3 then makes this UUI available to
applications on its CTI links.

While "Original Call Information" is a way of sharing all caller information across
applications using a given G3PD, UUI is the way to share information across a
broader CTI application community, including applications running at remote
switch sites.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V13-10

TSAPI Version Control
An important decision in the design of an application that works across multiple
G3PDs, CTI platforms, and remote G3 switches is what information passes
between applications in the UUI.

Application designers must be aware of the following:

■ Unlike "Original Call Information", the amount of information that UUI
carries is limited.

Often the UUI is an account number that has been collected by a voice
response unit or obtained from a customer database. It might also be the
caller’s telephone number. It might be a record or transaction identifier that
the application defines.

■ In all cases, the application is responsible for copying or entering the
information into the call’s UUI. Applications may enter information into a
call’s UUI when they make a call, route a call, or drop a call.

■ When an application enters information into a call’s UUI, any previous UUI
is overwritten.

■ Applications running on other G3PD, CTI platforms, or remote switches
must all be designed to expect the same information in the UUI (and in the
same format!). Obviously, application design for a system that spans
multiple G3PDs, CTI platforms, or G3 switches must be coordinated.

■ When an application encompasses users both within a G3PD and on other
G3PDs, CTI platforms, or switches, then the application designer might use
a hybrid approach that combines the best of "Original Call Information" (all
of the original caller data) with the advantages of UUI (sharing information
across G3 CTI links and remote switches).

TSAPI Version Control

As TSAPI evolves over time, the changes are reflected in different "versions" of
TSAPI. The TSAPI specification describes these changes. TSAPI has evolved
between the availability of the Release 1 G3PD and Release 2 G3PD. An
application uses version control to specify which TSAPI version(s) it can use.

When writing a new application, application developers should always use the
latest TSAPI version. An application coded using TSAPI Version 1 will operate
unchanged with a G3PD that provides TSAPI Version 2, so long as the application
requests Version 1. New applications programmed from this manual should use
TSAPI Version 2. An application written using the Release 1 G3PD
Programmer’s Guide that uses a Release 2 G3PD will automatically receive
TSAPI Version 1 services.

An application supplies a list of TSAPI versions it can support in the apiVer
parameter of the acsOpenStream() function. TSAPI provides the syntax
specification for apiVer. Applications requesting service from a Release 2 G3PD
that can use either TSAPI version 1 or 2 might encode apiVer as "TS1-2". An
Issue 1 — December 2001

3-11DEFPROG.PDF R10.1 V1

G3 CSTA Service Groups
application requiring TSAPI version 2 should encode apiVer as "TS2".
Applications that require TSAPI version 1 should encode apiVer as "TS1"1. When
an application makes a request that allows multiple versions, the application
needs to check the value of the apiVer field in the response to determine which
version to use on the stream.

See Table 3-1 in this chapter for a list of the services available to an application
that opens a TSAPI stream. Where version 1 and version 2 of such a service are
available (certain routing services), such an application must use the version that
it requested.

Private Data Version Control

Just as TSAPI evolves over time, so may the private data services offered by a
PBX driver. The G3PD driver typically supports multiple versions of private data.
This is so existing applications do not have to be modified when the G3PD private
data services change.

If an application wishes to utilize a new service offered in a particular private data
version, then all private data services must be upgraded to the specified private
data version. For example, if an application had previously been designed to work
with private data version 4, it will work with a new release of the driver, but it will
negotiate a private data version 4 stream. If a private data version 6 stream is
negotiated, then all services must be upgraded to the private data version 6
format. A version 4 message that has been changed in version 6 is no longer
supported on a version 6 stream. If the version 4 and version 6 format are the
same, then that version 4 message will still be supported.

The private data version is independent of the TSAPI version. When an
application opens a stream to a PBX driver, it may indicate to the PBX driver (i.e.,
the G3PD) which private data versions it supports. The confirmation event for the
open stream request informs the application of the specific private data version
that will be provided.

When opening a TSAPI version 2 stream, an application should provide a list of
supported private data versions in the data portion of the private data buffer. The
function attMakeVersionString() is provided to simplify formatting the G3PD
version list.

The following code fragment illustrates how to format the private data buffer to
request DEFINITY G3 (ATT) private data version 3, 4, 5 or 6:

1. An application written using the Release 1 TSAPI manual will encode apiVer to the #define
CSTA_API_VERSION in csta.h. This approach results in TSAPI version 1 when the
application is run with a release 2 G3PD. An application that is to be run with Release 1
and Release 2 G3PDs should encode apiVer using the "TS" format described in this
manual.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V13-12

Private Data Version Control
ATTPrivateData_tprivateData;

/* ... */

/* Prepare the private data buffer for version request */
(void) strcpy(privateData.vendor, "VERSION");
privateData.data[0] = PRIVATE_DATA_ENCODING;

/* Request one of G3 private data versions 3 through 6 */
attMakeVersionString("3-6", &(privateData.data[1]));
privateData.length = strlen(&privateData.data[1]) + 2;

Applications designers should be aware of the following:

■ The G3PD will select the highest private data version that it supports.

■ The G3PD supports private data versions 2, 3, 4, 5 and 6 on a TSAPI
version 2 stream.

■ The open stream confirmation event will indicate both the TSAPI and the
private data versions for the stream.

■ The value of the private data version in the response may be lower than the
version that the application requested. Therefore, the application should
check that the private data version in the response is the value that it
expects.

■ Applications that open a TSAPI version 2 stream and that do not use any of
the private data can request that the G3PD not supply any private data.
This reduces traffic on the LAN. TSAPI describes how to open a version 2
TSAPI stream that will not supply any private data.

■ Private data version control is not supported by TSAPI version 1.
Applications that open TSAPI version 1 streams to the G3PD will always
receive version 1 private data.

Private Data Version Feature Support

All G3 PBXs provide call prompting digits, the only private data item in version 1.
Private data versions 2 through 6 encompass a much broader feature set, where
some features may be dependent upon the switch version.

■ Private data version 2 includes support for some features that are available
only on the G3V3 and later releases.

■ Private data versions 3 and 4 include support for some features that are
available only with the G3V4 and later releases.

■ Private data version 5 includes support for some features that are available
only on the G3V5, G3V6, G3V7 and later releases.

■ Private data version 6 includes support for some features that are available
only on the G3V8 and later releases.
Issue 1 — December 2001

3-13DEFPROG.PDF R10.1 V1

G3 CSTA Service Groups
Before designing an application that uses a private data feature, see Table 3-3
(Private Data Summary) to ensure that the G3 PBX supports it.

CSTAGetAPICaps Confirmation Interface
Structures for Private Data Versions 4, 5, and 6

Beginning with private data version 4, the G3PD provides the G3 PBX
version-dependent private services in the CSTAGetAPICaps Confirmation private
data interface, as defined by the following structures:

Private Data Version 5 and 6 Syntax

typedef struct ATTGetAPICapsConfEvent_t
{
char switchVersion[16];// specifies the switch

// version - G3V2, G3V3,
// G3V3, G3V4, G3V5,
// G3V6 or G3V8. (no new
// capabilities are pro-
// vided with G3V7 so the
// G3 PBX driver does not
// differentiate between
// a G3V6 and a G3V7.

Boolean sendDTMFTone;// TRUE - supported,
// FALSE - not supported

Boolean enteredDigitsEvent;// TRUE - supported,
// FALSE - not supported

Boolean queryDeviceName; // TRUE - supported,
// FALSE - not supported

Boolean queryAgentMeas; // TRUE - supported,
// FALSE - not supported

Boolean querySplitSkillMeas; // TRUE - supported,
// FALSE - not supported

Boolean queryTrunkGroupMeas; // TRUE - supported,
// FALSE - not supported

Boolean queryVdnMeas; // TRUE - supported,
// FALSE - not supported

Boolean singleStepConference;// TRUE - supported,
// FALSE - not supported

Boolean selectiveListeningHold;// TRUE - supported,
// FALSE - not supported

Boolean selectiveListeningRetrieve;// TRUE - supported
// FALSE - not supported

Boolean setBillingRate; // TRUE - supported,
// FALSE - not supported

Boolean queryUcid; // TRUE - supported,
// FALSE - not supported

Boolean chargeAdviceEvent;// TRUE - supported,
// FALSE - not supported
Issue 1 — December 2001

DEFPROG.PDF R10.1 V13-14

Private Data Version Control
Boolean reserved1; // reserved for future use
Boolean reserved2; // reserved for future use
} ATTGetAPICapsConfEvent_t;

Private Data Version 4 Syntax

typedef struct ATTV4GetAPICapsConfEvent_t
{

char switchVersion[16]; // specifies the switch
// version - G3V2, G3V3,
// G3V3, G3V4, G3V5, or
// G3V6

BooleansendDTMFTone; // TRUE - supported,
// FALSE - not supported

BooleanenteredDigitsEvent; // TRUE - supported,
// FALSE - not supported

BooleanqueryDeviceName; // TRUE - supported,
// FALSE - not supported

BooleanqueryAgentMeas; // TRUE - supported,
// FALSE - not supported

BooleanquerySplitSkillMeas; // TRUE - supported,
// FALSE - not supported

BooleanqueryTrunkGroupMeas; // TRUE - supported,
// FALSE - not supported

BooleanqueryVdnMeas; // TRUE - supported,
// FALSE - not supported

Booleanreserved1; // reserved for future use

Booleanreserved2; // reserved for future use

} ATTV4GetAPICapsConfEvent_t;

NOTE:
G3 PBX capabilities are obtained only once when the G3PD is loaded
during negotiation with the switch. If G3PD is not unloaded and reloaded
after the switch software version is changed (for example, from G3V3 to
G3V4 or vice versa), then once this change is made, and the G3PD is not
unloaded and reloaded again, the cstaGetAPICaps requests will return the
capabilities that the G3PD obtained when it was first loaded. Thus
cstaGetAPICaps will not reflect the real capabilities of the new switch
version.

Private Data Feature Summary

Table 3-3 provides a complete list of private data features. The associated initial
DEFINITY switch and G3PD releases that support each one are included, as well
as the version of private data in which the feature was first introduced.
Issue 1 — December 2001

3-15DEFPROG.PDF R10.1 V1

G3 CSTA Service Groups
Table 3-3. Private Data Summary

Private Data Feature

Initial
DEFINITY
Release

Initial DEFINITY
PBX Driver
Release

Initial
Private
Data
Version

Prompted Digits in Delivered
Events

All R2.1 (private data) V1

Priority, Direct Agent, Supervisor
Assist Calling

All R2.1 (private data) V2

Enhanced Call Classification All R2.1 (private data) V2

Trunk, Classifier Queries All R2.1 (private data) V2

LAI in Events All R2.1 (private data) V2

Launching Preditive Calls from
Split

All R2.1 (private data) V2

Application Integration with
Expert Agent Selection

G3V3 R2.1 (private data) V2

User-to-User Info (Reporting and
Sending)

G3V3 R2.1 (private data) V2

Multiple Notification Monitors (two
on ACD/VDN)

G3V3 All

Launching Preditive Calls from
VDN

G3V3 R2.1

Multiple Outstanding Route
Requests for One Call

G3V3 R2.1

Answering Machine Detection G3V3 R2.1 (private data) V2

Established Event for Non-ISDN
Trunks

G3V3 All

Provided Prompter Digits on
Route Select

G3V3 R2.1 (private data) V2

Requested Digit Selection G3V3 R2.1 (private data) V2

VDN Return Destination (Serial
Calling)

G3V3 R2.1 (private data) V2

Deflect Call G3V4 R2.2

Pickup Call G3V4 R2.2

Originated Event Report G3V4 R2.2 V3

Agent Logon Event Report G3V4 R2.2 (private data) V3
Issue 1 — December 2001

DEFPROG.PDF R10.1 V13-16

Private Data Version Control
Reason for Redirection in Alerting
Event Report

G3V4 R2.2 (private data) V3

Agent, Split, Trunk, VDN
Measurements Query

G3V4 R2.2 (private data) V3

Device Name Query G3V4 R2.2 (private data) V3

Send DTMF Tone G3V4 R2.2 (private data) V3

Distributing Device in
Conferenced, Delivered,
Established, and Transferred
Events

All R2.2 (private data) V4

G3 Private Capabilities in
cstaGetAPICaps Confirmation
Private Data

G3V3 R2.2 (private data) V4

Support Detailed DeviceIDType_t
in Events

G3V3 R3.10 (private data) V5

Set Bill Rate G3V4 R3.10 (private data) V5

Flexible Billing in Delivered
Event, Established Event, and
Route Request

G3V4 R3.10 (private data) V5

Call Originator Type in Delivered
Event, Established Event, and
Route Request

G3V4 R3.10 (private data) V5

Selective Listening Hold G3V5 R3.10 (private data) V5

Selective Listening Retrieve G3V5 R3.10 (private data) V5

Set Advice of Charge G3V5 R3.10 (private data) V5

Charge Advice Event G3V5 R3.10 (private data) V5

Reason Code in Set Agent State,
Query Agent State, and Logout
Event

G3V5 R3.10 (private data) V5

27-Character Display Query
Device Name Confirmation

G3V5 R3.10 (private data) V5

Unicode Device ID in Events G3V6 R3.10 (private data) V5

Trunk Group and Trunk Member
Information in Network Reached
Event

G3V6 R3.10 (private data) V5

Table 3-3. Private Data Summary

Private Data Feature

Initial
DEFINITY
Release

Initial DEFINITY
PBX Driver
Release

Initial
Private
Data
Version
Issue 1 — December 2001

3-17DEFPROG.PDF R10.1 V1

G3 CSTA Service Groups
Universal Call ID (UCID) in
Events

G3V6 R3.10 (private data) V5

Single Step Conference G3V6 R3.10 (private data) V5

Pending Work Mode and Pending
Reason Code in Set Agent State
and Query Agent State

G3V8 R3.30 (private data) V6

Trunk Group and Trunk Member
Information in Delivered Event
and Established Event regardless
of whether Calling Party is
Available

G3V8 R3.30 (private data) V6

Trunk Group Information in Route
Request Events regardless of
whether Calling Party is Available

G3V8 R3.30 (private data) V6

Trunk Group Information for
Every Party in Transferred
Events and Conferenced Events

G3V8 R3.30 (private data) V6

User-to-User Info (UUI) is
increased from 32 to 96 bytes

G3V8 R3.30 (private data) V6

Table 3-3. Private Data Summary

Private Data Feature

Initial
DEFINITY
Release

Initial DEFINITY
PBX Driver
Release

Initial
Private
Data
Version
Issue 1 — December 2001

DEFPROG.PDF R10.1 V13-18

Migration from Private Data Version 5 to Private Data
Version 6
Migration from Private Data Version 5
to Private Data Version 6

An existing application, without any changes, can still work with the new
G3PD.DLL that supports private data V6 interface, but the application cannot
open a private data V6 interface and request any private data V6 features.

To migrate an existing private data V5 application into the private data V6
environment (i.e., V6 SDK) the changes shown in Table 3-4 are required.

■ The list of Protocol Data Units (PDUs) or structure members in column one
represents the original V5 code that is affected by the V6 interface.

■ In order for the V5 code to continue to operate as private data using the V6
interface, you must change the PDUs or structure members listed in
column one in your code to the associated name listed in column two (i.e.,
The "ATT" portion of the name is changed to "ATTV5" for the PDUs while
v5 is prepended in the case of structure members).

■ The PDU code names or structure members listed in column three are
identical to the original V5 code names; however, their definitions are
changed in the header files for the V6 interface.

NOTE:
The private data library has a convention whereby PDU names for
the most recent private data version are always "unqualified," that is,
the names do not contain any indication of a particular private data
version. When a new version of an existing PDU is introduced, the
new PDU assumes the name of the old PDU, and the name of the old
PDU is changed to reflect the last private data version for which it
was valid. The same naming convention is used when introducing a
new version of an existing data type or structure member.
Issue 1 — December 2001

3-19DEFPROG.PDF R10.1 V1

G3 CSTA Service Groups
Private Data Function Changes

Please note that the following private data functions are changed between V5 and
V6.

Table 3-4. Migration of PDUs and Structure Members to Private Data Version 6

Original V5 PDU or
Structure Member
Name

Required Changes to
V5 PDU or Structure
Member Name for V6
Interface

New V6 PDU or
Structure
MemberName

ATT_QUERY_AGENT_STATE_CONF
ATTQueryAgentStateConfEvent_t
queryAgentState

ATTV5_QUERY_AGENT_STATE_CONF
ATTV5QueryAgentStateConfEvent_t
v5queryAgentState

ATT_QUERY_AGENT_STATE_CONF
ATTQueryAgentStateConfEvent_t
queryAgentState

ATT_SET_AGENT_STATE
ATTSetAgentState_t
setAgentStateReq

ATTV5_SET_AGENT_STATE
ATTV5SetAgentState_t
v5setAgentStateReq

ATT_SET_AGENT_STATE
ATTSetAgentState_t
setAgentStateReq

N/A New for V6 ATT_SET_AGENT_STATE_CONF
ATTSetAgentStateConfEvent_t

ATT_ROUTE_REQUEST
ATTRouteRequestEvent_t

ATTV5_ROUTE_REQUEST
ATTV5RouteRequestEvent_t

ATT_ROUTE_REQUEST
ATTRouteRequestEvent_t

ATT_TRANSFERRED
ATTTransferredEvent_t

ATTV5_TRANSFERRED
ATTV5TransferredEvent_t

ATT_TRANSFERRED
ATTTransferredEvent_t

ATT_CONFERENCED
ATTConferencedEvent_t

ATTV5_CONFERENCED
ATTV5ConferencedEvent_t

ATT_CONFERENCED
ATTConferencedEvent_t

ATT_CLEAR_CONNECTION
ATTClearConnection_t

ATTV5_CLEAR_CONNECTION
ATTV5ClearConnection_t

ATT_CLEAR_CONNECTION
ATTClearConnection_t

ATT_CONSULTATION_CALL
ATTConsultationCall_t

ATTV5_CONSULTATION_CALL
ATTConsultationCall_t

ATT_CONSULTATION_CALL
ATTConsultationCall_t

ATT_MAKE_CALL
ATTMakeCall_t

ATTV5_MAKE_CALL
ATTV5MakeCall_t

ATT_MAKE_CALL
ATTMakeCall_t

ATT_DIRECT_AGENT_CALL
ATTDirectAgentCall_t

ATTV5_DIRECT_AGENT_CALL
ATTV5DirectAgentCall_t

ATT_DIRECT_AGENT_CALL
ATTDirectAgentCall_t

ATT_MAKE_PREDICTIVE_CALL
ATTMakePredictiveCall_t

ATTV5_MAKE_PREDICTIVE_CALL
ATTV5MakePredictiveCall_t

ATT_MAKE_PREDICTIVE_CALL
ATTMakePredictiveCall_t

ATT_SUPERVISOR_ASSIST_CALL
ATTSupervisorAssistCall_t

ATTV5_SUPERVISOR_ASSIST_CALL
ATTV5SupervisorAssistCall_t

ATT_SUPERVISOR_ASSIST_CALL
ATTSupervisorAssistCall_t

ATT_RECONNECT_CALL
ATTReconnectCall_t

ATTV5_RECONNECT_CALL
ATTV5ReconnectCall_t

ATT_RECONNECT_CALL
ATTReconnectCall_t

ATT_CONNECTION_CLEARED
ATTConnectionClearedEvent_t

ATTV5_CONNECTION_CLEARED
ATTV5ConnectionClearedEvent_t

ATT_CONNECTION_CLEARED
ATTConnectionClearedEvent_t

ATT_ROUTE_SELECT
ATTRouteSelect_t

ATTV5_ROUTE_SELECT
ATTV5RouteSelect_t

ATT_ROUTE_SELECT
ATTRouteSelect_t

ATT_DELIVERED
ATTDeliveredEvent_t

ATTV5_DELIVERED
ATTV5DeliveredEvent_t

ATT_DELIVERED
ATTDeliveredEvent_t

ATT_ESTABLISHED
ATTEstablishedEvent_t

ATTV5_ESTABLISHED
ATTV5EstablishedEvent_t

ATT_ESTABLISHED
ATTEstablishedEvent_t

ATT_ORIGINATED
ATTOriginatedEvent_t

ATTV5_ORIGINATED
ATTV5OriginatedEvent_t

ATT_ORIGINATED
ATTOriginatedEvent_t
Issue 1 — December 2001

DEFPROG.PDF R10.1 V13-20

Migration from Private Data Version 5 to Private Data
Version 6
Set Agent State

// attSetAgentState() - Private Data V5 Interface

RetCode_t attSetAgentStateExt(// old function name used in V5 API
ATTPrivateData_t*attPrivateData,
ATTWorkMode_t workMode,
long reasonCode); // new parameter in V5 API

// attSetAgentStateExt() - Private Data V6 Interface

RetCode_t attV6SetAgentState(// new function name used in V6 API
ATTPrivateData_t*attPrivateData,
ATTWorkMode_t workMode,
long reasonCode,
Boolean enablePending);// new parameter in V6 API
Issue 1 — December 2001

3-21DEFPROG.PDF R10.1 V1

G3 CSTA Service Groups
Private Data Sample Code

Sample Code 1

#include <stdio.h>

#include <acs.h>
#include <csta.h>
#include <attpriv.h>

/*
* Make Direct Agent Call - from "12345" to ACD Agent extension "11111"

* - ACD agent must be logged into split "22222"
* - no User to User info
* - not a priority call
*/

ACSHandle_t acsHandle; // An opened ACS Stream Handle
InvokeID_t invokeID = 1; // Application generated

// Invoke ID
DeviceID_t calling = "12345"; // Call originator, an on-PBX

// extension
DeviceID_t called = "11111"; // Call destination, an ACD

// Agent extension
DeviceID_t split = "22222"; // ACD Agent is logged into

// this split
Boolean priorityCall = FALSE; // Not a priority call
RetCode_t retcode; // Return code for service

// requests
CSTAEvent_t cstaEvent; // CSTA event buffer
unsigned short eventBufSize; // CSTA event buffer size
ATTPrivateData_tprivateData; // ATT service request private

// data buffer

retcode = attDirectAgentCall(&privateData, &split, priorityCall,

NULL);

if (retcode < 0) {
/* Some kind of failure, need to handle this ... */
}

retcode = cstaMakeCall(acsHandle, invokeID, &calling, &called,

(PrivateData_t *)&privateData);

if (retcode != ACSPOSITIVE_ACK) {
/* Some kind of failure, need to handle this ... */

}

Issue 1 — December 2001

DEFPROG.PDF R10.1 V13-22

Migration from Private Data Version 5 to Private Data
Version 6
Sample Code 1 (Continued)

/* Make Call request succeeded. Wait for confirmation event. */

eventBufSize = sizeof(CSTAEvent_t);
privateData.length = ATT_MAX_PRIVATE_DATA;

retcode = acsGetEventBlock(acsHandle, (void *)&cstaEvent,
&eventBufSize, (PrivateData_t *)&privateData, NULL);

if (retcode != ACSPOSITIVE_ACK) {
/* Some kind of failure, need to handle this ... */
}

if ((cstaEvent.eventHeader.eventClass == CSTACONFIRMATION) &&
(cstaEvent.eventHeader.eventType == CSTA_MAKE_CALL_CONF))

{
if (cstaEvent.event.cstaConfirmation.invokeID == 1) {

/*
* Invoke ID matches, Make Call is confirmed.

/*
}

}

Issue 1 — December 2001

3-23DEFPROG.PDF R10.1 V1

G3 CSTA Service Groups
Sample Code 2

#include <stdio.h>

#include <acs.h>
#include <csta.h>
#include <attpriv.h>

/*
* Set Agent State - Request to log in ACD Agent with initial work mode

* "Auto-In".
*/

ACSHandle_t acsHandle; // An opened ACS Stream Handle
InvokeID_t invokeID = 1; // Application generated

// Invoke ID
DeviceID_t device = "12345"; // Device associated with

// ACD Agent
AgentMode_t agentMode = AM_LOG_IN; // Requested Agent Mode
AgentID_t agentID = "01"; // Agent login identifier
AgentGroup_tagentGroup = "11111"; // ACD split to log Agent into
AgentPassword_t *agentPassword = NULL;// No password, i.e., not EAS
RetCode_t retcode; // Return Code for service

// requests
CSTAEvent_t cstaEvent; // CSTA event buffer
unsigned shorteventBufSize; // CSTA event buffer size
ATTPrivateData_tprivateData; // ATT service request private
// data buffer

retcode = attV6SetAgentState(&privateData, WM_AUTO_IN, 0, TRUE);

if (retcode < 0) {
/* Some kind of failure, need to handle this ... */
}

retcode = cstaSetAgentState(acsHandle, invokeID, &device, agentMode,
&agentID, &agentGroup, agentPassword,
(PrivateData_t *)&privateData);

if (retcode != ACSPOSITIVE_ACK) {
/* Some kind of failure, need to handle this ... */

}

}

Issue 1 — December 2001

DEFPROG.PDF R10.1 V13-24

Migration from Private Data Version 5 to Private Data
Version 6
Sample Code 2 (Continued)

/* Set Agent State request succeeded. Wait for confirmation event.*/

eventBufSize = sizeof(CSTAEvent_t);
privateData.length = ATT_MAX_PRIVATE_DATA;

retcode = acsGetEventBlock(acsHandle, (void *)&cstaEvent,
&eventBufSize, (PrivateData_t *)&privateData, NULL);

if (retcode != ACSPOSITIVE_ACK) {
/* Some kind of failure, need to handle this ... */

}

if ((cstaEvent.eventHeader.eventClass == CSTACONFIRMATION) &&
(cstaEvent.eventHeader.eventType == CSTA_SET_AGENT_STATE_CONF)) {

if (cstaEvent.event.cstaConfirmation.invokeID == 1) {
/*
* Invoke ID matches, Set Agent State is confirmed.
* Private data is returned in confirmation event.
*/
if (privateData.length > 0) {
/* Confirmation contains private data */

if (attPrivateData(&privateData, &attEvent) !=
ACSPOSITIVE_ACK) {

/* Decoding error */
}
else { // See whether the requested change is pending or not

ATTSetAgentStateConfEvent_t *setAgentStateConf ;
SetAgentStateConf = &privateData.u.setAgentState;
if (SetAgentStateConf->isPending == TRUE)
// The request is pending

}
}

}

Issue 1 — December 2001

3-25DEFPROG.PDF R10.1 V1

G3 CSTA Service Groups
Sample Code 3

#include <stdio.h>

#include <acs.h>
#include <csta.h>
#include <attpriv.h>

/*
* Query ACD Split via cstaEscapeService()

*/

ACSHandle_t acsHandle; // An opened ACS Stream Handle
InvokeID_t invokeID = 1; // Application generated

// Invoke ID
DeviceID_t deviceID = "12345"; // Device associated with

// ACD split
RetCode_t retcode; // Return code for service

// requests
CSTAEvent_t cstaEvent; // CSTA event buffer
unsigned shorteventBufSize; // CSTA event buffer size
ATTPrivateData_tprivatedata; // ATT private data buffer
ATTEvent_t attEvent; // ATT event buffer
ATTQueryAcdSplitConfEvent_t // Query ACD Split confirmation

*queryAcdSplitConf; // event pointer

retcode = attQueryAcdSplit(&privatedata, &deviceID);

if (retcode < 0) {
/* Some kind of failure, need to handle this ... */

}

retcode = cstaEscapeService(acsHandle, invokeID,
(PrivateData_t *)&privateData);

if (retcode != ACSPOSITIVE_ACK) {
/* Some kind of failure, need to handle this ... */

}

Issue 1 — December 2001

DEFPROG.PDF R10.1 V13-26

Migration from Private Data Version 5 to Private Data
Version 6
Sample Code 3 (Continued)

/*
* Now wait for confirmation event.
*
* To retrieve private data return parameters for Query ACD Split,
* the application must specify a pointer to a private data buffer as
* a parameter to either the acsGetEventBlock() or acsGetEventPoll()
* request. Upon return, the application passes the address
* to attPrivateData() for decoding.
*/

eventBufSize = sizeof(CSTAEvent_t);
privateData.length = ATT_MAX_PRIVATE_DATA;

retcode = acsGetEventBlock(acsHandle, (void *)&cstaEvent,
&eventBufSize, (PrivateData_t *)&privateData, NULL);

if (retcode != ACSPOSITIVE_ACK) {
/* Some kind of failure, need to handle this ... */

}

if ((cstaEvent.eventHeader.eventClass == CSTACONFIRMATION) &&
(cstaEvent.eventHeader.eventType == CSTA_ESCAPE_SVC_CONF)) {

if (cstaEvent.event.cstaConfirmation.invokeID != 1) {
/* Error - wrong invoke ID */
}
else if (privateData.length > 0) {
/* Confirmation contains private data */

if (attPrivateData(&privateData, &attEvent) != ACSPOSITIVE_ACK) {
/* Decoding error */
}
else if (attEvent.eventType == ATT_QUERY_ACD_SPLIT_CONF) {

queryAcdSplitConf = (ATTQueryAcdSplitConfEvent_t *)
&attEvent.u.queryAcdSplit;
}
}
else {
/* Error - no private data in confirmation event */
}

}

Issue 1 — December 2001

3-27DEFPROG.PDF R10.1 V1

G3 CSTA Service Groups
G3 CSTA Objects

Figure 3-1 illustrates the three types of CSTA objects: Device, Call, and
Connection.

Figure 3-1. CSTA Objects: Device, Call and Connection

CSTA Object: Device

The term Device refers to both physical devices (stations, trunks, etc.) and logical
devices (VDNs or ACD splits) that are controlled via the switch. Each device is
characterized by a set of attributes. These attributes define the manner in which
an application may observe and manipulate a device. The set of device attributes
consists of: Device Type, Device Class, and Device Identifier.

Device Type

Table 3-5 defines the most commonly used G3 CSTA devices and their types:

Table 3-5. CSTA Device Type Definitions

CSTA Type Definition G3 Object

Station A traditional telephone device or
an AWOH station extension (for
phantom calls).1 A station is a
physical unit of one or more
buttons and one or more lines.

Station or
extension on the
G3 PBX

ACD Group A mechanism that distributes
calls within a switch.

VDN, ACD split,
or hunt group in
the G3 PBX

Device CallConnection
Issue 1 — December 2001

DEFPROG.PDF R10.1 V13-28

G3 CSTA Objects
CSTA defines device types that G3PD Services do not use: ACD Group, button,
button group, line, line group, operator, operator group, station group.

Device Class

Different classes of devices can be observed and manipulated within the G3
CSTA programming environment. Common G3 CSTA Device Classes include:
voice and other. G3PD does not support service requests for the CSTA data and
image classes. G3PD may return the data class in response to a query.

Device Identifier

Each device that can be observed and manipulated needs to be referenced
across the CSTA Service boundary. Devices are identified using one or both of
the following types of identifiers:

Static Device Identifier

A static device identifier is stable over time and remains both constant and unique
between calls. The static device identifier is known by both the TSAPI application
and the switch. G3 internal extensions are static device identifiers. These include
extensions that uniquely identify any G3 devices such as stations or AWOH
station extensions (for phantom calls), ACD splits, VDNs, and logical agent login
IDs. Valid phone numbers for endpoints external to the G3 PBX are also static

Trunk A device used to access other
switches.

G3 trunk

Trunk Group A group of trunks accessed using
a single identifier.

G3 trunk group

Other A type of device not defined by
CSTA.

Announcement,
CTI (ASAI),
modem pool, etc.

1. For DEFINITY software release 6.3 and later, a call can be originated from an
AWOH station or some group extensions (i.e., a plain [non-ACD] hunt group). This
is termed a phantom call. Most calls that can be requested for a physical extension
can also be requested for an AWOH station and the associated event will also be
received. If the call is made on behalf of a group extension, this may not apply. For
a detailed description of the phantom call switch feature, refer to CallVisor ASAI
Technical Reference (555-230-220).

Table 3-5. CSTA Device Type Definitions

CSTA Type Definition G3 Object
Issue 1 — December 2001

3-29DEFPROG.PDF R10.1 V1

G3 CSTA Service Groups
device identifiers2. The presence of a static device ID in an event does not
necessarily mean that the device is directly connected to the switch.

NOTE:
If the called device specified in a CSTA Make Call Service request is not an
internal endpoint, the device identifier reported in the event reports for that
device on that call may not be the same. The called device specified in the
CSTA Make Call Service is a dialing digit sequence and it may not represent
a true device identifier. For example, trunk access code can be specified as
part of the dialing digits in the called device parameter of a CSTA Make Call
Service request. However, the trunk access code will not be part of the
device identifier of the called device in the event reports of that call. In a
DCS (Distributed Communications System) or SDN (Software Defined
Network) environment, even if a true device identifier (i.e., no trunk access
code in the called device parameter) of an external endpoint is specified for
the called device in a CSTA Make Call Service request, the G3 switch may
not use the same device identifier in the event reports for the called device.

Dynamic Device Identifier

When a call is connected through a trunk with an unknown device identifier, a
dynamic trunk identifier is created for the purpose of identifying the external
endpoint. This identifier is not like a static device identifier that an application can
store in a database for later use. An off-PBX endpoint without a known static
identifier3 has a trunk identifier. Note that a trunk identifier does not identify the
actual trunk or trunk group to which the endpoint is connected. The actual trunk
and trunk group information, if available, is provided in the private data.

In order to manipulate and monitor calls that cross a G3 PBX trunk interface, an
application needs to use the trunk identifier. G3PD preserves trunk identifiers
across conference and transfer operations. G3PD may use different dynamic
identifiers to represent endpoints connected to the same actual trunk at different
times. A trunk identifier is meaningful to an application only for the duration of a
call and should not be retained and used at a later time like a phone number or a
station extension. A call identifier and a trunk identifier can comprise a connection
identifier. A trunk identifier has a prefix ’T’ and a ’#’ within its identifier (for
example, T538#1, T4893#2).

2. If applicable, access and authorization codes can be specified with the static device
identifier for the called device parameter of the Make Call Service.

3. An off-PBX endpoint of an ISDN call may have a known static identifier.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V13-30

G3 CSTA Objects
Device Identifier Syntax

typedef char DeviceID_t[64];

typedef enum DeviceIDType_t {
DEVICE_IDENTIFIER = 0,
IMPLICIT_PUBLIC = 20,
EXPLICIT_PUBLIC_UNKNOWN = 30,
EXPLICIT_PUBLIC_INTERNATIONAL = 31,
EXPLICIT_PUBLIC_NATIONAL = 32,
EXPLICIT_PUBLIC_NETWORK_SPECIFIC = 33,
EXPLICIT_PUBLIC_SUBSCRIBER = 34,
EXPLICIT_PUBLIC_ABBREVIATED = 35,
IMPLICIT_PRIVATE = 40,
EXPLICIT_PRIVATE_UNKNOWN = 50,
EXPLICIT_PRIVATE_LEVEL3_REGIONAL_NUMBER = 51,
EXPLICIT_PRIVATE_LEVEL2_REGIONAL_NUMBER = 52,
EXPLICIT_PRIVATE_LEVEL1_REGIONAL_NUMBER = 53,
EXPLICIT_PRIVATE_PTN_SPECIFIC_NUMBER = 54,
EXPLICIT_PRIVATE_LOCAL_NUMBER = 55,
EXPLICIT_PRIVATE_ABBREVIATED = 56,
OTHER_PLAN = 60,
TRUNK_IDENTIFIER=70,
TRUNK_GROUP_IDENTIFIER=71
} DeviceIDType_t;

typedef enum DeviceIDStatus_t {
ID_PROVIDED = 0,
ID_NOT_KNOWN = 1,
ID_NOT_REQUIRED = 2

} DeviceIDStatus_t;

typedef struct ExtendedDeviceID_t {
DeviceID_t deviceID;
DeviceIDType_t deviceIDType;
DeviceIDStatus_tdeviceIDStatus;

} ExtendedDeviceID_t;

typedef ExtendedDeviceID_t CallingDeviceID_t;

typedef ExtendedDeviceID_t CalledDeviceID_t;

typedef ExtendedDeviceID_t SubjectDeviceID_t;

typedef ExtendedDeviceID_t RedirectionDeviceID_t;
Issue 1 — December 2001

3-31DEFPROG.PDF R10.1 V1

G3 CSTA Service Groups
CSTA Device ID Type (Private Data Version 4 and
Earlier)

If an application opens an ACSOpenStream with private data version 4 and
earlier, G3PD supports only a limited number of types of DeviceIDType_t for the
deviceIDType parameter of an ExtendedDeviceID_t. The types supported are
described in Table 3-6.

CSTA Device ID Type (with Private Data Version
5 and Later)

If an application opens an ACAOpenStream with private data version 5 and later,
G3PD supports CSTA DeviceIDType_t based on information from the switch,
network, or internal information. The DEVICE_IDENTIFIER and TRUNK_
IDENTIFIER are no longer supported. More descriptive types are used. Normally
if a call is connected through an ISDN interface or a private network supporting a
private numbering plan, more accurate device ID type will be provided to the
application.

■ DEVICE_IDENTIFIER (0) — This type is no longer used for an
ACSOpenStream with private data version 5 and later.

■ IMPLICIT_PUBLIC (20) — There is no actual numbering and addressing
information about this endpoint received from the network or switch.
However, from the number of digits (7 or more digits) of the device identifier
associated with this endpoint, it may be a public number. Prefix or escape
digits may be present.

■ EXPLICIT_PUBLIC_UNKNOWN (30) — There are two cases for this type:

Table 3-6. CSTA Device Type and Status (Private Data Version 4 and Earlier)

DeviceIDType_t ConnectionID_Device_t DeviceIDStatus_t Type of Devices

DEVICE_
IDENTIFIER

STATIC_ID ID_PROVIDED Internal or
external
endpoints that
have a known
device identifier

TRUNK_
IDENTIFIER

DYNAMIC_ID ID_PROVIDED Internal or
external
endpoints that do
not have a known
device identifier

EXPLICIT_
PUBLIC_
UNKNOWN

ID_NOT_KNOWN
or
ID_NOT_
REQUIRED
Issue 1 — December 2001

DEFPROG.PDF R10.1 V13-32

G3 CSTA Objects
— There is no actual numbering and addressing information about this
endpoint received from the network or switch. The device identifier
is also unknown for this endpoint. An external endpoint without a
known device identifier is most likely to have this type.

— The numbering and addressing information are provided by the
ISDN interface from the network and G3 PBX to which the call is
connected, but the network and switch has no knowledge of the type
of the number (e.g., international, national, or local) of the endpoint.
Prefix or escape digits may be present.

■ EXPLICIT_PUBLIC_INTERNATIONAL (31) — This endpoint has an
international number. The numbering plan and addressing type information
are provided by the ISDN interface from the network and G3 PBX to which
the call is connected. Prefix or escape digits shall not be included.

■ EXPLICIT_PUBLIC_NATIONAL (32) — This endpoint has a national
number. The numbering plan and addressing type information are provided
by the ISDN interface from the network and G3 PBX to which the call is
connected. Prefix or escape digits shall not be included.

■ EXPLICIT_PUBLIC_NETWORK_SPECIFIC (33) — This endpoint has a
network specific number. The numbering plan and addressing type
information are provided by the ISDN interface from the network and G3
PBX to which the call is connected. The type of network specific number is
used to indicate the administration/service number specific to the serving
network, (e.g., used to access an operator).

■ EXPLICIT_PUBLIC_SUBSCRIBER (34) — This endpoint has a network
specific number. The numbering plan and addressing type information are
provided by the ISDN interface from the network and G3 PBX to which the
call is connected. Prefix or escape digits shall not be included.

■ EXPLICIT_PUBLIC_ABBREVIATED (35) — This endpoint has an
abbreviated number. The numbering and addressing information are
provided by the ISDN interface from the network and G3 PBX to which the
call is connected.

■ IMPLICIT_PRIVATE (40) — There is no actual numbering plan and
addressing type information about this endpoint received from the network
or switch. However, from the number of digits (6 or less digits) of the device
identifier associated with this endpoint, it may be a private number. Prefix
or escape digits may be present. An internal endpoint or an external
endpoint across the DCS or private network may have this type. Note that it
is not unusual for an internal endpoint’s type changing from IMPLICIT_
PRIVATE to EXPLICIT_PRIVATE_LOCAL_NUMBER when more
information about the endpoint is received from the switch.

■ EXPLICIT_PRIVATE_UNKNOWN (50) — This endpoint has a private
numbering plan and the addressing type is unknown. An endpoint is
unlikely to have this device ID type.
Issue 1 — December 2001

3-33DEFPROG.PDF R10.1 V1

G3 CSTA Service Groups
■ EXPLICIT_PRIVATE_LEVEL3_REGIONAL_NUMBER (51) — This
endpoint has a private numbering plan and its addressing type is level 3
regional. An endpoint is unlikely to have this device ID type.

■ EXPLICIT_PRIVATE_LEVEL2_REGIONAL_NUMBER (52) — This
endpoint has a private numbering plan and its addressing type is level 2
regional. An endpoint is unlikely to have this device ID type.

■ EXPLICIT_PRIVATE_LEVEL1_REGIONAL_NUMBER (53) — This
endpoint has a private numbering plan and its addressing type is level 1
regional. An endpoint is unlikely to have this device ID type.

■ EXPLICIT_PRIVATE_PTN_SPECIFIC_NUMBER (54) — This endpoint
has a private numbering plan and its addressing type is PTN specific. An
endpoint is unlikely to have this device ID type.

■ EXPLICIT_PRIVATE_LOCAL_NUMBER (55) — There are two cases for
this type:

— There is no actual numbering plan and addressing type information
about this endpoint received from the switch or network. However,
this endpoint has a device identifier and its type is identified by the
G3PD call processing as a local number or a local endpoint to the
G3 PBX. A local endpoint is one that is directly connected to the G3
PBX to which the G3PD is connected. An endpoint that is not
directly connected to the G3 PBX to which the G3PD is connected,
but can be accessed through the DCS or private network that
connects to the G3 PBX to which the G3PD is connected is not a
local endpoint. A G3PD local endpoint normally either has a type of
EXPLICIT_PRIVATE_LOCAL_NUMBER or IMPLICIT_PRIVATE.
Note that it is not unusual for an endpoint’s type changing from
IMPLICIT_PRIVATE to EXPLICIT_PRIVATE_LOCAL_NUMBER
when more information above the endpoint is received from the
switch. An internal endpoint is most likely to have this device ID type
with this case.

— This endpoint has a private numbering plan and its addressing type
is local number. An endpoint is unlikely to have this device ID type
with this case.

■ EXPLICIT_PRIVATE_ABBREVIATED (56) — This endpoint has a private
numbering plan and its addressing type is abbreviated. An endpoint is
unlikely to have this device ID type.

■ OTHER_PLAN (60) — This endpoint has a type "none of the above." An
endpoint is unlikely to have this type.

■ TRUNK_IDENTIFIER (70) — This type is no longer used for an
ACSOpenStream with private data version 5 and later.

■ TRUNK_GROUP_IDENTIFIER (71) — This type is not used by G3PD.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V13-34

G3 CSTA Objects
CSTA Object: Call

Applications can use TSAPI to control and monitor Call behavior, including
establishment and release. There are two types of call attributes: Call Identifier
and Call State.

Call Identifier (callID)

When a call is initiated, the G3 switch allocates a unique Call Identifier (callID).
Before a call terminates, it may progress through many different states involving a
variety of devices. Although the call identifier may change (as with transfer and
conference, for example), its status as a CSTA object remains the same. A callID
first becomes visible to an application when it appears in an event report or
confirmation event. The allocation of a callID is always reported. Each callID is
specified in a connection identifier parameter.

NOTE:
The TSAPI interface passes callID parameters within connectionID
parameters.

Call Identifier Syntax

typedef struct ConnectionID_t {
long callID; // always specified in a

// connectionID
DeviceID_t deviceID; // set to 0, when only callID

// is interested
ConnectionID_Device_t devIDType; // STATIC_ID or DYNAMIC_ID

} ConnectionID_t;

Call State

A "call state" is a descriptor (initiated, queued, etc.) that characterizes the state of
a call. Even though a call may assume several different states throughout its
duration, it can only be in a single state at any given time. The set of connection
states comprises all of the possible states a call may assume. Call state is
returned by the Snapshot Device Service for devices that have calls.

CSTA Object: Connection

A CSTA "connection" is a relationship that exists between a call and a device.
Many API Services (Hold Call Service, Retrieve Call Service, and Clear Call
Service, for example) observe and manipulate connections. Connections have
the following attributes:
Issue 1 — December 2001

3-35DEFPROG.PDF R10.1 V1

G3 CSTA Service Groups
Connection Identifier (connectionID)

A connectionID is a combination of Call Identifier (callID) and Device Identifier
(deviceID). The connectionID is unique within a G3 PBX. An application cannot
use a connectionID until it has received it from the G3PD. This rule prevents an
application from fabricating a connectionID.

A connectionID always contains a callID value. A G3PD connectionID may
contain a static or dynamic (for Trunk ID) device identifier. If the callID is the only
value that is present, the deviceID is set to 0 (with DYNAMIC_ID). The callID of a
connectionID assigned to an endpoint on a call may change when the call is
transferred or conferenced, but the deviceID of the connectionID assigned to an
endpoint will not change when the call is transferred or conferenced.

For a call, there are as many Connection Identifiers as there are devices on the
call. For a device, there are as many Connection Identifiers as there are calls at
that device.

Connection Identifier Conflict

A device may connect to a call twice. This can happen for external endpoints with
the same calling number from an ISDN network or from an internal device with
different line appearances connected to the same call. In these rare cases, the
G3PD resolves the device identifier conflict in the connection identifiers by
replacing one of the device identifiers with a trunk identifier when two calls that
have the same device (this is not the device conferencing the call) on them are
merged by a call conference or transfer operation.

NOTE:
The connection identifier of a device on a call can change in this case.

Connection Identifier Syntax

typedef char DeviceID_t[64];

typedef enum ConnectionID_Device_t {
STATIC_ID = 0,
DYNAMIC_ID = 1

} ConnectionID_Device_t;

typedef struct ConnectionID_t {
long callID;
DeviceID_t deviceID;
ConnectionID_Device_t devIDType;

} ConnectionID_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 V13-36

G3 CSTA Objects
Connection State

A connection state is a descriptor (initiated, queued, etc.) that characterizes the
state of a single CSTA connection. Connection states are reported by Snapshots
taken of calls or devices. Changes in connection states are reported as event
reports by Monitor Services.

Figure 3-2 illustrates a connection state model that shows typical connection state
changes. This connection state model derives from the CSTA connection state
model. It provides an abstract view of various call state transitions that can occur
when a call is either initiated from, or delivered to, a device. Note that it does not
include all the possible states that may result from interactions with G3 PBX
features. The G3 PBX also incorporates state transitions that may not be shown.

NOTE:
It is strongly recommended that applications be event driven. Being state
driven, rather than event driven, may result in an unexpected state transition
that the program has not anticipated. This often occurs because some party
on the call invokes a G3 feature that interacts with the call in a way that is
not part of a typical call flow. The diagram that follows captures only typical
call state transitions. The G3 PBX has a large number of specialized
features that interact with calls in many ways.

This model does not represent a complete programming model for the call
state/event report/connection state relationship.

Figure 3-2. Sample Connection State Model

Null

Initiated

Queued
Alerting

Connected

Held

Failed
Issue 1 — December 2001

3-37DEFPROG.PDF R10.1 V1

G3 CSTA Service Groups
In Figure 3-2, circles represent connection states. Arrows are used to signify
transitions between states. A transition from one connection state to another
results in the generation of an event report. The various connection states are
defined as follows:

Table 3-7. Connection State Definitions

Definition Description

Null No relationship exists between the call and device; a device does
not participate in a call.

Initiated A device is requesting service. Usually, this results in the
creation of a call. Often, this is when a station receives a dial
tone and begins to dial.

Alerting A device is alerting (ringing). A call is attempting to become
connected to a device. The term "active" is also used to indicate
an alerting (or connected) state.

Connected A device is actively participating in a call, either logically or
physically (that is, not Held). The term "active" is also used to
indicate a connected (or alerting) state.

Held A device inactively participates in a call. That is, the device
participates logically but not physically.

Queued Normal state progression has been stalled. Generally, either a
device is trying to establish a connection with a call or a call is
trying to establish a connection with a device.

Failed Normal state progression has been aborted. Generally, either a
device is trying to establish a connection with a call or a call is
trying to establish a connection with a device. A Failed state can
result from a failure to connect to the calling device (origin) or to
the called device (destination). A Failed state can also be caused
by a failure to create the call or other factors.

Unknown A device participates in a call, but its state is not known.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V13-38

G3 CSTA Objects
Connection State Syntax

typedef enum LocalConnectionState_t {
CS_NONE = -1,
CS_NULL = 0,
CS_INITIATE = 1,
CS_ALERTING = 2,
CS_CONNECT = 3,
CS_HOLD = 4,
CS_QUEUED = 5,
CS_FAIL = 6

} LocalConnectionState_t;

Bridged This is a G3 PBX private local connection state that is not defined
in the CSTA. This state indicates that a call is present at a
bridged, simulated bridged, button TEG, or POOL appearance,
and the call is neither ringing nor connected at the station. The
bridged connection state is reported in the private data of a
Snapshot Device Confirmation Event and it has a CSTA null
(CS_NULL) state. Since this is the only time G3PD returns CS_
NULL, a device with the null state in the Snapshot Device
Confirmation Event is bridged.

A device with the bridged state can join the call by either
manually answering the call or the cstaAnswerCall Service.
Once a bridged device is connected to a call, its state becomes
connected. After a bridged device becomes connected, it can
drop from the call and become bridged again, if there are other
endpoints still on the call.

NOTE:
Manual drop of a bridged line appearance (from the
connected state) from a call will not cause a Connection
Cleared Event.

Table 3-7. Connection State Definitions

Definition Description
Issue 1 — December 2001

3-39DEFPROG.PDF R10.1 V1

G3 CSTA Service Groups

nts

r

d by
D

e 1.

of
d

e 2.

of
d
d

its

e 2.

can
m

e
on
nt
ons.
G3 CSTA System Capacity

Table 3-8 provides the system capacity information for the G3 CSTA. These are
maximum system capacities. The numbers shown, as well as the server’s
hardware configuration and the switch configuration, limit a Windows NT or
NetWare Telephony Server’s capacity. The number of users that can access a
Telephony Server is independent of these numbers4.

4. The number of users that can access the Telephony Server may be limited by the purchase
agreement.

Table 3-8. CSTA System Capacities

Parameter
G3i System
Capacity

G3s System
Capacity

G3r System
Capacity

G3 PBX
Driver
Capacity Comme

CTI Links Eight Four Eight Four Up to fou
are
supporte
one G3P

CSTA Service
Requests per CTI
Link

Limited by
the following
numbers

Limited by
the following
numbers

Limited by
the following
numbers

2000 per CTI
link

See Not

Objects monitored
by
cstaMonitorDevice
requests

2000 per G3
switch

250 per G3
switch

6000 per G3
switch

Limited by
the lesser of
switch
capacity and
link capacity

Maximum
number
monitore
stations.
See Not

Objects monitored
by
cstaMonitorCallsVia
Device requests

170 per G3
switch

50 per G3
switch

460 per G3
switch; 2000
for release
G3V3 and
later

Limited by
switch
capacity and
link capacity

Maximum
number
monitore
VDNs an
ACD spl
allowed.
See Not

Simultaneous
cstaMonitorDevice
monitor requests
on one station
device

Two, but a
G3PD
multiplexes
client
requests into
a single
association.

Two, but a
G3PD
multiplexes
client
requests into
a single
association.

Two, but a
G3PD
multiplexes
client
requests into
a single
association.

No
maximum
number but
limited by
G3PD
memory.

Monitor
requests
come fro
the sam
applicati
or differe
applicati
Issue 1 — December 2001

DEFPROG.PDF R10.1 V13-40

G3 CSTA System Capacity

can
m

e
on
nt
ons.

e 3.

of
d

e 2.

nts
Simultaneous
cstaMonitorCallsVia
Device monitor
requests on one
ACD device

One, but a
G3PD
multiplexes
client
requests into
a single
association.

One, but a
G3PD
multiplexes
client
requests into
a single
association.

One, but a
G3PD
multiplexes
client
requests into
a single
association.

No
maximum
number but
limited by
G3PD
memory

Monitor
requests
come fro
the sam
applicati
or differe
applicati

Simultaneous
CSTA Clear
Connection, Clear
Call, and Set
Feature Service
requests

300 per G3
switch

75 per G3
switch

3000 per G3
switch

Limited by
switch
capacity and
link capacity

See Not

Simultaneous
CSTA service
requests other
than the ones
listed in the
preceding table
cell

2000 per G3
switch

250 per G3
switch

6000 per G3
switch

Limited by
the lesser of
switch
capacity and
link capacity

Maximum
number
monitore
stations
See Not

Number of
simultaneous call
classifications in
progress
(predictive calls in
between the make
call request and
the switch
returning a
classification)

40 per G3
switch

40 per G3
switch

400 per G3
switch

N/A

Number of
simultaneous
outstanding route
requests on a G3
CTI link

127 127 4000 (G3V8
and later)

127 (G3V7
and earlier)

Table 3-8. CSTA System Capacities

Parameter
G3i System
Capacity

G3s System
Capacity

G3r System
Capacity

G3 PBX
Driver
Capacity Comme
Issue 1 — December 2001

3-41DEFPROG.PDF R10.1 V1

G3 CSTA Service Groups

e 4.

n

d
CD

e 5.

TA

f a
d

ill be
very

nts
The following notes provide additional information pertaining to CSTA system
capacity in Table 3-8.

Number of devices
that can be on a
call

Six Six Six Six See Not

Number of
cstaMonitor
CallsViaDevice
monitored objects
that can be
involved in a call

One per G3
switch; three
for G3V3 or
later

One per G3
switch; three
for G3V3 or
later

One per G3
switch; three
for G3V3 or
later

A G3PD
multiplexes
client
requests into
a single
association.

A call ca
only be
actively
monitore
via one A
device.
See Not

Number of CSTA
monitor requests
that can be
involved in a call

N/A N/A N/A No
maximum
number but
limited by
G3PD
memory

Each CS
Event
Report o
monitore
object w
sent to e
monitor
request.

Note 1 This number consists of all Monitored objects, outstanding Call
Control Service requests, and outstanding Set Feature Service
requests (as well as the outstanding requests of Query Services
and Routing Service). The 2000 number is the default number
set for each CTI link. This number can be higher or lower
depending on the memory configuration of the G3PD DLL/NLM.
This number should be configured according to the
administration information in the DEFINITY Network Manager’s
Guide for Windows NT or NetWare Telephony Services.

Note 2 This is not the number of total monitor requests. An object
monitored by multiple monitor requests is counted only once.
All Call Control Service requests on a station device other than
Clear Connection and Clear Call are included in this number.
When a station device is monitored, the Call Control Service
requests on the device are not counted as additional requests.

Table 3-8. CSTA System Capacities

Parameter
G3i System
Capacity

G3s System
Capacity

G3r System
Capacity

G3 PBX
Driver
Capacity Comme
Issue 1 — December 2001

DEFPROG.PDF R10.1 V13-42

Multiple Telephony Server Considerations
Multiple Telephony Server
Considerations

Due to the system capacity limitations, care must be taken when using multiple
G3PDs (on the same or different Tservers) for the same G3 PBX switch.

■ The simultaneous cstaMonitorDevice requests on one station device are
limited to two per G3 PBX. A maximum of two G3PDs can monitor the
same station at the same time.

■ The simultaneous cstaMonitorCallsViaDevice monitor requests on one
ACD device (VDN or ACD split) are limited to one per G3 PBX. A
maximum of one G3PD can monitor the same ACD device at a time.

■ A call may pass through an ACD device monitored by one G3PD and be
redirected to another ACD device monitored by another G3PD. The former
will lose the event reports of that call after Diverted Event Report. Similar
cases can result when two calls that are monitored by
cstaMonitorCallsViaDevice requests from different G3PDs are merged
(transfer or conference operations or requests) into one.

Multiple CTI Link Considerations

For NetWare, when a G3PD is configured to provide multiple advertised services
using multiple links to a G3 PBX, the above G3 CSTA limits above apply the
G3PD, not to each advertised service. Thus, for example, for a given call there
can be one cstaMonitorCallsViaDevice association between the switch and the
G3PD. As the table states, however, multiple clients (and these may be clients
that have opened streams to different advertised services) may monitor the call
using cstaMonitorCallsViaDevice.

If a link to a G3 PBX becomes unavailable, all monitors or controls using that link
terminate. New monitors or feature requests will be made across any remaining
links to the G3 PBX.

Note 3 This is an estimated number. This number includes all
outstanding Clear Connection Service requests, Set Feature
Service requests, and Query Service requests.

Note 4 A call can have a maximum of six parties.

Note 5 A call may pass through several ACD devices monitored by
cstaMonitorCallsViaDevice requests, but only one is active (that
is, receives event reports for that call) for that call at one time.
Issue 1 — December 2001

3-43DEFPROG.PDF R10.1 V1

G3 CSTA Service Groups
During initialization, G3PD advertises for each G3 PBX configured with a link in
g3pd.ini even though none of the links to the G3 PBX may be in service. G3PD
ceases to advertise when the G3PD DLL/NLM is unloaded. If an application
makes an open stream request and there is no link available to the G3 PBX, the
application will receive an ACS Universal Failure with code (DRIVER_LINK_
UNAVAILABLE).

If all links to a G3 PBX become unavailable, any previously opened streams
remain open until the application closes them or the G3PD unloads. The
application will not receive a message indicating that there are no links unless the
application has used cstaSysStatStart to request system status event reporting.

If a CTI link to a G3 PBX goes down, G3PD sends:

■ a CSTA Universal Failure event for each outstanding request
(cstaMakeCall(), etc.). An outstanding CSTA request is one that has not
yet received a confirmation event. The error code is set to RESOURCE_
OUT_OF_SERVICE (34). The client should re-issue the request. If other
links are available, the new request will succeed. If no other links are
available, the client will continue to receive RESOURCE_OUT_OF_
SERVICE (34) and should assume service is unavailable.

■ a Monitor End event for any previously established monitor requests. The
cause will be EC_NETWORK_NOT_OBTAINABLE (21). The client should
re-establish the monitor request. If other links are available, the monitor
request will be honored. If no other links are available, the client will
receive a CSTA Universal Failure with the error code set to RESOURCE_
OUT_OF_SERVICE (34) and should assume service to the switch is
unavailable.

■ a Route End event for any active Route Select dialogue. The client need
do nothing.

■ a Route Register Abort event will be sent to the application when all of the
CTI links that support the routeRequestEvents for the registered routing
device are down. The application could make use of System and Link
Status Notification (see Chapter 11, "System Status Service Group") to
determine when the link comes back up. If the application wants to
continue the routing service after the CTI link is up, it must issue a
cstaRouteRegisterReq() to re-establish a routing registration session for
the routing device.

■ The system status services and events provide G3 private data that inform
applications of the status of the multiple links to a G3 PBX. Refer to
Chapter 11, "System Status Service Group".
Issue 1 — December 2001

DEFPROG.PDF R10.1 V13-44

Format and Conventions
Format and Conventions

This following general format is used to describe each G3 CSTA Service.

Direction: Direction of the service request or event report across the
TSAPI interface:

■ Client to Switch client/application to switch/G3PD

■ Switch to Client switch/G3PD to client/application

Function and
Confirmation
Event:

CSTA service request function and CSTA confirmation event as
defined in Telephony Services Application Programming
Interface (TSAPI).

Private Data
Function and
Private Data
Confirmation
Event

Private data setup function and private data confirmation event,
if any. This function may be called to setup private parameters,
if any. This function returns an error, if there is an error in the
private parameters. An application should check the return
value to make sure that the private data is set up correctly
before sending the request to the G3PD.

Service
Parameters:

List of parameters for this service request. Common ACS
parameters such as acsHandle, invokeID, and privateData are
not shown.

Private
Parameters:

List of parameters that can be specified in private data for this
service request.

Ack
Parameters:

List of parameters in the confirmation event for the positive
acknowledgment from the server. Common ACS parameters
such as acsHandle, eventClass, eventType, and privateData
are not shown.

Ack Private
Parameters:

List of parameters in the private data of the confirmation event
for the positive acknowledgment from the server.

Nak Parameter:
universalFailure

If the request is not successful, the application will receive a
CSTAUniversalFailureConfEvent. The error parameter in this
event may contain one of the error values described in the
‘‘CSTAUniversalFailureConfEvent’’ section in this chapter

Functional
Description

Detailed description of the telephony function that this CSTA
Service provides in a G3 CSTA environment.

Service Parameters:

parameter Detailed information for each parameter in the service request.
A noData indicator means that it requires no additional
parameters other than the common ACS parameters.

The mandatory/optional attribute of a parameter is defined as
follows:
Issue 1 — December 2001

3-45DEFPROG.PDF R10.1 V1

G3 CSTA Service Groups
mandatory [mandatory] This parameter is mandatory as defined in
Standard ECMA-179. It must be present in the service request.
If not, the service request will be denied with OBJECT_NOT_
KNOWN.

mandatoryPartially [mandatory - partially supported] This parameter is mandatory
as defined in Standard ECMA-179. However, G3 CSTA can
only support part of the parameter due to the G3 PBX feature
limitations. The G3PD sets a G3 default value for the portion not
supported.

mandatoryNotSupt [mandatory - not supported] This parameter is mandatory as
defined in Standard ECMA-179. However, G3 CSTA does not
support this parameter due to the G3 PBX feature limitations.
"Not supported" means that whether the application passes it or
not, the value specified will be ignored and a default value will
be assigned. If this is a parameter (for example, event report
parameter) returned from the switch, the G3PD sets a G3
default value for this parameter.

optional [optional] This parameter is optional as defined in Standard
ECMA-179. It may or may not be spresent in the service
request. If not, the G3PD sets a G3 default value.

optionalSupporte
d

[optional - supported] This parameter is optional as defined in
Standard ECMA-179, but it is always supported.

optionalPartially [optional - partially supported] This parameter is optional as
defined in Standard ECMA-179. However, G3 CSTA Services
can only support part of the parameter due to the G3 PBX
feature limitations. The part that is not supported will be ignored,
if it is present.

optionalNotSupport [optional - not supported] This parameter is optional as defined
in Standard ECMA-179, but it is not supported by G3 CSTA
Services. "Not supported" means that whether the application
passes it or not, the value specified will be ignored and the
G3PD will assign a G3 default value.

optionalLimitedSupt [optional - limited support] This parameter is optional as defined
in Standard ECMA-179, but it is not fully supported by G3 CSTA
Services.

NOTE:
An application must understand the limitations of this
parameter in order to use the information correctly. The
limitations are described in the Detailed Information
section associated with each service.

Private Service Parameters:

parameter Detailed information for each private parameter in the service
request.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V13-46

Format and Conventions
The mandatory/optional attribute of a parameter is defined as
follows:

mandatory [mandatory] This parameter is mandatory for the specific
service. It must be present in the private data of the request. If
not, the service request will be denied by the G3PD with
OBJECT_NOT_KNOWN.

optional [optional] This parameter is optional for the specific service. It
may or may not be present in the private data. If not, G3PD will
assign a G3 default value.

optionalNotSupported [optional — not supported] This parameter is optional for the
specific service. This parameter is reserved for future use. It is
ignored for the current implementation.

Ack Parameters:

parameter Detailed information for each parameter in the service
confirmation event. A noData indicator means that the G3PD
sends no additional parameters other than the confirmation
event itself along with the common ACS parameters.

Ack Private Parameters:

parameter Detailed information for each parameter in the private data of
the service confirmation event.

Nak Parameter:

universalFailure If the request is not successful, the application will receive a
CSTAUniversalFailureConfEvent. The error parameter in this
event may contain one of the error values described in the
‘‘CSTAUniversalFailureConfEvent’’ section in this chapter.

Detailed
Information:

Detailed information about switch operations, feature
interactions, restrictions, and special rules.

Syntax: C-declarations of the TSAPI function and the confirmation event
for this service.

Private
Parameter
Syntax:

C-declarations of the private parameters and the set up
functions and of the private parameters in the confirmation
event for this service.

Example: Programming examples are given for some of the services and
events.
Issue 1 — December 2001

3-47DEFPROG.PDF R10.1 V1

G3 CSTA Service Groups
Common ACS Parameter Syntax

typedef unsigned longInvokeID_t;

typedef unsigned shortACSHandle_t;

typedef unsigned shortEventClass_t;

typedef unsigned shortEventType_t;

// defines for ACS event classes

#define ACSREQUEST 0
#define ACSUNSOLICITED 1
#define ACSCONFIRMATION 2

// defines for CSTA event classes

#define CSTAREQUEST 3
#define CSTAUNSOLICITED 4
#define CSTACONFIRMATION 5
#define CSTAEVENTREPORT 6
Issue 1 — December 2001

DEFPROG.PDF R10.1 V13-48

CSTAUniversalFailureConfEvent
CSTAUniversalFailureConfEvent

The CSTA universal failure confirmation event provides a generic negative
response from the server/switch for a previously requested service. The
CSTAUniversalFailureConfEvent will be sent in place of any confirmation event
described in each service function description when the requested function fails.
The confirmation events defined for each service function are only sent when that
function completes successfully.

Here is a list of most commonly used CSTA errors returned by G3 CSTA Services
in the CSTAUniversalFailureConfEvent for a negative acknowledgment of this
service.

NOTE:
This list does not include those error codes that are returned by the Tserver
EXE/NLM. Those error codes (for example, security violation detected by
Tserver) returned by the Tserver EXE/NLM are documented in Telephony
Services Application Programming Interface (TSAPI).

This list does not include all possible errors. An application program should be
able to handle any CSTA error defined in the CSTAUniversalFailure_t. Failure to
do so may cause the application program to fail.

The following common errors apply to every CSTA Service supported by G3
CSTA Services. They will not be repeated for each service description.

Table 3-9. Common CSTA Service Errors

universalFailure ■ If the request is not successful, the application will
receive a CSTAUniversalFailureConfEvent. The error
parameter may contain one of the following error values:

■ GENERIC_OPERATION (1) The CTI protocol has been
violated or the service invoked is not consistent with a
CTI application association. Report this error to — see
‘‘Customer Support’’ on page 1-6.

■ REQUEST_INCOMPATIBLE_WITH_OBJECT (2) The
service request does not correspond to a CTI
application association. Report this error — see
‘‘Customer Support’’ on page 1-6.

■ VALUE_OUT_OF_RANGE (3) The G3 PBX switch
detects that a required parameter is missing in the
request or an out-of-range value has been specified.
Issue 1 — December 2001

3-49DEFPROG.PDF R10.1 V1

G3 CSTA Service Groups
■ OBJECT_NOT_KNOWN (4) The G3PD detects that a
required parameter is missing in the request. For
example, the deviceID of a connectionID is not specified
in a service request.

■ INVALID_FEATURE (15) The G3PD detects a CSTA
Service request that is not supported by the G3 PBX
switch.

■ GENERIC_SYSTEM_RESOURCE_AVAILABILITY (31)
The request cannot be executed due to a lack of
available switch resources.

■ RESOURCE_OUT_OF_SERVICE (34) An application
can receive this error code when a single CSTA Service
request is ending abnormally due to protocol error.

■ NETWORK_BUSY (35) The PBX switch is not accepting
the request at this time because of processor overload.
The application may wish to retry the request but should
not do so immediately.

■ OUTSTANDING_REQUEST_LIMIT_EXCEEDED (44)
The given request cannot be processed due to the
system resource limit on the device.

■ GENERIC_UNSPECIFIED_REJECTION (70) This is a
G3 PBX Driver internal error, but it cannot be any more
specific. A system administrator may find more detailed
information about this error in the G3PD error logs.
Report this error — see ‘‘Customer Support’’ on page
1-6.

■ GENERIC_OPERATION_REJECTION (71) This is a G3
PBX Driver internal error, but not a defined error. A
system administrator should check the G3PD error logs
for more detailed information about this error. Report
this error — see ‘‘Customer Support’’ on page 1-6.

■ DUPLICATE_INVOCATION_REJECTION (72) The
G3PD detects that the invokeID in the service request is
being used by another outstanding service request.
This service request is rejected. The outstanding
service request with the same invokeID is still valid.

■ UNRECOGNIZED_OPERATION_REJECTION (73) The
G3PD detects that the service request from a client
application is not defined in the API. A CSTA request
with a 0 or negative invokeID will receive this error.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V13-50

CSTAUniversalFailureConfEvent
■ RESOURCE_LIMITATION_REJECTION (75) The
G3PD detects that it lacks internal resources such as
the memory or data records to process a service
request. A system administrator should check the
G3PD error logs for more detailed information about this
error. This failure may reflect a temporary situation. The
application should retry the request.

■ ACS_HANDLE_TERMINATION_REJECTION (76) The
G3PD detects that an acsOpenStream session is
terminating. The G3PD sends this error for every
outstanding CSTA request of this ACS Handle. If the
session is not closed in an orderly fashion, the
application may not receive this error. For example, a
user may power off the PC before the application issues
an acsCloseStream request and waits for the
confirmation event. In this case, the acsCloseStream is
issued by the Tserver on behalf of the application and
there is no application to receive this error. If an
application issues an acsCloseStream request and
waits for its confirmation event, the application will
receive this error for every outstanding request.
Issue 1 — December 2001

3-51DEFPROG.PDF R10.1 V1

G3 CSTA Service Groups
■ SERVICE_TERMINATION_REJECTION (77) The
G3PD detects that it cannot provide the service due to
the failure or shutting down of the communication link
between the Telephony Server and the G3 PBX. The
G3PD sends this error for every outstanding CSTA
request for every ACS Handle affected. Although the
link is down or the switch is out of service, the G3PD
remains loaded and advertised. When the G3PD is in
this state, all CSTA Service requests from a client will
receive a negative acknowledgment with this unique
error code.

■ REQUEST_TIMEOUT_REJECTION (78) The G3PD did
not receive the response of a service request sent to the
G3 PBX more than 20 seconds ago. The timer of the
request has expired. The request is canceled and
negatively acknowledged with this unique error code.
When this occurs, the communication link between the
Telephony Server and the G3 switch may be congested.
This can happen when the PBX and/or the Tserver
exceeds their capacity.

■ REQUESTS_ON_DEVICE_EXCEEDED_REJECTION
(79) For a device, the G3 PBX processes one service
request at a time. The G3PD queues CSTA requests for
a device. Only a limited number of CSTA requests can
be queued on a device. This number is defined in the
MAX_REQS_QUEUED_PER_DEV parameter in the
g3pd.ini1 file. If this number is exceeded, the incoming
client request is negatively acknowledged with this
unique error code. Usually an application sends one
request and waits for its completion before it makes
another request. The MAX_REQS_QUEUED_PER_
DEV parameter has no effect on this kind of operation.
Situations of sending a sequence of requests without
waiting for their completion are rare. However, if this is
the case, the MAX_REQS_QUEUED_PER_DEV
parameter should be set to a proper value. The default
value for MAX_REQS_QUEUED_PER_DEV is 4.

1. See the DEFINITY ECS Network Manager’s Guide for your product.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V13-52

CSTAUniversalFailureConfEvent
Syntax

The following structure shows only the relevant portions of the unions for this
message:

typedef struct
{

ACSHandle_t acsHandle;
EventClass_teventClass;
EventType_t eventType;

} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_teventHeader;
union
{

struct
{

InvokeID_t invokeID;
union
{

CSTAUniversalFailureConfEvent_tuniversalFailure;
} u;

} cstaConfirmation;
} event;

} CSTAEvent_t;

typedef struct CSTAUniversalFailureConfEvent_t {
CSTAUniversalFailure_t error;

} CSTAUniversalFailureConfEvent_t;

The universalFailure error codes are listed below:

typedef enum CSTAUniversalFailure_t {
GENERIC_UNSPECIFIED = 0,

GENERIC_OPERATION = 1,
REQUEST_INCOMPATIBLE_WITH_OBJECT = 2,
VALUE_OUT_OF_RANGE = 3,
OBJECT_NOT_KNOWN = 4,
INVALID_CALLING_DEVICE = 5,
INVALID_CALLED_DEVICE = 6,
INVALID_FORWARDING_DESTINATION = 7,

PRIVILEGE_VIOLATION_ON_SPECIFIED_DEVICE = 8,
PRIVILEGE_VIOLATION_ON_CALLED_DEVICE = 9,
PRIVILEGE_VIOLATION_ON_CALLING_DEVICE = 10,
INVALID_CSTA_CALL_IDENTIFIER = 11,
INVALID_CSTA_DEVICE_IDENTIFIER = 12,
INVALID_CSTA_CONNECTION_IDENTIFIER = 13,
INVALID_DESTINATION = 14,
INVALID_FEATURE = 15,
Issue 1 — December 2001

3-53DEFPROG.PDF R10.1 V1

G3 CSTA Service Groups
Syntax (Continued)

INVALID_ALLOCATION_STATE = 16,
INVALID_CROSS_REF_ID = 17,
INVALID_OBJECT_TYPE = 18,
SECURITY_VIOLATION = 19,

GENERIC_STATE_INCOMPATIBILITY = 21,
INVALID_OBJECT_STATE = 22,
INVALID_CONNECTION_ID_FOR_ACTIVE_CALL = 23,
NO_ACTIVE_CALL = 24,
NO_HELD_CALL = 25,
NO_CALL_TO_CLEAR = 26,
NO_CONNECTION_TO_CLEAR = 27,
NO_CALL_TO_ANSWER = 28,
NO_CALL_TO_COMPLETE = 29,
GENERIC_SYSTEM_RESOURCE_AVAILABILITY = 31,
SERVICE_BUSY = 32,
RESOURCE_BUSY = 33,
RESOURCE_OUT_OF_SERVICE = 34,
NETWORK_BUSY = 35,
NETWORK_OUT_OF_SERVICE = 36,
OVERALL_MONITOR_LIMIT_EXCEEDED = 37,
CONFERENCE_MEMBER_LIMIT_EXCEEDED = 38,
GENERIC_SUBSCRIBED_RESOURCE_AVAILABILITY = 41,
OBJECT_MONITOR_LIMIT_EXCEEDED = 42,
EXTERNAL_TRUNK_LIMIT_EXCEEDED = 43,
OUTSTANDING_REQUEST_LIMIT_EXCEEDED = 44,
GENERIC_PERFORMANCE_MANAGEMENT = 51,
PERFORMANCE_LIMIT_EXCEEDED = 52,
SEQUENCE_NUMBER_VIOLATED = 61,
TIME_STAMP_VIOLATED = 62,
PAC_VIOLATED = 63,
SEAL_VIOLATED = 64, // The above errors are detected

// either by the switch or by
// the G3PD.

// The following rejections are
// generated by the G3PD, not by

// the switch.
GENERIC_UNSPECIFIED_REJECTION = 70,

GENERIC_OPERATION_REJECTION = 71,
DUPLICATE_INVOCATION_REJECTION = 72,
UNRECOGNIZED_OPERATION_REJECTION = 73,
MISTYPED_ARGUMENT_REJECTION = 74,
RESOURCE_LIMITATION_REJECTION = 75,
ACS_HANDLE_TERMINATION_REJECTION = 76,
SERVICE_TERMINATION_REJECTION = 77,
REQUEST_TIMEOUT_REJECTION = 78,
REQUESTS_ON_DEVICE_EXCEEDED_REJECTION = 79

} CSTAUniversalFailure_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 V13-54

ACSUniversalFailureConfEvent
ACSUniversalFailureConfEvent

Error values in this category indicate that the G3PD detected an ACS-related
error. This type includes one of the following specific error values:

Table 3-10. ACS-Related Errors

■ DRIVER_DUPLICATE_ACSHANDLE (1000) The
acsHandle given for an ACS Stream request is already
in use for a session. The already open session with the
acsHandle is remains open.

■ DRIVER_INVALID_ACS_REQUEST (1001) The ACS
message contains an invalid or unknown request. The
request is rejected.

■ DRIVER_ACS_HANDLE_REJECTION (1002) The
request is rejected because a CSTA request was issued
with no prior acsOpenStream request or the acsHandle
given for an acsOpenStream request is 0 or negative.

■ DRIVER_INVALID_CLASS_REJECTION (1003) The
driver received a message containing an invalid or
unknown message class. The request is rejected.

■ DRIVER_GENERIC_REJECTION (1004) The driver
detected an invalid message for something other than
message type or message class. This is an internal
error and should be reported — see ‘‘Customer
Support’’ on page 1-6.
Issue 1 — December 2001

3-55DEFPROG.PDF R10.1 V1

G3 CSTA Service Groups
■ DRIVER_RESOURCE_LIMITATION (1005) The driver
did not have adequate resources (that is memory, etc.)
to complete the requested operation. This is an internal
error and should be reported — see ‘‘Customer
Support’’ on page 1-6.

■ DRIVER_ACSHANDLE_TERMINATION (1006) Due to
problems with the link to the PBX, the driver has found it
necessary to terminate the session with the given
acsHandle. The session will be closed, and all
outstanding requests will terminate.

■ DRIVER_LINK_UNAVAILABLE (1007) The driver was
unable to open the new session because no link was
available to the PBX. The link may have been placed in
the BLOCKED state, it may have been taken off line, or
some other link failure may have occurred. When the
link is in this state, G3PD remains loaded and
advertised and sends this error for every new
acsOpenStream request until the link becomes available
again. A previously opened session will remain open
when the link is in this state. It will receive no specific
notification about the link status unless it attempts a
CSTA request. In this state, a CSTA request will receive
a CSTA Universal Failure with the error SERVICE_
TERMINATION_REQUEST.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V13-56

Issue 1 — December 2001

DEFPROG.PDF R10.1 V1
4

Call Control Service Group
Overview

The services in this group enable a telephony client application to control a call or
connection on the G3 switch. These services are typically used for placing calls
from a device and controlling any connection on a single call as the call moves
through the G3 switch.

In the following subsections each Call Control Service supported in the Windows
NT or NetWare Telephony Services product is illustrated using the conventions
below:

■ Boxes represent devices and D1, D2, and D3 represent deviceIDs.

■ Circles represent calls and C1, C2, and C3 represent callIDs.

■ Lines represent connections between a call and a device; and C1-D1,
C1-D2, C2- D3, etc., represent connectionIDs.

■ The absence of a line is equivalent to a connection in the Null connection
state.

■ Labels in boxes and circles represent call and device instances.

■ Labels on lines represent a connection state using the following key:

— a = Alerting

— c = Connected

— f = Failed

— h = Held

— i = Initiated

— q = Queued
4-1

Call Control Service Group
— a/h = Alerting or Held

— * = Unspecified

■ Grayed boxes represent devices in a call unaffected by the service or event
report.

■ White boxes and circles represent devices and calls affected by the service
or event report.

■ The parameters for the function call of the service are indicated in bold
italic font.

Alternate Call Service

The Alternate Call Service provides a compound action of the Hold Call Service
followed by Retrieve Call Service/Answer Call. The Alternate Call Service places
an existing activeCall (C1- D1) at a device to another device (D2) on hold and, in
a combined action, retrieves/establishes a held/delivered otherCall (C2-D1)
between the same device D1 and another device (D3) as the active call. Device
D2 can be considered as being automatically placed on hold immediately prior to
the retrieval/establishment of the held/alerting call to device D3. A successful
service request will cause the held/alerting call to be swapped with the active call.

Answer Call Service

The Answer Call Service is used to answer an incoming call (C1) that is alerting a
device (D1) with the connection alertingCall (C1-D1). This service is typically
used with telephones that have attached speakerphone units to establish the call
in a hands-free operation. The Answer Call Service can also be used to retrieve a
call (C1) that is held by a device (D1) with the connection alertingCall (C1-D1).
Issue 1 — December 2001

DEFPROG.PDF R10.1 V14-2

Overview
Clear Call Service

This service will cause each device associated with a call (C1) to be released and
the connectionIDs (and their components) to be freed.

Clear Connection Service

This service releases the specified connection, call (C1-D3), and its connectionID
instance from the designated call (C1). The result is as if the device had hung up
on the call. The phone does not have to be physically returned to the switchhook,
which may result in silence, dial tone, or some other condition. Generally, if only
two connections are in the call, the effect of cstaClearConnection is the same as
cstaClearCall. Note that it is likely that the call (C1) is not cleared by this service if
it is some type of conference.

Conference Call Service

This service provides the conference of an existing heldCall (C1-D1) and another
activeCall (C2-D1) at the same device. The two calls are merged into a single call
(C3) and the two connections (C1-D1, C2-D1) at the conferencing device (D1) are
resolved into a single connection, newCall (C3-D1), in the Connected state.
Issue 1 — December 2001

4-3DEFPROG.PDF R10.1 V1

Call Control Service Group
Consultation Call Service

The Consultation Call Service will provide the compound action of the Hold Call
Service followed by Make Call Service. This service places an active activeCall
(C1-D1) at a device (D1) on hold and initiates a new call from the same device D1
to another calledDevice (D3). The client is returned with the connection newCall
(C2-D1).

Consultation Direct-Agent Call Service

The Consultation Direct-Agent Call Service will provide the compound action of
the Hold Call Service followed by Make Direct-Agent Call Service. This service
places an active activeCall (C1-D1) at a device (D1) on hold and initiates a new
direct-agent call from the same device D1 to another calledDevice (D3). The
client is returned with the connection newCall (C2-D1).
Issue 1 — December 2001

DEFPROG.PDF R10.1 V14-4

Overview
Consultation Supervisor-Assist Call Service

The Consultation Supervisor-Assist Call Service will provide the compound action
of the Hold Call Service followed by Make Supervisor-Assist Call Service. This
service places an active activeCall (C1-D1) at a device (D1) on hold and initiates a
new supervisor-assist call from the same device D1 to another calledDevice (D3).
The client is returned with the connection newCall (C2-D1).

Deflect Call Service

The Deflect Call Service redirects an alerting call (C1) at a device (D1) with the
connection deflectCall to a new destination, either on-PBX or off-PBX.

Hold Call Service

The Hold Call Service places a call (C1) at a device (D1) with the connection
activeCall (C1-D1) on hold. The effect is as if the specified party depressed the
hold button on the device or flashed the switchhook to locally place the call on
hold. The call is usually in the active state. This service maintains a relationship
between the holding device (D1) and the held call (C1) that lasts until the call is
retrieved from the hold status or until the call is cleared.
Issue 1 — December 2001

4-5DEFPROG.PDF R10.1 V1

Call Control Service Group
Make Call Service

The Make Call Service originates a call between two devices designated by the
application. When the service is initiated, the callingDevice (D1) is prompted (if
necessary), and when that device acknowledges, a call to the calledDevice (D2) is
originated. A call is established as if D1 had called D2, and the client is returned
with the connection newCall (C1-D1).

Make Direct-Agent Call Service

The Make Direct-Agent Call Service originates a call between two devices: a user
station and an ACD agent logged into a specified split. When the service is
initiated, the callingDevice (D1) is prompted (if necessary), and when that device
acknowledges, a call to the calledDevice (D2) is originated. A call is established
as if D1 had called D2, and the client is returned with the connection newCall
(C1-D1).

The Make Direct Agent Call Service should be used only in the following two
situations:

■ Direct Agent Calls in a non-EAS environment

■ Direct Agent Calls in an EAS environment only when it is required to
ensure that these calls against a skill other than that skill specified for these
measurements on the DEFINITY PBX for that agent.

Prefereably in an EAS environment, Direct Agent Calls can be made using the
Make Call service and specifying an Agent login-ID as the destination device. In
Issue 1 — December 2001

DEFPROG.PDF R10.1 V14-6

Overview
this case Direct Agent Calls will be measured against the skill specified or those
measurements on the DEFINITY PBX for that agent.

Make Predictive Call Service

The Make Predictive Call Service originates a Switch-Classified call between two
devices. The service attempts to create a new call and establish a connection
with the calledDevice (D2) first. The client is returned with the connection newCall
(C1-D2).

Make Supervisor-Assist Call Service

The Make Supervisor-Assist Call Service originates a supervisor-assist call
between two devices: an ACD agent station and another station (typically a
supervisor). When the service is initiated, the callingDevice (D1) is prompted (if
necessary), and when that device acknowledges, a call to the calledDevice (D2) is
originated. A call is established as if D1 had called D2, and the client is returned
with the connection newCall (C1-D1).

Pickup Call Service

The Pickup Call Service takes an alerting call (C1) at a device (D1) with the
connection deflectCall to another on-PBX device.
Issue 1 — December 2001

4-7DEFPROG.PDF R10.1 V1

Call Control Service Group
Reconnect Call Service

The Reconnect Call Service allows a client to disconnect an existing connection
activeCall (C2- D1) from a call and then retrieve/establish a previously
held/delivered connection heldCall (C1- D1).

Retrieve Call Service

The service restores a held connection heldCall (C1-D1) to the Connected state
(active).

Transfer Call Service

This service provides the transfer of a heldCall (C1-D1) with an activeCall (C2-D1)
at the same device (D1). The transfer service merges two calls (C1, C2) with
connections (C3-D2, C3-D3) at a single common device (D1) into one call (C3).
Also, both of the connections to the common device become Null and their
connectionIDs are released. When the transfer completes, the common device
Issue 1 — December 2001

DEFPROG.PDF R10.1 V14-8

Alternate Call Service
(D1) is released from the calls (C1, C2). A callID, newCall (C3) that specifies the
resulting new call for the transferred call is provided.

Alternate Call Service

Direction: Client to Switch
Function: cstaAlternateCall ()
Confirmation Event: CSTAAlternateCallConfEvent
Service Parameters: activeCall, otherCall
Ack Parameters: noData
Nak Parameter: universalFailure

Functional Description:

The Alternate Call Service allows a client to put an existing active call (activeCall)
on hold and then answer an alerting (or bridged) call or retrieve a previously held
call (otherCall) at the same station. It provides the compound action of the Hold
Call Service followed by an Answer Call Service or a Retrieve Call Service.

The Alternate Call Service request is acknowledged (Ack) by the switch if the
switch is able to put the activeCall on hold and

■ connect the specified alerting otherCall either by forcing the station
off-hook (turning the speakerphone on) or waiting up to five seconds for the
user to go off- hook, or

■ retrieve the specified held otherCall.

The request is negatively acknowledged if the switch:

■ fails to put activeCall on hold (for example, call is in alerting state),

■ fails to connect the alerting otherCall (for example, call dropped), or

■ fails to retrieve the held otherCall.

If the request is negatively acknowledged, the G3PD will attempt to put the
activeCall to its original state, if the original state is known by the G3PD before the
service request. If the original state is unknown, there is no recovery for the
activeCall ’s original state.
Issue 1 — December 2001

4-9DEFPROG.PDF R10.1 V1

Call Control Service Group
Service Parameters:

Ack Parameter:

Nak Parameter:

activeCall [mandatory] A valid connection identifier that indicates the
callID and the station extension (STATIC_ID). The
deviceID in activeCall must contain the station extension of
the controlling device. The local connection state of the call
can be either active or held.

otherCall [mandatory] A valid connection identifier that indicates the
callID and the station extension (STATIC_ID). The
deviceID in otherCall must contain the station extension of
the controlling device. The local connection state of the call
can be either alerting, bridged, or held.

noData None for this service.

universalFailure If the request is not successful, the application will receive a
CSTAUniversalFailureConfEvent. The error parameter in
this event may contain the following error values, or one of
the error values described in the
‘‘CSTAUniversalFailureConfEvent’’ section in Chapter 3:

■ INVALID_CSTA_DEVICE_IDENTIFIER (12) An invalid
device identifier or extension is specified in activeCall or
otherCall.

■ INVALID_CSTA_CONNECTION_IDENTIFIER (13) An
incorrect callID, a incorrect deviceID, or dynamic device
ID type is specified in activeCall or otherCall.

■ GENERIC_STATE_INCOMPATIBILITY (21) The
otherCall station user did not go off-hook within five
seconds and is not capable of being forced off-hook.

■ INVALID_OBJECT_STATE (22) The otherCall is not in
the alerting, connected, held, or bridged state.

■ INVALID_CONNECTION_ID_FOR_ACTIVE_CALL (23)
The controlling deviceID in activeCall and otherCall is
different.

■ NO_ACTIVE_CALL (24) The activeCall to be put on
hold is not currently active (in alerting state, for
example) so it cannot be put on hold.

■ NO_CALL_TO_ANSWER (28) The otherCall was
redirected to coverage within the five- second interval.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V14-10

Alternate Call Service
Detailed Information:

See ‘‘Detailed Information:’’ in the “Answer Call Service” section and ‘‘Detailed
Information:’’ in the “Hold Call Service” section in this chapter.

■ GENERIC_SYSTEM_RESOURCE_AVAILABILITY (31)
The client attempted to add a seventh party (otherCall)
to a call with six active parties.

■ RESOURCE_BUSY (33) User at the otherCall station is
busy on a call or there is no idle appearance available.
It is also possible that the switch is busy with another
CSTA request. This can happen when two G3PDs are
issuing requests (for example, Hold Call, Retrieve Call,
Clear Connection, etc.) to the same device.

■ OUTSTANDING_REQUEST_LIMIT_EXCEEDED (44)
The client attempted to put a third party (activeCall) on
hold (two parties are on hold already) on an analog
station.

■ MISTYPED_ARGUMENT_REJECTION (74)
DYNAMIC_ID is specified in activeCall or otherCall.
Issue 1 — December 2001

4-11DEFPROG.PDF R10.1 V1

Call Control Service Group
Syntax

#include <acs.h>
#include <csta.h>

// cstaAlternateCall() - Service Request

RetCode_t cstaAlternateCall (
ACSHandle_t acsHandle,
InvokeID_t invokeID,
ConnectionID_t *activeCall, // devIDType= STATIC_ID
ConnectionID_t *otherCall, // devIDType= STATIC_ID
PrivateData_t *privateData);

// CSTAAlternateCallConfEvent - Service Response

typedef struct
{

ACSHandle_t acsHandle;
EventClass_t eventClass; // CSTACONFIRMATION
EventType_t eventType; // CSTA_ALTERNATE_CALL_CONF

} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{

struct
{

InvokeID_t invokeID;
union
{
CSTAAlternateCallConfEvent_t alternateCall;
} u;

} cstaConfirmation;
} event;
char heap[CSTA_MAX_HEAP];

} CSTAEvent_t;

typedef struct CSTAAlternateCallConfEvent_t {
Nulltype null;

} CSTAAlternateCallConfEvent_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 V14-12

Answer Call Service
Answer Call Service

Direction: Client to Switch
Function: cstaAnswerCall ()
Confirmation Event: CSTAAnswerCallConfEvent
Service Parameters: alertingCall
Ack Parameters: noData
Nak Parameter: universalFailure

Functional Description:

The Answer Call Service allows a client application to request on behalf of a
station user the ability to answer a ringing or bridged call (alertingCall) present at
a station. Answering a ringing or bridged call means to connect a call by forcing
the station off-hook if the user is on- hook, or cutting the call through to the head
or handset if the user is off-hook (listening to dial tone or being in the off-hook idle
state). The effect is as if the station user selected the call appearance of the
alerting or bridged call and went off-hook.

The deviceID in alertingCall must contain the station extension of the endpoint to
be answered on the call. A Delivered Event Report must have been received by
the application prior to this request.

The Answer Call Service can be used to answer a call present at any station type
(for example, analog, DCP, hybrid, and BRI).

The Answer Call Service request is acknowledged (Ack) by the switch if the
switch is able to connect the specified call either by forcing the station off-hook
(turning on the speakerphone) or waiting up to five seconds for the user to go
off-hook. Answering a call that is already connected or in the held state will result
in a positive acknowledgment and, if the call was held, the call becomes
connected.
Issue 1 — December 2001

4-13DEFPROG.PDF R10.1 V1

Call Control Service Group
Service Parameters:

Ack Parameter:

Nak Parameter:

Detailed Information:

■ Multifunction Station Operation — For a multifunction station user, this
service will be successful in the following situations:

— The user’s state is being alerted on-hook. For example, the user
can either be forced off-hook or is manually taken off-hook within
five seconds of the request. The switch will select the ringing call
appearance.

alertingCall [mandatory] A valid connection identifier that indicates the
callID and the station extension (STATIC_ID).

noData None for this service.

universalFailure If the request is not successful, the application will receive a
CSTAUniversalFailureConfEvent. The error parameter in
this event may contain the following error values, or one of
the error values described in the
‘‘CSTAUniversalFailureConfEvent’’ section in Chapter 3:

■ INVALID_CSTA_DEVICE_IDENTIFIER (12) An invalid
device identifier or extension is specified in alertingCall.

■ INVALID_CSTA_CONNECTION_IDENTIFIER (13) An
incorrect callID or an incorrect deviceID is specified.

■ GENERIC_STATE_INCOMPATIBILITY (21) The station
user did not go off-hook within five seconds and is not
capable of being forced off-hook.

■ INVALID_OBJECT_STATE (22) The specified
connection at the station is not in the alerting,
connected, held, or bridged state.

■ NO_CALL_TO_ANSWER (28) The call was redirected
to coverage within the five-second interval.

■ GENERIC_SYSTEM_RESOURCE_AVAILABILITY (31)
The client attempted to add a seventh party to a call with
six active parties.

■ RESOURCE_BUSY (33) The user at the station is busy
on a call or there is no idle appearance available.

■ MISTYPED_ARGUMENT_REJECTION (74)
DYNAMIC_ID is specified in alertingCall.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V14-14

Answer Call Service
— The user is off-hook idle. The switch will select the alerting call
appearance and answer the call.

— The user is off-hook listening to dial tone. The switch will drop the
dial tone call appearance and answer the alerting call on the alerting
call appearance.

A held call will be answered (retrieved) on the held call appearance, provided that
the user is not busy on another call. This service is not recommended to retrieve a
held call. The cstaRetrieveCall Service should be used instead.

A bridged call will be answered on the bridged call appearance, provided that the
user is not busy on another call, or the exclusion feature is not active for the call.

An ACB, PCOL, or TEG call will be answered on a free call appearance, provided
that the user is not busy on another call.

If the station is active on a call (talking), listening to reorder/intercept tone, or does
not have an idle call appearance (for ACB, ICOM, PCOL, or TEG calls) at the time
the switch receives the Answer Call Service request, the request will be denied.

■ Analog Station Operation For an analog station user, the service will be
successful only under the following circumstances:

— The user is being alerted on-hook (and is manually taken off-hook
within five seconds).

— The user is off-hook idle (or listening to dial tone) with a call waiting.
The switch will drop the dial tone (if any) and answer the call waiting
call.

— The user is off-hook idle (or listening to dial tone) with a held call
(soft or hard). The switch will drop the dial tone (if any) and answer
the specified held call (there could be two held calls at the set, one
soft-held and one hard-held).

An analog station may only have one or two held calls when invoking the Answer
Call Service on a call. If there are two held calls, one is soft-held, the other
hard-held. Answer Call Service on any held call (in the absence of another held
call and with an off- hook station) will reset the switch-hook flash counter to zero,
as if the user had manually gone on-hook and answered the alerting/held call.
Answer Call Service on a hard-held call (in the presence of another, soft-held call
and with an off-hook station) will leave the switch-hook flash counter unchanged.
Thus, the user may use subsequent switch-hook flashes to effect a conference
operation between the previously soft-held call and the active call (reconnected
from the hard-held call). Answer Call Service on a hard-held call in the presence
of another soft-held call and with the station on-hook will be denied. This is
consistent with manual operation because when the user goes on-hook with two
held calls, one soft-held and one hard-held, the user is again alerted, goes
off-hook, and the soft-held call is retrieved.
Issue 1 — December 2001

4-15DEFPROG.PDF R10.1 V1

Call Control Service Group
If the station is active on a call (talking) or listening to reorder/intercept tone at the
time the Answer Call Service is requested, the request will be denied
(RESOURCE_BUSY).
Issue 1 — December 2001

DEFPROG.PDF R10.1 V14-16

Answer Call Service
Syntax

#include <acs.h>
#include <csta.h>

// cstaAnswerCall() - Service Request

RetCode_t cstaAnswerCall (
ACSHandle_t acsHandle,
InvokeID_t invokeID,
ConnectionID_t *alertingCall, // devIDType= STATIC_ID
PrivateData_t *privateData);

// CSTAAnswerCallConfEvent - Service Response

typedef struct
{

ACSHandle_t acsHandle;
EventClass_t eventClass; // CSTACONFIRMATION
EventType_t eventType; // CSTA_ANSWER_CALL_CONF

} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{

struct
{

InvokeID_t invokeID;
union
{
CSTAAnswerCallConfEvent_t answerCall;
} u;

} cstaConfirmation;
} event;
char heap[CSTA_MAX_HEAP];

} CSTAEvent_t;

typedef struct CSTAAnswerCallConfEvent_t {
Nulltype null;

} CSTAAnswerCallConfEvent_t;
Issue 1 — December 2001

4-17DEFPROG.PDF R10.1 V1

Call Control Service Group
Clear Call Service

Direction: Client to Switch
Function: cstaClearCall ()
Confirmation Event: CSTAClearCallConfEvent
Service Parameters: call
Ack Parameters: noData
Nak Parameter: universalFailure

Functional Description:

The Clear Call Service disconnects all connections from the specified call and
terminates the call itself. All connection identifiers previously associated with the
call are no longer valid.

Service Parameters:

Ack Parameter:

Nak Parameter:

Detailed Information:

■ Switch operation — After a successful Clear Call Service request:

— Every station dropped will be in the off-hook idle state.

— Any lamps associated with the call are off.

— Displays are cleared.

— Auto-answer analog stations do not receive dial tone.

— Manual-answer analog stations receive dial tone.

call [mandatory] A valid connection identifier that indicates the
call to be cleared. The deviceID of call is optional. If it is
specified, it is ignored.

noData None for this service.

universalFailure If the request is not successful, the application will receive a
CSTAUniversalFailureConfEvent. The error parameter in
this event may contain the following error values, or one of
the error values described in the
‘‘CSTAUniversalFailureConfEvent’’ section in Chapter 3:

■ NO_ACTIVE_CALL (24) The callID of the connectionID
specified in the request is invalid.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V14-18

Clear Call Service
Syntax

#include <acs.h>
#include <csta.h>

// cstaClearCall() - Service Request

RetCode_t cstaClearCall (
ACSHandle_t acsHandle,
InvokeID_t invokeID,
ConnectionID_t *call,// deviceID, devIDType are ignored
PrivateData_t *privateData);

// CSTAClearCallConfEvent - Service Response

typedef struct
{

ACSHandle_t acsHandle;
EventClass_t eventClass; // CSTACONFIRMATION
EventType_t eventType; // CSTA_CLEAR_CALL_CONF

} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{

struct
{

InvokeID_t invokeID;
union
{
CSTAClearCallConfEvent_t clearCall;
} u;

} cstaConfirmation;
} event;
char heap[CSTA_MAX_HEAP];

} CSTAEvent_t;

typedef struct CSTAClearCallConfEvent_t {
Nulltype null;

} CSTAClearCallConfEvent_t;
Issue 1 — December 2001

4-19DEFPROG.PDF R10.1 V1

Call Control Service Group
Clear Connection Service

Direction: Client to Switch
Function: cstaClearConnection()
Confirmation Event: CSTAClearConnectionConfEvent
Private Data Function: attV6ClearConnection() (private data version 6),
attClearConnection() (private data version 2, 3, 4, and 5)
Service Parameters: call
Private Parameters: dropResource, userInfo
Ack Parameters: noData
Nak Parameter: universalFailure

Functional Description:

The Clear Connection Service disconnects the specified device from the
designated call. The connection is left in the Null state. The connection identifier
is no longer associated with the call. The party to be dropped may be a station or
a trunk.

A connection in the alerting state cannot be cleared.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V14-20

Clear Connection Service
Service Parameters:

Private Parameters:

Ack Parameter:

call [mandatory] A valid connection identifier that indicates the
endpoint to be disconnected.

dropResource [optional] Specifies the resource to be dropped from the
call. The available resources are DR_CALL_CLASSIFIER
and DR_TONE_GENERATOR. The tone generator is any
G3 PBX applied denial tone that is timed by the switch.

userInfo [optional] Contains user-to-user information. This
parameter allows an application to associate caller
information, up to 32 or 96 bytes, with a call. This
information may be a customer number, credit card number,
alphanumeric digits, or a binary string.

It is propagated with the call when the call is dropped and
passed to the application in a Connection Cleared Event
Report. A NULL indicates this parameter is not present.

Prior to G3V8, the maximum length of userInfo was 32
bytes. Beginning with G3V8, the maximum length of
userInfo was increased to 96 bytes.

NOTE:
An application using private data version 5 and earlier
can only receive a maximum of 32-byte data for
userInfo, regardless of the size data that is sent by the
switch.

The following UUI protocol types are supported:

■ UUI_NONE — There is no data provided in the data
parameter.

■ UUI_USER_SPECIFIC — The content of the data
parameter is a binary string. The correct size (maximum
of 32 or 96 bytes) of data must be specified in the size
parameter.

■ UUI_IA5_ASCII — The content of the data parameter
must be a null-terminated IA5 (ASCII) character string.
The correct size (maximum of 32 or 96 bytes excluding
the null terminator) of data must be specified in the size
parameter.

noData None for this service.
Issue 1 — December 2001

4-21DEFPROG.PDF R10.1 V1

Call Control Service Group
Nak Parameter:

Detailed Information:

■ Analog Stations — The auto-answer analog stations do not receive dial
tone after a Clear Connection request. The manual answer analog stations
receive dial tone after a Clear Connection request.

■ Bridged Call Appearance — Clear Connection Service is not permitted on
parties in the bridged state and may also be more restrictive if the principal
of the bridge has an analog station or the exclusion option is in effect from
a station associated with the bridge or PCOL.

■ Drop Button Operation — The operation of this button is not changed with
the Clear Connection Service.

■ Switch Operation — When a party is dropped from an existing conference
call with three or more parties (directly connected to the switch), the other
parties remain on the call. Generally, if this was a two-party call, the entire
call is dismantled.1

universalFailure If the request is not successful, the application will receive a
CSTAUniversalFailureConfEvent. The error parameter in
this event may contain the following error values, or one of
the error values described in the
‘‘CSTAUniversalFailureConfEvent’’ section in Chapter 3:

■ GENERIC_UNSPECIFIED (0) The specified data
provided for the userInfo parameter exceeds the
maximum allowable size. Prior to G3V8, the maximum
length of userInfo was 32 bytes. Beginning with G3V8,
the maximum length of userInfo was increased to 96
bytes. See the description of the userInfo parameter.

■ INVALID_OBJECT_STATE (22) The specified
connection at the station is not currently active (in
alerting or held state) so it cannot be dropped.

■ NO_ACTIVE_CALL (24) The connectionID contained
in the request is invalid. CallID may be incorrect.

■ NO_CONNECTION_TO_CLEAR (27) The
connectionID contained in the request is invalid. CallID
may be correct, but deviceID is wrong.

■ RESOURCE_BUSY (33) The switch is busy with
another CSTA request. This can happen when two
G3PDs are issuing requests (for example, Hold Call,
Retrieve Call, Clear Connection, etc.) to the same
device.

1. This is the case for typical voice processing. There is a G3 feature "Return VDN
Destination" where this is not true. In general, this feature will not be encountered in typical
call processing.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V14-22

Clear Connection Service
Only connected parties can be dropped from a call. Held, bridged, and
alerting parties cannot be dropped by the Clear Connection Service.

■ Temporary Bridged Appearance — The Clear Connection Service request
is denied for a temporary bridged appearance that is not connected on the
call.
Issue 1 — December 2001

4-23DEFPROG.PDF R10.1 V1

Call Control Service Group
Syntax

#include <acs.h>
#include <csta.h>

// cstaClearConnection() - Service Request

RetCode_t cstaClearConnection (
ACSHandle_t acsHandle,
InvokeID_t invokeID,
ConnectionID_t *call, // devIDType= STATIC_ID or

// DYNAMIC_ID
PrivateData_t *privateData);

// CSTAClearConnectionConfEvent - Service Response

typedef struct
{

ACSHandle_t acsHandle;
EventClass_t eventClass;// CSTACONFIRMATION
EventType_t eventType; // CSTA_CLEAR_CONNECTION_CONF

} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{

struct
{

InvokeID_t invokeID;
union
{
CSTAClearConnectionConfEvent_t clearConnection;

} u;
} cstaConfirmation;

} event;
char heap[CSTA_MAX_HEAP];

} CSTAEvent_t;

typedef struct CSTAClearConnectionConfEvent_t {
Nulltype null;

} CSTAClearConnectionConfEvent_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 V14-24

Clear Connection Service
Private Data Version 6 Syntax

#include <acs.h>
#include <csta.h>
#include <attpriv.h>

// attV6ClearConnection() - Service Request Private Data
// Setup Function

RetCode_t attV6ClearConnection(
ATTPrivateData_t *privateData,
ATTDropResource_t dropResource); // NULL indicates

// no dropResource
// specified

ATTUserToUserInfo_t *userInfo); // NULL indicates
// no userInfo
// specified

typedef struct ATTPrivateData_t {
char vendor[32];
ushort length;
char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

typedef enum ATTDropResource_t {
DR_NONE = -1,// indicates not specified
DR_CALL_CLASSIFIER = 0, // call classifier to be dropped
DR_TONE_GENERATOR = 1 // tone generator to be dropped }

ATTDropResource_t;

#define ATT_MAX_USER_INFO 129
#define ATT_MAX_UUI_SIZE 96
#define ATTV5_MAX_UUI_SIZE 32

typedef struct ATTUserToUserInfo_t {
ATTUUIProtocolType_t type;
struct {

short length; // 0 indicates UUI not present

unsigned char value[ATT_MAX_USER_INFO];
} data;

} ATTUserToUserInfo_t;

typedef enum ATTUUIProtocolType_t {
UUI_NONE = -1,// indicates not specified
UUI_USER_SPECIFIC = 0, // user-specific
UUI_IA5_ASCII = 4 // null-terminated ascii

// character string
} ATTUUIProtocolType_t;
Issue 1 — December 2001

4-25DEFPROG.PDF R10.1 V1

Call Control Service Group
Private Data Version 2-5 Syntax

#include <acs.h>
#include <csta.h>
#include <attpriv.h>

// attClearConnection() - Service Request Private Data
// Setup Function

RetCode_t attClearConnection(
ATTPrivateData_t *privateData,
ATTDropResource_t dropResource); // NULL indicates

// no dropResource
// specified

ATTUserToUserInfo_t *userInfo); // NULL indicates
// no userInfo
// specified

typedef struct ATTPrivateData_t {
char vendor[32];
ushort length;
char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

typedef enum ATTDropResource_t {
DR_NONE = -1,// indicates not specified
DR_CALL_CLASSIFIER = 0,// call classifier to be dropped
DR_TONE_GENERATOR = 1 // tone generator to be dropped

} ATTDropResource_t;

typedef structATTV5UserToUserInfo_t {
ATTUUIProtocolType_t type;
struct {

short length; // 0 indicates UUI not present

unsigned char value[32];
} data;

} ATTV5UserToUserInfo_t;

typedef enum ATTUUIProtocolType_t {
UUI_NONE = -1,// indicates not specified
UUI_USER_SPECIFIC = 0, // user-specific
UUI_IA5_ASCII = 4 // null-terminated ascii

// character string
} ATTUUIProtocolType_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 V14-26

Conference Call Service
Conference Call Service

Direction: Client to Switch
Function: cstaConferenceCall ()
Confirmation Event: CSTAConferenceCallConfEvent
Private Data Confirmation Event: ATTConferenceCallConfEvent (private
data version 5)
Service Parameters: heldCall, activeCall
Ack Parameters: newCall, connList
Ack Private Parameters: ucid
Nak Parameter: universalFailure

Functional Description:

This service provides the conference of an existing held call (heldCall) and
another active or proceeding call (alerting, queued, held, or connected)
(activeCall) at a device provided that heldCall and activeCall are not both in the
alerting state at the controlling device. The two calls are merged into a single call
and the two connections at the conference-controlling device are resolved into a
single connection in the connected state. The pre-existing CSTA connectionID
associated with the device creating the conference is released, and a new callID
for the resulting conferenced call is provided.
Issue 1 — December 2001

4-27DEFPROG.PDF R10.1 V1

Call Control Service Group
Service Parameters:

Ack Parameters:

Ack Private Parameters:

heldCall [mandatory] Must be a valid connection identifier for the call
that is on hold at the controlling device and is to be
conferenced with the activeCall. The deviceID in heldCall
must contain the station extension of the controlling device.

activeCall [mandatory] Must be a valid connection identifier for the call
that is active or proceeding at the controlling device and that
is to be conferenced with the heldCall. The deviceID in
activeCall must contain the station extension of the
controlling device.

newCall [mandatory — partially supported] A connection identifier
specifies the resulting new call identifier for the calls that
were conferenced at the conference-controlling device.
This connection identifier replaces the two previous call
identifiers at that device.

connList [optional — supported] Specifies the devices on the
resulting newCall. This includes a count of the number of
devices in the new call and a list of up to six connectionIDs
and up to six deviceIDs that define each connection in the
call.

■ If a device is on-PBX, the extension is specified. The
extension consists of station or group extensions.
Group extensions are provided when the conference is
to a group and the conference completes before the call
is answered by one of the group members (TEG, PCOL,
hunt group, or VDN extension). It may contain alerting
extensions.

■ The static deviceID of a queued endpoint is set to the
split extension of the queue.

■ If a party is off-PBX, then its static device identifier or its
previously assigned trunk identifier is specified.

ucid [optional] Specifies the Universal Call ID (UCID) of newCall.
The UCID is a unique call identifier across switches and the
network. A valid UCID is a null-terminated ASCII character
string. If there is no UCID associated with this call, the ucid
contains the ATT_NULL_UCID (a 20-character string of all
zeros). This parameter is supported by private data version
5 and later only.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V14-28

Conference Call Service
Nak Parameter:

universalFailure If the request is not successful, the application will receive a
CSTAUniversalFailureConfEvent. The error parameter in
this event may contain the following error values, or one of
the error values described in the
‘‘CSTAUniversalFailureConfEvent’’ section in Chapter 3:

■ INVALID_CSTA_DEVICE_IDENTIFIER (12) An invalid
device identifier or extension is specified in heldCall or
activeCall.

■ INVALID_CSTA_CONNECTION_IDENTIFIER (13) The
controlling deviceID in heldCall or activeCall has not
been specified correctly.

■ GENERIC_STATE_INCOMPATIBILITY (21) Both calls
are alerting or both calls are being service- observed or
an active call is in a vector processing stage.

■ INVALID_OBJECT_STATE (22) The connections
specified in the request are not in the valid states for the
operation to take place. For example, it does not have
one call active and one call in the held state as required.

■ INVALID_CONNECTION_ID_FOR_ACTIVE_CALL (23)
The callID or deviceID in activeCall or heldCall has not
been specified correctly.

■ RESOURCE_BUSY (33) The switch is busy with
another CSTA request. This can happen when two
G3PDs are issuing requests (for example, Hold Call,
Retrieve Call, Clear Connection, Conference Call, etc.)
to the same device.

■ CONFERENCE_MEMBER_LIMIT_EXCEEDED (38)
The request attempted to add a seventh party to an
existing six-party conference call. If a station places a
six-party conference call on hold and another party adds
yet another station (so that there are again six active
parties on the call — the G3 limit), then the station with
the call on hold will not be able to retrieve the call.

■ MISTYPED_ARGUMENT_REJECTION (74)
DYNAMIC_ID is specified in heldCall or activeCall.
Issue 1 — December 2001

4-29DEFPROG.PDF R10.1 V1

Call Control Service Group
Detailed Information:

■ Analog Stations — Conference Call Service will only be allowed if one call
is held and the second is active (talking). Calls on hard-hold or alerting
cannot be affected by a Conference Call Service. An analog station will
support Conference Call Service even if the “switch-hook flash” field on the
G3 system administered form is set to “no”. A “no” in this field disables the
switch-hook flash function, meaning that a user cannot conference, hold, or
transfer a call from his/her phone set, and cannot have the call waiting
feature administered on the phone set.

■ Bridged Call Appearance — Conference Call Service is not permitted on
parties in the bridged state and may also be more restrictive if the principal
of the bridge has an analog station or the exclusion option is in effect from
a station associated with the bridge or PCOL.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V14-30

Conference Call Service
Syntax

#include <acs.h>
#include <csta.h>

// cstaConferenceCall() - Service Request

RetCode_t cstaConferenceCall (
ACSHandle_t acsHandle,
InvokeID_t invokeID,
ConnectionID_t *heldCall, // devIDType= STATIC_ID
ConnectionID_t *activeCall, // devIDType= STATIC_ID
PrivateData_t *privateData);

// CSTAConferenceCallConfEvent - Service Response

typedef struct
{

ACSHandle_t acsHandle;
EventClass_t eventClass;// CSTACONFIRMATION
EventType_t eventType; // CSTA_CONFERENCE_CALL_CONF

} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{

struct
{

InvokeID_t invokeID;
union
{
CSTAConferenceCallConfEvent_t conferenceCall;
} u;

} cstaConfirmation;
} event;
char heap[CSTA_MAX_HEAP];

} CSTAEvent_t;

typedef struct Connection_t {
ConnectionID_t party;
DeviceID_t staticDevice; // NULL for not present

} Connection_t;

typedef struct ConnectionList_t {
int count;
Connection_t connection;

} ConnectionList_t;

typedef struct CSTAConferenceCallConfEvent_t {
ConnectionID_t newCall;
ConnectionList_t connList;

} CSTAConferenceCallConfEvent_t;
Issue 1 — December 2001

4-31DEFPROG.PDF R10.1 V1

Call Control Service Group
Private Data Version 5 Syntax

#include <acs.h>
#include <csta.h>
#include <attpriv.h>

// ATTConferenceCallConfEvent - Service Response Private
// Data (supported by private data version 5 and later only)

typedef struct
{

ATTEventType_t eventType; // ATT_CONFERENCE_CALL_CONF
union
{

ATTConferenceCallConfEvent_t conferenceCall;
}u;

} ATTEvent_t;

typedef struct ATTConferenceCallConfEvent_t
{

ATTUCID_t ucid;
} ATTConferenceCallConfEvent_t;

typedef char ATTUCID_t[64];
Issue 1 — December 2001

DEFPROG.PDF R10.1 V14-32

Consultation Call Service
Consultation Call Service

Direction: Client to Switch
Function: cstaConsultationCall()
Confirmation Event: CSTAConsultationCallConfEvent
Private Data Function: attV6ConsultationCall() (private data version 6),
attConsultationCall() (private data version 2, 3, 4, and 5)
Private Data Confirmation Event: ATTConsultationCallConfEvent (private
data version 5)
Service Parameters: activeCall, calledDevice
Private Parameters: destRoute, priorityCalling, userInfo
Ack Parameters: newCall
Ack Private Parameters: ucid
Nak Parameter: universalFailure

Functional Description:

The Consultation Call Service places an existing active call (activeCall) at a
device on hold and initiates a new call (newCall) from the same controlling device.
This service provides the compound action of the Hold Call Service followed by
Make Call Service. The Consultation Call service has the important special
property of associating the G3 Original Call Information from the call being placed
on hold with the call being originated. This allows an application running at the
consultation desktop to pop a screen using information associated with the call
placed on hold. This is an important operation in call centers where an agent calls
a specialist for consultation about a call in progress.

The Consultation Call Service request is acknowledged (Ack) by the switch if the
switch is able to put the activeCall on hold and initiate a new call.

The request is negatively acknowledged if the switch:

■ fails to put activeCall on hold (for example, call is in alerting state), or

■ fails to initiate a new call (for example, invalid parameter).

If the request is negatively acknowledged, the G3PD will attempt to put the
activeCall to its original state, if the original state is known by the G3PD before the
service request. If the original state is unknown, there is no recovery for the
activeCall ’s original state.
Issue 1 — December 2001

4-33DEFPROG.PDF R10.1 V1

Call Control Service Group
Service Parameters:

activeCall [mandatory] A valid connection identifier that indicates the
connection to be placed on hold. This party must be in the
active (talking) state or already held. The device associated
with the activeCall must be a station. If the party specified in
the request refers to a trunk device, the request will be
denied. The deviceID in activeCall must contain the station
extension of the controlling device.

calledDevice [mandatory] Must be a valid on-PBX extension or off-PBX
number. On-PBX extension may be a station extension,
VDN, split, hunt group, announcement extension, or logical
agent’s login ID. The calledDevice may include
TAC/ARS/AAR information for off-PBX numbers. Trunk
Access Code, Authorization Codes, and Force Entry of
Account Codes can be specified with the calledDevice as if
they were entered from the voice terminal using the keypad.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V14-34

Consultation Call Service
Private Parameters:

destRoute [optional] Specifies the TAC/ARS/AAR information for an
off- PBX destination, if the information is not included in the
calledDevice. A NULL indicates this parameter is not
specified.

priorityCalling [mandatory] Specifies the priority of the call. Values are On
(TRUE) or Off (FALSE). If On is selected, a priority call is
attempted for an on-PBX calledDevice. Note that the G3
PBX does not permit priority calls to certain types of
extensions (such as VDNs).

userInfo [optional] Contains user-to-user information. This
parameter allows an application to associate caller
information, up to 32 or 96 bytes, with a call. This
information may be a customer number, credit card number,
alphanumeric digits, or a binary string.

It is propagated with the call whether the call is made to a
destination on the local switch or to a destination on a
remote switch over PRI trunks. The switch sends the UUI in
the ISDN SETUP message over the PRI trunk to establish
the call. The local and the remote switch include the UUI in
the Delivered Event Report and in the
cstaRouteRequestEvent to the application. A NULL
indicates this parameter is not present.

Prior to G3V8, the maximum length of userInfo was 32
bytes. Beginning with G3V8, the maximum length of
userInfo was increased to 96 bytes.

NOTE:
An application using private data version 5 and earlier
can only receive a maximum of 32-byte data for
userInfo, regardless of the size data that is sent by the
switch.

The following UUI protocol types are supported:

■ UUI_NONE — There is no data provided in the data
parameter.

■ UUI_USER_SPECIFIC — The content of the data
parameter is a binary string. The correct size (maximum
of 32 or 96 bytes) of data must be specified in the size
parameter.

■ UUI_IA5_ASCII — The content of the data parameter
must be a null-terminated IA5 (ASCII) character string.
The correct size (maximum of 32 or 96 bytes excluding
the null terminator) of data must be specified in the size
parameter.
Issue 1 — December 2001

4-35DEFPROG.PDF R10.1 V1

Call Control Service Group
Ack Parameters:

Ack Private Parameters:

Nak Parameter:

newCall [mandatory] A connection identifier indicates the connection
between the controlling device and the new call. The
newCall parameter contains the callID of the call and the
station extension of the controlling device.

ucid [optional] Specifies the Universal Call ID (UCID) of newCall.
The UCID is a unique call identifier across switches and the
network. A valid UCID is a null-terminated ASCII character
string. If there is no UCID associated with this call, the ucid
contains the ATT_NULL_UCID (a 20-character string of all
zeros). This parameter is supported by private data version
5 and later only.

universalFailure If the request is not successful, the application will receive a
CSTAUniversalFailureConfEvent. The error parameter in
this event may contain the following error values, or one of
the error values described in the
‘‘CSTAUniversalFailureConfEvent’’ section in Chapter 3:

■ GENERIC_UNSPECIFIED (0) The specified data
provided for the userInfo parameter exceeds the
maximum allowable size. Prior to G3V8, the maximum
length of userInfo was 32 bytes. Beginning with G3V8,
the maximum length of userInfo was increased to 96
bytes. See the description of the userInfo parameter.

■ INVALID_CSTA_DEVICE_IDENTIFIER (12) An invalid
device identifier or extension is specified in activeCall.

■ INVALID_CSTA_CONNECTION_IDENTIFIER (13) The
connection identifier contained in the request is invalid
or does not correspond to a station.

■ NO_ACTIVE_CALL (24) The party to be put on hold is
not currently active (for example, in alerting state) so it
cannot be put on hold.

■ GENERIC_STATE_INCOMPATIBILITY (21) (CS0/18)
The originator does not go off-hook within five seconds
after originating the call and cannot be forced off-hook.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V14-36

Consultation Call Service
Detailed Information:

See ‘‘Detailed Information:’’ in the “Hold Call Service” section and ‘‘Detailed
Information:’’ in the “Make Predictive Call Service” section in this chapter.

■ RESOURCE_BUSY (33) The switch is busy with
another CSTA request. This can happen when two
G3PDs are issuing requests (for example, Hold Call,
Retrieve Call, Clear Connection, etc.) to the same
device.

■ OUTSTANDING_REQUEST_LIMIT_EXCEEDED (44)
The client attempted to put a third party (two parties are
on hold already) on hold on an analog station.

■ MISTYPED_ARGUMENT_REJECTION (74)
DYNAMIC_ID is specified in activeCall.
Issue 1 — December 2001

4-37DEFPROG.PDF R10.1 V1

Call Control Service Group
Syntax

#include <acs.h>
#include <csta.h>

// cstaConsultationCall() - Service Request

RetCode_t cstaConsultationCall (
ACSHandle_t acsHandle,
InvokeID_t invokeID,
ConnectionID_t *activeCall, // devIDType= STATIC_ID
DeviceID_t *calledDevice,
PrivateData_t *privateData);

// CSTAConsultationCallConfEvent - Service Response

typedef struct
{

ACSHandle_t acsHandle;
EventClass_t eventClass;// CSTACONFIRMATION
EventType_t eventType; // CSTA_CONSULTATION_CALL_CONF

} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{

struct
{

InvokeID_t invokeID;
union
{
CSTAConsultationCallConfEvent_t consultationCall;

} u;
} cstaConfirmation;

} event;
char heap[CSTA_MAX_HEAP];

} CSTAEvent_t;

typedef struct CSTAConsultationCallConfEvent_t {
ConnectionID_t newCall;

} CSTAConsultationCallConfEvent_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 V14-38

Consultation Call Service
Private Data Version 6 Syntax

#include <acs.h>
#include <csta.h>
#include <attpriv.h>

// attV6ConsultationCall() - Service Request Private Data
// Setup Function

RetCode_t attV6ConsultationCall(
ATTPrivateData_t*privateData,
DeviceID_t *destRoute, // NULL indicates not

specified
Boolean priorityCalling; // TRUE = On, FALSE =

Off
ATTUserToUserInfo_t *userInfo); // NULL indicates not

// specified

typedef struct ATTPrivateData_t {
char vendor[32];
ushort length;
char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

#define ATT_MAX_USER_INFO 129
#define ATT_MAX_UUI_SIZE 96
#define ATTV5_MAX_UUI_SIZE 32

typedef struct ATTUserToUserInfo_t {
ATTUUIProtocolType_t type;
struct {

short length; // 0 indicates UUI not present
unsigned char value[ATT_MAX_USER_INFO];

} data;
} ATTUserToUserInfo_t;

typedef enum ATTUUIProtocolType_t {
UUI_NONE = -1, // indicates not specified
UUI_USER_SPECIFIC = 0, // user-specific
UUI_IA5_ASCII = 4 // null-terminated ascii

// character string
} ATTUUIProtocolType_t;
Issue 1 — December 2001

4-39DEFPROG.PDF R10.1 V1

Call Control Service Group
Private Data Version 6 Syntax (Continued)

// ATTConsultationCallConfEvent - Service Response Private
// Data (supported by private data version 5 and later only)

typedef struct
{

ATTEventType_t eventType;// ATT_CONSULTATION_CALL_CONF
union
{
ATTConsultationCallConfEvent_t consultationCall;
}u;

} ATTEvent_t;

typedef struct ATTConsultationCallConfEvent_t
{

ATTUCID_t ucid;
} ATTConsultationCallConfEvent_t;

typedef char ATTUCID_t[64];
Issue 1 — December 2001

DEFPROG.PDF R10.1 V14-40

Consultation Call Service
Private Data Version 2-5 Syntax

#include <acs.h>
#include <csta.h>
#include <attpriv.h>

// attConsultationCall() - Service Request Private Data
// Setup Function

RetCode_t attConsultationCall(
ATTPrivateData_t *privateData,
DeviceID_t *destRoute, // NULL indicates not specified
Boolean priorityCalling; // TRUE = On, FALSE = Off
ATTUserToUserInfo_t *userInfo); // NULL indicates not

// specified

typedef struct ATTPrivateData_t {
char vendor[32];
ushort length;
char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

typedef struct ATTV5UserToUserInfo_t {
ATTUUIProtocolType_t type;
struct {

short length; // 0 indicates UUI not present
unsigned char value[33];

} data;
} ATTV5UserToUserInfo_t;

typedef enum ATTUUIProtocolType_t {
UUI_NONE = -1, // indicates not specified
UUI_USER_SPECIFIC = 0, // user-specific
UUI_IA5_ASCII = 4 // null-terminated ascii

// character string
} ATTUUIProtocolType_t;

// ATTConsultationCallConfEvent - Service Response Private
// Data (supported by private data version 5 and later only)

typedef struct
{

ATTEventType_t eventType;// ATT_CONSULTATION_CALL_CONF
union
{
ATTConsultationCallConfEvent_t consultationCall;
}u;

} ATTEvent_t;

typedef struct ATTConsultationCallConfEvent_t
{

ATTUCID_t ucid;
} ATTConsultationCallConfEvent_t;

typedef char ATTUCID_t[64];
Issue 1 — December 2001

4-41DEFPROG.PDF R10.1 V1

Call Control Service Group
Consultation Direct-Agent Call
Service

Direction: Client to Switch
Function: cstaConsultationCall()
Confirmation Event: CSTAConsultationCallConfEvent
Private Data Function: attV6DirectAgentCall() (private data version 6),
attDirectAgentCall() (private data version 2, 3, 4, and 5)
Private Data Confirmation Event: attConsultationCallConfEvent
Service Parameters: activeCall, calledDevice
Private Parameters: split, priorityCalling, userInfo
Ack Parameters: newCall
Ack Private Parameters: ucid
Nak Parameter: universalFailure

Functional Description:

The Consultation Direct-Agent Call Service places an existing active call
(activeCall) at a device on hold and initiates a new direct-agent call (newCall) from
the same controlling device. This service provides the compound action of the
Hold Call Service followed by Make Direct-Agent Call Service. Like the
Consultation Service, the Consultation Direct Agent Call service has the important
special property of associating the G3 Original Call Information from the call being
placed on hold with the call being originated. This allows an application running at
the consultation desktop to pop a screen using information associated with the
call placed on hold. This is an important operation in call centers where an agent
calls a specialist for consultation about a call in progress.

The Consultation Direct-Agent Call Service request is acknowledged (Ack) by the
switch if the switch is able to put the activeCall on hold and initiates a new
direct-agent call.

The request is negatively acknowledged if the switch:

■ Fails to put activeCall on hold (for example, call is in alerting state), or

■ Fails to initiate a new direct-agent call (for example, invalid parameter).

If the request is negatively acknowledged, the G3PD will attempt to put the
activeCall into the active state, if it was in the active or held state.

The Consultation Direct Agent Call Service should be used only in the following
two situations:

■ Consultation Direct Agent Calls in a non-EAS environment

■ Consultation Direct Agent Calls in an EAS environment only when it is
required to ensure that these calls against a skill other than that skill
specified for these measurements on the DEFINITY PBX for that agent.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V14-42

Consultation Direct-Agent Call Service
Prefereably in an EAS environment, Consultation Direct Agent Calls can be made
using the Make Call service and specifying an Agent login-ID as the destination
device. In this case Consultation Direct Agent Calls will be measured against the
skill specified or those measurements on the DEFINITY PBX for that agent.

Service Parameters:

activeCall [mandatory] A valid connection identifier that indicates the
connection to be placed on hold. This party must be in the
active (talking) state or already held. The device associated
with the activeCall must be a station. If the party specified in
the request refers to a trunk device, the request will be
denied. The deviceID in activeCall must contain the station
extension of the controlling device.

calledDevice [mandatory] Must be a valid ACD agent extension. Agent at
calledDevice must be logged in.
Issue 1 — December 2001

4-43DEFPROG.PDF R10.1 V1

Call Control Service Group
Private Parameters:

split [mandatory] Contains a valid split extension. Agent at
calledDevice must be logged into this split.

priorityCalling [mandatory] Specifies the priority of the call. Values are On
(TRUE) or Off (FALSE). If On is selected, a priority call is
attempted for an on-PBX calledDevice. Note that the G3
PBX does not permit priority calls to certain types of
extensions (such as VDNs).

userInfo [optional] Contains user-to-user information. This
parameter allows the application to associate caller
information, up to 32 or 96 bytes, with a call. It may be a
customer number, credit card number, alphanumeric digits,
or a binary string.

It is propagated with the call whether the call is made to a
destination on the local switch or to a destination on a
remote switch over PRI trunks. The switch sends the UUI in
the ISDN SETUP message over the PRI trunk to establish
the call. The local and the remote switch include the UUI in
the Delivered Event Report and in the
cstaRouteRequestEvent to the application. A NULL
indicates this parameter is not present.

Prior to G3V8, the maximum length of userInfo was 32
bytes. Beginning with G3V8, the maximum length of
userInfo was increased to 96 bytes.

NOTE:
An application using private data version 5 and earlier
can only receive a maximum of 32-byte data for
userInfo, regardless of the size data that is sent by the
switch.

The following UUI protocol types are supported:

■ UUI_NONE — There is no data provided in the data
parameter.

■ UUI_USER_SPECIFIC — The content of the data
parameter is a binary string. The correct size (maximum
of 32 or 96 bytes) of data must be specified in the size
parameter.

■ UUI_IA5_ASCII — The content of the data parameter
must be a null-terminated IA5 (ASCII) character string.
The correct size (maximum of 32 or 96 bytes excluding
the null terminator) of data must be specified in the size
parameter.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V14-44

Consultation Direct-Agent Call Service
Ack Parameters:

Ack Private Parameters:

Nak Parameter:

newCall [mandatory] A connection identifier indicates the connection
between the controlling device and the new call. The
newCall parameter contains the callID of the call and the
station extension of the controlling device.

ucid [optional] Specifies the Universal Call ID (UCID) of newCall.
The UCID is a unique call identifier across switches and the
network. A valid UCID is a null-terminated ASCII character
string. If there is no UCID associated with this call, the ucid
contains the ATT_NULL_UCID (a 20-character string of all
zeros). This parameter is supported by private data version
5 and later only.

universalFailure If the request is not successful, the application will receive a
CSTAUniversalFailureConfEvent. The error parameter in
this event may contain the following error values, or one of
the error values described in the
‘‘CSTAUniversalFailureConfEvent’’ section in Chapter 3:

■ GENERIC_UNSPECIFIED (0) The specified data
provided for the userInfo parameter exceeds the
maximum allowable size. Prior to G3V8, the maximum
length of userInfo was 32 bytes. Beginning with G3V8,
the maximum length of userInfo was increased to 96
bytes. See the description of the userInfo parameter.

■ GENERIC_UNSPECIFIED (0) (CS3/11, CS3/15) Agent
is not a member of the split or agent is not currently
logged in split.

■ VALUE_OUT_OF_RANGE (3) (CS0/100, CS0/96) The
split contains an invalid value or invalid information
element contents was detected.

■ INVALID_CALLING_DEVICE (5) (CS3/27) The
callingDevice is out of service or not administered
correctly in the switch.

■ PRIVILEGE_VIOLATION_ON_CALLED_DEVICE (9)
(CS0/21, CS0/52) The COR check for completing the
call failed. The call was attempted over a trunk that the
originator has restricted from use.
Issue 1 — December 2001

4-45DEFPROG.PDF R10.1 V1

Call Control Service Group
Detailed Information:

See ‘‘Detailed Information:’’ in the “Hold Call Service” section and ‘‘Detailed
Information:’’ in the “Make Direct-Agent Call Service” section in this chapter.

■ INVALID_CSTA_DEVICE_IDENTIFIER (12) An invalid
device identifier or extension is specified in activeCall,
the calledDevice is an invalid station extension, or the
split does not contain a valid hunt group extension.

■ INVALID_CSTA_CONNECTION_IDENTIFIER (13) The
connection identifier contained in the request is invalid
or does not correspond to a station.

■ INVALID_DESTINATION (14) (CS3/24) The call was
answered by an answering machine.

■ INVALID_OBJECT_TYPE (18) (CS0/58, CS3/80) There
is incompatible bearer service for the originating or
destination address. For example. the originator is
administered as a data hotline station or the destination
is a data station. Call options are incompatible with this
service.

■ GENERIC_STATE_INCOMPATIBILITY (21) (CS0/18)
The originator does not go off-hook within five seconds
after originating the call and cannot be forced off-hook.

■ INVALID_OBJECT_STATE (22) (CS0/98) Request
(message) is incompatible with call state

■ NO_ACTIVE_CALL (24) The party to be put on hold is
not currently active (for example, in alerting state) so it
cannot be put on hold.

■ RESOURCE_BUSY (33) (CS0/17) The user is busy on
another call and cannot originate this call. The switch is
busy with another CSTA request. This can happen
when two G3PDs are issuing requests (for example,
Hold Call, Retrieve Call, Clear Connection, Make Call,
etc.) to the same device.

■ GENERIC_SUBSCRIBED_RESOURCE_AVAILABILTY
(41) (CS0/50) Service or option not
subscribed/provisioned (AMD must be enabled).

■ OUTSTANDING_REQUEST_LIMIT_EXCEEDED (44)
The client attempted to put a third party (two parties are
on hold already) on hold on an analog station.

■ MISTYPED_ARGUMENT_REJECTION (74)
DYNAMIC_ID is specified in activeCall.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V14-46

Consultation Direct-Agent Call Service
Syntax

#include <acs.h>
#include <csta.h>

// cstaConsultationCall() - Service Request

RetCode_t cstaConsultationCall (
ACSHandle_t acsHandle,
InvokeID_t invokeID,
ConnectionID_t *activeCall, // devIDType= STATIC_ID
DeviceID_t *calledDevice,
PrivateData_t *privateData);

// CSTAConsultationCallConfEvent - Service Response

typedef struct
{

EventType_t eventType; // CSTA_CONSULTATION_CALL_CONF

} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{

struct
{

InvokeID_t invokeID;
union
{
CSTAConsultationCallConfEvent_t consultationCall;

} u;
} cstaConfirmation;

} event;
char heap[CSTA_MAX_HEAP];

} CSTAEvent_t;

typedef struct CSTAConsultationCallConfEvent_t {
ConnectionID_t newCall;

} CSTAConsultationCallConfEvent_t;
Issue 1 — December 2001

4-47DEFPROG.PDF R10.1 V1

Call Control Service Group
Private Data Version 6 Syntax

#include <acs.h>
#include <csta.h>
#include <attpriv.h>

// attV6DirectAgentCall() - Service Request Private Data
// Setup Function

RetCode_t attV6DirectAgentCall(
ATTPrivateData_t*privateData,
DeviceID_t *split, // NULL indicates not

specified
Boolean priorityCalling;// TRUE = On, FALSE =

Off
ATTUserToUserInfo_t *userInfo); // NULL indicates not

// specified

typedef struct ATTPrivateData_t {
char vendor[32];
ushort length;
char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

#define ATT_MAX_USER_INFO 129
#define ATT_MAX_UUI_SIZE 96
#define ATTV5_MAX_UUI_SIZE 32

typedef struct ATTUserToUserInfo_t {
ATTUUIProtocolType_t type;
struct {

short length; // 0 indicates UUI not present
unsigned char value[ATT_MAX_USER_INFO];

} data;
} ATTUserToUserInfo_t;

typedef enum ATTUUIProtocolType_t {
UUI_NONE = -1, // indicates not specified
UUI_USER_SPECIFIC = 0, // user-specific
UUI_IA5_ASCII = 4 // null-terminated ascii

// character string
} ATTUUIProtocolType_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 V14-48

Consultation Direct-Agent Call Service
Private Data Version 6 Syntax (Continued)

// ATTConsultationCallConfEvent - Service Response Private
// Data (supported by private data version 5 and later only)

typedef struct
{

ATTEventType_t eventType;// ATT_CONSULTATION_CALL_CONF
union
{
ATTConsultationCallConfEvent_t consultationCall;
}u;

} ATTEvent_t;

typedef struct ATTConsultationCallConfEvent_t
{

ATTUCID_t ucid;
} ATTConsultationCallConfEvent_t;

typedef char ATTUCID_t[64];
Issue 1 — December 2001

4-49DEFPROG.PDF R10.1 V1

Call Control Service Group
Private Data Version 2-5 Syntax

#include <acs.h>
#include <csta.h>
#include <attpriv.h>

// attDirectAgentCall() - Service Request Private Data
// Setup Function

RetCode_t attDirectAgentCall(
ATTPrivateData_t *privateData,
DeviceID_t *split, // NULL indicates not specified
Boolean priorityCalling;// TRUE = On, FALSE = Off
ATTUserToUserInfo_t *userInfo); // NULL indicates not

// specified

typedef struct ATTPrivateData_t {
char vendor[32];
ushort length;
char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

typedef struct ATTV5UserToUserInfo_t {
ATTUUIProtocolType_t type;
struct {

short length; // 0 indicates UUI not present
unsigned char value[33];

} data;
} ATTV5UserToUserInfo_t;

typedef enum ATTUUIProtocolType_t {
UUI_NONE = -1, // indicates not specified
UUI_USER_SPECIFIC = 0, // user-specific
UUI_IA5_ASCII = 4 // null-terminated ascii

// character string
} ATTUUIProtocolType_t;

// ATTConsultationCallConfEvent - Service Response Private
// Data (supported by private data version 5 and later only)

typedef struct
{

ATTEventType_t eventType;// ATT_CONSULTATION_CALL_CONF
union
{
ATTConsultationCallConfEvent_t consultationCall;
}u;

} ATTEvent_t;

typedef struct ATTConsultationCallConfEvent_t
{

ATTUCID_t ucid;
} ATTConsultationCallConfEvent_t;

typedef char ATTUCID_t[64];
Issue 1 — December 2001

DEFPROG.PDF R10.1 V14-50

Consultation Supervisor-Assist Call Service
Consultation Supervisor-Assist Call
Service

Direction: Client to Switch
Function: cstaConsultationCall()
Confirmation Event: CSTAConsultationCallConfEvent
Private Data Function: attV6SupervisorAssistCall() (private data version 6),
attSupervisorAssistCall() (private data version 2, 3, 4, and 5)
Private Data Confirmation Event: attConsultationCallConfEvent
Service Parameters: activeCall, calledDevice
Private Parameters: split, userInfo
Ack Parameters: newCall
Ack Private Parameters: ucid
Nak Parameter: universalFailure

Functional Description:

The Consultation Supervisor-Assist Call Service places an existing active call
(activeCall) at a device on hold and initiates a new supervisor-assist call (newCall)
from the same controlling device. This service provides the compound action of
the Hold Call Service followed by Make Supervisor-Assist. Like the Consultation
Service, the Consultation Supervisor-Assist Call service has the important special
property of associating the G3 Original Call Information from the call being placed
on hold with the call being originated. This allows an application running at the
consultation desktop to pop a screen using information associated with the call
placed on hold. This is an important operation in call centers where an agent calls
a specialist for consultation about a call in progress.

The Consultation Supervisor-Assist Call Service request is acknowledged (Ack)
by the switch if the switch is able to put the activeCall on hold and initiates a new
supervisor-assist call.

The request is negatively acknowledged if the switch:

■ Fails to put activeCall on hold (for example, call is in alerting state), or

■ Fails to initiate a new direct-agent call (for example, invalid parameter).

If the request is negatively acknowledged, the G3PD will attempt to put the
activeCall into the active state, if it was in the active or held state.
Issue 1 — December 2001

4-51DEFPROG.PDF R10.1 V1

Call Control Service Group
Service Parameters:

activeCall [mandatory] A valid connection identifier that indicates the
connection to be placed on hold. This party must be in the
active (talking) state or already held. The device associated
with the activeCall must be a station. If the party specified in
the request refers to a trunk device, the request will be
denied. The deviceID in activeCall must contain the station
extension of the controlling device.

calledDevice [mandatory] Must be a valid ACD agent extension. Agent at
calledDevice must be logged in.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V14-52

Consultation Supervisor-Assist Call Service
Private Parameters:

Ack Parameters:

split [mandatory] Contains a valid split extension. Agent at
calledDevice must be logged into this split.

userInfo [optional] Contains user-to-user information. This
parameter allows the application to associate caller
information, up to 32 or 96 bytes, with a call. It may be a
customer number, credit card number, alphanumeric digits,
or a binary string.

It is propagated with the call whether the call is made to a
destination on the local switch or to a destination on a
remote switch over PRI trunks. The switch sends the UUI in
the ISDN SETUP message over the PRI trunk to establish
the call. The local and the remote switch include the UUI in
the Delivered Event Report and in the
cstaRouteRequestEvent to the application. A NULL
indicates this parameter is not present.

Prior to G3V8, the maximum length of userInfo was 32
bytes. Beginning with G3V8, the maximum length of
userInfo was increased to 96 bytes.

NOTE:
An application using private data version 5 and earlier
can only receive a maximum of 32-byte data for
userInfo, regardless of the size data that is sent by the
switch.

The following UUI protocol types are supported:

■ UUI_NONE — There is no data provided in the data
parameter.

■ UUI_USER_SPECIFIC — The content of the data
parameter is a binary string. The correct size (maximum
of 32 or 96 bytes) of data must be specified in the size
parameter.

■ UUI_IA5_ASCII — The content of the data parameter
must be a null-terminated IA5 (ASCII) character string.
The correct size (maximum of 32 or 96 bytes excluding
the null terminator) of data must be specified in the size
parameter.

newCall [mandatory] A connection identifier indicates the connection
between the controlling device and the new call. The
newCall parameter contains the callID of the call and the
station extension of the controlling device.
Issue 1 — December 2001

4-53DEFPROG.PDF R10.1 V1

Call Control Service Group
Ack Private Parameters:

Nak Parameter:

ucid [optional] Specifies the Universal Call ID (UCID) of newCall.
The UCID is a unique call identifier across switches and the
network. A valid UCID is a null-terminated ASCII character
string. If there is no UCID associated with this call, the ucid
contains the ATT_NULL_UCID (a 20-character string of all
zeros). This parameter is supported by private data version
5 and later only.

universalFailure If the request is not successful, the application will receive a
CSTAUniversalFailureConfEvent. The error parameter in
this event may contain the following error values, or one of
the error values described in the
‘‘CSTAUniversalFailureConfEvent’’ section in Chapter 3:

■ GENERIC_UNSPECIFIED (0) The specified data
provided for the userInfo parameter exceeds the
maximum allowable size. Prior to G3V8, the maximum
length of userInfo was 32 bytes. Beginning with G3V8,
the maximum length of userInfo was increased to 96
bytes. See the description of the userInfo parameter.

■ GENERIC_UNSPECIFIED (0) (CS3/11, CS3/15) The
agent is not a member of the split or the agent is not
currently logged in split.

■ VALUE_OUT_OF_RANGE (3) (CS0/100, CS0/96) The
split contains an invalid value or invalid information
element contents was detected.

■ INVALID_CALLING_DEVICE (5) (CS3/27) The
callingDevice is out of service or not administered
correctly in the switch.

■ PRIVILEGE_VIOLATION_ON_CALLED_DEVICE (9)
(CS0/21, CS0/52) The COR check for completing the
call failed. The call was attempted over a trunk that the
originator has restricted from use.

■ INVALID_CSTA_DEVICE_IDENTIFIER (12) An invalid
device identifier or extension is specified in activeCall,
the calledDevice is an invalid station extension, or the
split does not contain a valid hunt group extension.

■ INVALID_CSTA_CONNECTION_IDENTIFIER (13) The
connection identifier contained in the request is invalid
or does not correspond to a station.

■ INVALID_DESTINATION (14) (CS3/24) The call was
answered by an answering machine.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V14-54

Consultation Supervisor-Assist Call Service
Detailed Information:

See ‘‘Detailed Information:’’ in the “Hold Call Service” section and ‘‘Detailed
Information:’’ in the “Make Direct-Agent Call Service” section in this chapter.

■ INVALID_OBJECT_TYPE (18) (CS0/58, CS3/80) There
is incompatible bearer service for the originating or
destination address. For example, the originator is
administered as a data hotline station or the destination
is a data station. Call options are incompatible with this
service.

■ GENERIC_STATE_INCOMPATIBILITY (21) (CS0/18)
The originator does not go off-hook within five seconds
after originating the call and cannot be forced off-hook.

■ INVALID_OBJECT_STATE (22) (CS0/98) Request
(message) is incompatible with the call state.

■ NO_ACTIVE_CALL (24) The party to be put on hold is
not currently active (for example, in alerting state) so it
cannot be put on hold.

■ RESOURCE_BUSY (33) (CS0/17) The user is busy on
another call and cannot originate this call. The switch is
busy with another CSTA request. This can happen
when two G3PDs are issuing requests (for example,
Hold Call, Retrieve Call, Clear Connection, Make Call,
etc.) to the same device.

■ GENERIC_SUBSCRIBED_RESOURCE_AVAILABILTY
(41) (CS0/50) Service or option not
subscribed/provisioned (AMD must be enabled).

■ OUTSTANDING_REQUEST_LIMIT_EXCEEDED (44)
The client attempted to put a third party on hold on an
analog station when two parties are already on hold.

■ MISTYPED_ARGUMENT_REJECTION (74)
DYNAMIC_ID is specified in activeCall.
Issue 1 — December 2001

4-55DEFPROG.PDF R10.1 V1

Call Control Service Group
Syntax

#include <acs.h>
#include <csta.h>

// cstaConsultationCall() - Service Request

RetCode_t cstaConsultationCall (
ACSHandle_t acsHandle,
InvokeID_t invokeID,
ConnectionID_t *activeCall, // devIDType= STATIC_ID
DeviceID_t *calledDevice,
PrivateData_t *privateData);

// CSTAConsultationCallConfEvent - Service Response

typedef struct
{

ACSHandle_t acsHandle;
EventClass_t eventClass;// CSTACONFIRMATION
EventType_t eventType; // CSTA_CONSULTATION_CALL_CONF

} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{

struct
{

InvokeID_t invokeID;
union
{
CSTAConsultationCallConfEvent_t consultationCall;

} u;
} cstaConfirmation;

} event;
char heap[CSTA_MAX_HEAP];

} CSTAEvent_t;

typedef struct CSTAConsultationCallConfEvent_t {
ConnectionID_t newCall;

} CSTAConsultationCallConfEvent_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 V14-56

Consultation Supervisor-Assist Call Service
Private Data Version 6 Syntax

#include <acs.h>
#include <csta.h>
#include <attpriv.h>

// attV6SupervisorAssistCall() - Service Request Private
Data

// Setup Function

RetCode_t attV6SupervisorAssistCall(
ATTPrivateData_t*privateData,
DeviceID_t *split, // mandatory

// NULL indicates not
specified

ATTUserToUserInfo_t *userInfo); // NULL indicates not
// specified

typedef struct ATTPrivateData_t {
char vendor[32];
ushort length;
char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

#define ATT_MAX_USER_INFO 129
#define ATT_MAX_UUI_SIZE 96
#define ATTV5_MAX_UUI_SIZE 32

typedef struct ATTUserToUserInfo_t {
ATTUUIProtocolType_t type;
struct {

short length; // 0 indicates UUI not present
unsigned char value[ATT_MAX_USER_INFO];

} data;
} ATTUserToUserInfo_t;

typedef enum ATTUUIProtocolType_t {
UUI_NONE = -1, // indicates not specified
UUI_USER_SPECIFIC = 0, // user-specific
UUI_IA5_ASCII = 4 // null-terminated ascii

// character string
} ATTUUIProtocolType_t;
Issue 1 — December 2001

4-57DEFPROG.PDF R10.1 V1

Call Control Service Group
Private Data Version 6 Syntax (Continued)

// ATTConsultationCallConfEvent - Service Response Private
// Data (supported by private data version 5 and later only)

typedef struct
{

ATTEventType_t eventType;// ATT_CONSULTATION_CALL_CONF
union
{
ATTConsultationCallConfEvent_t consultationCall;
}u;

} ATTEvent_t;

typedef struct ATTConsultationCallConfEvent_t
{

ATTUCID_t ucid;
} ATTConsultationCallConfEvent_t;

typedef char ATTUCID_t[64];
Issue 1 — December 2001

DEFPROG.PDF R10.1 V14-58

Consultation Supervisor-Assist Call Service
Private Data Version 2-5 Syntax

#include <acs.h>
#include <csta.h>
#include <attpriv.h>

// attSupervisorAssistCall() - Service Request Private Data
// Setup Function

RetCode_t attSupervisorAssistCall(
ATTPrivateData_t *privateData,
DeviceID_t *split, // mandatory

// NULL indicates not specified
ATTUserToUserInfo_t *userInfo); // NULL indicates not

// specified

typedef struct ATTPrivateData_t {
char vendor[32];
ushort length;
char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

typedef struct ATTV5UserToUserInfo_t {
ATTUUIProtocolType_t type;
struct {

short length; // 0 indicates UUI not present
unsigned char value[33];

} data;
} ATTV5UserToUserInfo_t;

typedef enum ATTUUIProtocolType_t {
UUI_NONE = -1, // indicates not specified
UUI_USER_SPECIFIC = 0, // user-specific
UUI_IA5_ASCII = 4 // null-terminated ascii

// character string
} ATTUUIProtocolType_t;

// ATTConsultationCallConfEvent - Service Response Private
// Data (supported by private data version 5 and later only)

typedef struct
{

ATTEventType_t eventType;// ATT_CONSULTATION_CALL_CONF
union
{
ATTConsultationCallConfEvent_t consultationCall;
}u;

} ATTEvent_t;

typedef struct ATTConsultationCallConfEvent_t
{

ATTUCID_t ucid;
} ATTConsultationCallConfEvent_t;

typedef char ATTUCID_t[64];
Issue 1 — December 2001

4-59DEFPROG.PDF R10.1 V1

Call Control Service Group
Deflect Call Service

Direction: Client to Switch
Function: cstaDeflectCall ()
Confirmation Event: CSTADeflectCallConfEvent
Service Parameters: deflectCall, calledDevice
Ack Parameters: noData
Nak Parameter: universalFailure

Functional Description:

This service redirects an alerting call at a device to a new destination, either
on-PBX or off-PBX. The call at the redirecting device is dropped after a
successful redirection. An application may redirect an alerting call (at different
devices) any number of times until the call is answered or dropped by the caller.

The service request is positively acknowledged if the call has successfully
redirected for an on- PBX destination. For an off-PBX destination, this does not
imply a successful redirection. It indicates that the switch attempted to redirect the
call to the off-PBX destination and subsequent call progress events or tones may
indicate redirection success or failure.

If the service request is negatively acknowledged, the call remains at the
redirecting device and the calledDevice is not involved in the call.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V14-60

Deflect Call Service
Service Parameters:

Ack Parameter:

Nak Parameter:

deflectCall [mandatory] Specifies the connectionID of the call that is to
be redirected to another destination. The call must be in the
alerting state at the device. The device must be a valid
voice station extension.

calledDevice [mandatory] Specifies the destination to which the call is
redirected. The destination can be an on-PBX or off-PBX
endpoint. For on-PBX endpoints, the calledDevice may be
stations, queues, announcements, VDNs, or logical agent
extensions.

noData None for this service.

universalFailure If the request is not successful, the application will receive a
CSTAUniversalFailureConfEvent. The error parameter in
this event may contain the following error values, or one of
the error values described in the
‘‘CSTAUniversalFailureConfEvent’’ section in Chapter 3:

■ PRIVILEGE_VIOLATION_ON_CALLED_DEVICE (9)
(CS3/42)

— Attempted to redirect a call back to the call originator
or to the redirecting device itself.

— Attempted to redirect a call on the calledDevice of a
cstaMakePredictiveCall.

■ INVALID_OBJECT_STATE (22) (3/63)

— An invalid callID or device identifier is specified in
deflectCall.

— The deflectCall is not in alerting state.

— Attempted to redirect the call while in vector
processing.
Issue 1 — December 2001

4-61DEFPROG.PDF R10.1 V1

Call Control Service Group
Detailed Information:

■ Administration Without Hardware — A call cannot be redirected to/from an
AWOH station. However, if the AWOH station is forwarded to a real
physical station, the call can be redirected to/from such a station, if it is
being alerted.

■ Attendants — Calls on attendants cannot be redirected.

■ Auto Call Back — ACB calls cannot be redirected by the cstaDeflectCall
service from the call originator.

■ Bridged Call Appearance — A call may be redirected away from a primary
extension or from a bridged station. When that happens, the call is
redirected away from the primary and all bridged stations.

■ Call Waiting — A call may be redirected while waiting at a busy analog set.

■ Deflect From Queue — This service will not redirect a call from a queue to
a new destination.

■ Delivered Event — If the calling device or call is monitored, an application
subsequently receives Delivered (or Network Reached) Event when
redirection succeeds.

■ PRIVILEGE_VIOLATION_ON_SPECIFIED_DEVICE (8)
(CS3/43)

The request may fail because of one of the following:

— invalid destination specified

— toll restrictions on destination

— COR restrictions on destination

— destination is remote access extension

— call origination restriction on the redirecting device

— call is in vector processing

■ RESOURCE_BUSY (33) (CS0/17) A call redirected to a
busy station, a station that has call forwarding active, or
a TEG group with one or more members busy will be
rejected with this error.

■ GENERIC_SUBSCRIBED_RESOURCE_AVAILABILITY
(41) (CS0/50) This service is requested on a G3 PBX
administered as a release earlier than G3V4.

■ GENERIC_OPERATION (1) (CS0/111) This service is
requested on a queued call or protocol error in the
request.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V14-62

Deflect Call Service
■ Diverted Event — If the redirecting device is monitored by a
cstaMonitorDevice or the call is monitored by a cstaMonitorCallsViaDevice,
it will receive a Diverted Event when the call is successfully redirected, but
there will be no Diverted Event for a cstaMonitorCall association.

■ Loop Back — A call cannot be redirected to the call originator or to the
redirecting device itself.

■ Off-PBX Destination — If the call is redirected to an off-PBX destination,
the caller will hear call progress tones. There may be conditions (for
example, trunk not available) that will prevent the call from being placed.
The call is nevertheless routed in those cases, and the caller receives busy
or reorder treatment. An application may subsequently receive Failed, Call
Cleared, or Connection Cleared Events if redirection fails.

If trunk-to-trunk transfer is disallowed by the switch administration,
redirection of an incoming trunk call to an off-PBX destination will fail.

■ Priority and Forwarded Calls — Priority and forwarded calls are allowed to
be redirected with cstaDeflectCall.

■ Service Availability— This service is only available on a G3 PBX with G3V4
or later software.
Issue 1 — December 2001

4-63DEFPROG.PDF R10.1 V1

Call Control Service Group
Syntax

#include <acs.h>
#include <csta.h>

// cstaDeflectCall() - Service Request

RetCode_t cstaDeflectCall (
ACSHandle_t acsHandle,
InvokeID_t invokeID,
ConnectionID_t *deflectCall,
DeviceID_t *calledDevice,
PrivateData_t *privateData);

// CSTADeflectCallConfEvent - Service Response

typedef struct
{

ACSHandle_t acsHandle;
EventClass_t eventClass;// CSTACONFIRMATION
EventType_t eventType; // CSTA_DEFLECT_CALL_CONF

} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{

struct
{

InvokeID_t invokeID;
union
{
CSTADeflectCallConfEvent_t deflectCall;
} u;

} cstaConfirmation;
} event;
char heap[CSTA_MAX_HEAP];

} CSTAEvent_t;

typedef struct CSTADeflectCallConfEvent_t {
Nulltype null;

} CSTADeflectCallConfEvent_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 V14-64

Hold Call Service
Hold Call Service

Direction: Client to Switch
Function: cstaHoldCall ()
Confirmation Event: CSTAHoldCallConfEvent
Service Parameters: activeCall, reservation
Ack Parameters: noData
Nak Parameter: universalFailure

Functional Description:

The Hold Call Service places a call on hold at a PBX station. The effect is as if the
specified party depressed the hold button on his or her multifunction station to
locally place the call on hold or switch-hook flashed on an analog station.
Issue 1 — December 2001

4-65DEFPROG.PDF R10.1 V1

Call Control Service Group
Service Parameters:

Ack Parameter:

Nak Parameter:

activeCall [mandatory] A valid connection identifier that indicates the
connection to be placed on hold. This party must be in the
active (talking) state or already held. The device associated
with the activeCall must be a station. If the party specified in
the request refers to a trunk device, the request will be
denied. The deviceID in activeCall must contain the station
extension of the controlling device.

reservation [optional — not supported] Specifies whether the facility is
reserved for reuse by the held call. The G3 switch always
allows a party to reconnect to a held call. It is recommended
that the application always supply TRUE. In actuality, the
G3PD ignored the application-supplied value for this
parameter.

noData None for this service.

universalFailure If the request is not successful, the application will receive a
CSTAUniversalFailureConfEvent. The error parameter in
this event may contain the following error values, or one of
the error values described in the
‘‘CSTAUniversalFailureConfEvent’’ section in Chapter 3:

■ INVALID_CSTA_DEVICE_IDENTIFIER (12) An invalid
device identifier or extension is specified in activeCall.

■ INVALID_CSTA_CONNECTION_IDENTIFIER (13) The
connection identifier contained in the request is invalid
or does not correspond to a station.

■ NO_ACTIVE_CALL (24) The party to be put on hold is
not currently active (for example, in alerting state) so it
cannot be put on hold.

■ RESOURCE_BUSY (33) The switch is busy with
another CSTA request. This can happen when two
G3PDs are issuing requests (for example, Hold Call,
Retrieve Call, Clear Connection, etc.) to the same
device.

■ OUTSTANDING_REQUEST_LIMIT_EXCEEDED (44)
The client attempted to put a third party on hold (two
parties are on hold already) on an analog station.

■ MISTYPED_ARGUMENT_REJECTION (74)
DYNAMIC_ID is specified in activeCall.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V14-66

Hold Call Service
Detailed Information:

■ Analog Stations — An analog station cannot switch between a soft-held
call and an active call from the voice set. However, with Hold Call Service,
this is possible by placing the active call on hard-hold and retrieving the
soft-held call. Hold Call Service places a call on conference and/or transfer
hold. If that device already had a conference and/or transfer held call and
a Hold Call Service is requested, the active call will be placed on hard-hold
(unless there is call-waiting, in which case the request is denied).

A maximum of two calls may be in a held state at the same time. A request
to have a third call on hold on the same analog station will be denied.

■ Bridged Call Appearance — Hold Call Service is not permitted on parties in
the bridged state and may also be more restrictive if the principal of the
bridge has an analog station or the exclusion option is in effect from a
station associated with the bridge or PCOL.

■ Busy Verification of Terminals — A Hold Call Service request will be denied
if requested for the verifying user’s station.

■ Held State — If the party is already on hold on the specified call when the
switch receives the request, a positive request acknowledgment is
returned.

■ Music on Hold — Music on Hold (if administered and available) will be
given to a party placed on hold from the other end either manually or via
the Hold Call Service.

■ Switch Operation — After a party is placed on hold through a Hold Call
Service request, the user will not receive dial tone regardless of the type of
phone device. Thus, subsequent calls must be placed by selecting an idle
call appearance or through the Make Call Service request.
Issue 1 — December 2001

4-67DEFPROG.PDF R10.1 V1

Call Control Service Group
Syntax

#include <acs.h>
#include <csta.h>

// cstaHoldCall() - Service Request

RetCode_t cstaHoldCall (
ACSHandle_t acsHandle,
InvokeID_t invokeID,
ConnectionID_t *activeCall, // devIDType = STATIC_ID
Boolean reservation, // not supported - defaults to On

DeviceID_t *calledDevice,
PrivateData_t *privateData);

// CSTAHoldCallConfEvent - Service Response

typedef struct
{

ACSHandle_t acsHandle;
EventClass_t eventClass;// CSTACONFIRMATION
EventType_t eventType; // CSTA_HOLD_CALL_CONF

} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{

struct
{

InvokeID_t invokeID;
union
{
CSTAHoldCallConfEvent_t holdCall;
} u;

} cstaConfirmation;
} event;
char heap[CSTA_MAX_HEAP];

} CSTAEvent_t;

typedef struct CSTAHoldCallConfEvent_t {
Nulltype null;

} CSTAHoldCallConfEvent_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 V14-68

Make Call Service
Make Call Service

Direction: Client to Switch
Function: cstaMakeCall()
Confirmation Event: CSTAMakeCallConfEvent
Private Data Function: attV6MakeCall() (private data version 6),
attMakeCall() (private data version 2, 3, 4, and 5)
Private Data Confirmation Event: ATTMakeCallConfEvent
Service Parameters: callingDevice, calledDevice
Private Parameters: destRoute, priorityCalling, userInfo
Ack Parameters: newCall
Ack Private Parameters: ucid
Nak Parameter: universalFailure

Functional Description:

The Make Call Service originates a call between two devices. The service
attempts to create a new call and establish a connection with the originating
device (callingDevice). The Make Call Service also provides a connection
identifier (newCall) that indicates the connection of the originating device in the
CSTAMakeCallConfEvent.

The client application uses this service to set up a call on behalf of a station
extension (calling party) to either an on- or off-PBX endpoint (calledDevice). This
service can be used by many types of applications such as Office Automation,
Messaging, and Outbound Call Management (OCM) for Preview Dialing.

All trunk types (including ISDN-PRI) are supported as facilities for reaching called
endpoints for outbound cstaMakeCall calls. Call progress feedback is reported as
events to the application via Monitor Services. Answer Supervision or Call
Classifier is not used for this service.

For the originator to place the call, the callingDevice (display or voice) must have
an available call appearance for call origination and must not be in the talking
(active) state on any call appearances. The originator is allowed to have a call(s)
on hold or alerting at the device.

For a digital voice terminal without a speakerphone, when the switch selects the
available call appearance for call origination, the red and green status lamps of
the call appearance will light. The originator must go off-hook within five seconds.
If the call is placed for an analog station without a speakerphone (or a handset),
the user must either be idle or off-hook with dial tone, or go off-hook within five
seconds after the Make Call request. In either case, the request will be denied if
the station fails to go off-hook within five seconds.

The originator may go off-hook and receive dial tone first, and then issue the
Make Call Service request for that station. The switch will originate the call on the
same call appearance and callID to establish the call.
Issue 1 — December 2001

4-69DEFPROG.PDF R10.1 V1

Call Control Service Group
If the originator is off-hook busy, the call cannot be placed and the request is
denied (RESOURCE_BUSY). If the originator is unable to originate for other
reasons (see the Nak parameter universalFailure), the switch denies the request.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V14-70

Make Call Service
Service Parameters:

callingDevice [mandatory] Must be a valid station extension or an AWOH
station extension (for phantom calls).1

1. For DEFINITY ECS switch software Release 6.3 and later, a call can be originated from
an AWOH station or some group extensions (i.e., a plain [non-ACD] hunt group). This is
termed a phantom call. Most calls that can be requested for a physical extension can also
be requested for an AWOH station and the associated event will also be received. If the
call is made on behalf of a group extension, this may not apply. For a detailed description
of the phantom call switch feature, refer to CallVisor technical Reference (555-230-220).

calledDevice [mandatory] Must be a valid on-PBX extension or off-PBX
number. On-PBX extension may be a station extension,
VDN, split, hunt group, announcement extension, or logical
agent’s login ID. The calledDevice may include
TAC/ARS/AAR information for off-PBX numbers. Trunk
Access Code, Authorization Codes, and Force Entry of
Account Codes can be specified with the calledDevice as if
they were entered from the voice terminal using the keypad.
Issue 1 — December 2001

4-71DEFPROG.PDF R10.1 V1

Call Control Service Group
Private Parameters:

destRoute [optional] Specifies the TAC/ARS/AAR information for an
off- PBX destination, if the information is not included in the
calledDevice. A NULL indicates that this parameter is not
specified.

priorityCalling [mandatory] Specifies the priority of the call. Values are
"On" (TRUE) or "Off" (FALSE). If On is selected, a priority
call is attempted for an on-PBX calledDevice. Note that the
G3 PBX does not permit priority calls to certain types of
extensions (such as VDNs).

userInfo [optional] Contains user-to-user information. This
parameter allows the application to associate caller
information, up to 32 or 96 bytes, with a call. It may be a
customer number, credit card number, alphanumeric digits,
or a binary string.

It is propagated with the call whether the call is made to a
destination on the local switch or to a destination on a
remote switch over PRI trunks. The switch sends the UUI in
the ISDN SETUP message over the PRI trunk to establish
the call. The local and the remote switch include the UUI in
the Delivered Event Report and in the
cstaRouteRequestEvent to the application. A NULL
indicates this parameter is not present.

Prior to G3V8, the maximum length of userInfo was 32
bytes. Beginning with G3V8, the maximum length of
userInfo was increased to 96 bytes.

NOTE:
An application using private data version 5 and earlier
can only receive a maximum of 32-byte data for
userInfo, regardless of the size data that is sent by the
switch.

The following UUI protocol types are supported:

■ UUI_NONE — There is no data provided in the data
parameter.

■ UUI_USER_SPECIFIC — The content of the data
parameter is a binary string. The correct size (maximum
of 32 or 96 bytes) of data must be specified in the size
parameter.

■ UUI_IA5_ASCII — The content of the data parameter
must be a null-terminated IA5 (ASCII) character string.
The correct size (maximum of 32 or 96 bytes excluding
the null terminator) of data must be specified in the size
parameter.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V14-72

Make Call Service
Ack Parameters:

Ack Private Parameters:

Nak Parameter:

newCall [mandatory] A connection identifier that indicates the
connection between the originating device and the call. The
newCall parameter contains the callID of the call and the
station extension of the callingDevice.

ucid [optional] Specifies the Universal Call ID (UCID) of newCall.
The UCID is a unique call identifier across switches and the
network. A valid UCID is a null-terminated ASCII character
string. If there is no UCID associated with this call, the ucid
contains the ATT_NULL_UCID (a 20-character string of all
zeros). This parameter is supported by private data version
5 and later only.

A Make Call request will be denied if the request fails before
the call is attempted by the PBX.

universalFailure If the request is not successful, the application will receive a
CSTAUniversalFailureConfEvent. The error parameter in
this event may contain the following error values, or one of
the error values described in the
‘‘CSTAUniversalFailureConfEvent’’ section in Chapter 3:

■ GENERIC_UNSPECIFIED (0) The specified data
provided for the userInfo parameter exceeds the
maximum allowable size. Prior to G3V8, the maximum
length of userInfo was 32 bytes. Beginning with G3V8,
the maximum length of userInfo was increased to 96
bytes. See the description of the userInfo parameter.

■ INVALID_CALLING_DEVICE (5) The callingDevice is
out of service or not administered correctly in the switch.

■ INVALID_CSTA_DEVICE_IDENTIFIER (12) An invalid
device identifier or extension is specified in
callingDevice.

■ GENERIC_STATE_INCOMPATIBILITY (21) The
originator does not go off-hook within five seconds after
originating the call and cannot be forced off-hook.

■ RESOURCE_BUSY (33) The user is busy on another
call and cannot originate this call, or the switch is busy
with another CSTA request. This can happen when two
G3PDs are issuing requests (for example, Hold Call,
Retrieve Call, Clear Connection, Make Call, etc.) to the
same device.
Issue 1 — December 2001

4-73DEFPROG.PDF R10.1 V1

Call Control Service Group
Detailed Information:

■ VDN — Priority calls cannot be made to VDNs. Do not set priorityCalling to
TRUE when the calledDevice is a VDN.

■ AAR/ARS — The AAR/ARS features are accessible by an application
through Make Call Service. The calledDevice may include TAC/ARS/AAR
information for off-PBX numbers (the switch uses only the first 32 digits as
the number). However, it is recommended that, in situations where
multiple applications (TSAPI applications and other applications) use ARS
trunks, ARS Routing Plans be administered using partitioning to guarantee
use of certain trunks to the Telephony Services API application. Each
partition should be dedicated to a particular application (this is enforced by
the switch).

If the application wants to obtain trunk availability information when
ARS/AAR is used (in the calledDevice), it must query the switch about all
trunk groups in the ARS partition dedicated. The application may not use
the ARS/AAR code in the query to obtain trunk availability information.

When using ARS/AAR, the switch does not tell the application which
particular trunk group was selected for a given call.

Care must be given to the proper administration of this feature, particularly
the FRLs. If these are not properly assigned, calls may be denied despite
trunk availability.

The switch does not attempt to validate the ARS/AAR code prior to placing
the call.

ARS must be subscribed in the G3 switch if outbound calls are made over
ISDN-PRI facilities.

■ ACD Destination — When the destination is an agent login ID or an ACD
split, ACD call delivery rules apply. If an ACD agent’s extension is
specified in the calledDevice, the call is delivered to that ACD agent as a
personal call, not a direct agent call.

■ ACD Originator — Make Call Service cannot have an ACD Split as the
callingDevice.

■ Analog Stations — A maximum of three calls (one soft-held, one hard-held,
and one active2) may be present at the same time at an analog station. In
addition, the station may have a call waiting call.

A request to have more than three calls present will be denied. For
example, if an analog station user has three calls present and another call
waiting, the user cannot place the active call on hold or answer the call.
The only operations allowed are drop the active call or transfer/conference
the soft-held and active waiting call.

2. An active party/connection/call is a party/connection/call at the connected state. The user
of an active party/connection/call usually has an active talk path and is talking or listening
on the call.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V14-74

Make Call Service
■ Announcement Destination — Announcement calledDevices are treated
like on-PBX station users.

■ Attendants — The attendant group is not supported with Make Call
Service. It may never be specified as the callingDevice and in some cases
cannot be the calledDevice.

■ Authorization Codes — If applicable, the originator will be prompted for
authorization codes through the phone. The access codes and
authorization codes can also be included in the calledDevice, if applicable,
as if they were entered from the originator’s voice terminal.

■ Bridged Call Appearance — Make Call Service will always originate the call
at the primary extension number of a user having a bridged appearance.
For a call to originate at the bridged call appearance of a primary
extension, that user must be off-hook at that bridged appearance at the
time the Make Call Service is requested.

■ Call Classification — All call-progress audible tones are provided to the
originating user at the calling device (except that the user does not hear
dial tone or touch tones). For OCM preview dialing applications, final call
classification is done by the station user staffing the callingDevice (who
hears call progress tones and manually records the result). If the call was
placed to a VDN extension, the originator will hear whatever has been
programmed for the vector associated with that VDN.

■ Call Coverage Path Containing VDNs — Make Call Service is permitted to
follow the VDN in the coverage path, provided that the coverage criteria
has been met.

■ Call Destination — If the calledDevice is on-PBX station, the user at the
station will receive alerting. The user is alerted according to the call type
(ACD or normal). Call delivery depends on the call type, station type,
station administered options (manual/auto answer, call waiting, etc.), and
station’s talk state.

For example, for an ACD call, if the user is off-hook idle, and in
auto-answer mode, the call is cut-through immediately. If the user is
off-hook busy and has a multifunction- function set, the call will alert a free
appearance. If the user is off-hook busy and has an analog set, and the
user has “call waiting”, the analog station user is given the “call waiting
tone”. If the user is off-hook busy on an analog station and does not have
“call waiting”, the calling endpoint will hear busy. If the user is off-hook,
alerting is started.

■ Call Forwarding All Calls — A Make Call Service to a station (calledDevice)
with the Call Forwarding All Calls feature active will redirect to the
“forwarded to” station.

■ Class of Restrictions (COR) — The Make Call Service is originated by
using the originator’s COR. A call placed to a called endpoint whose COR
does not allow the call to end will return intercept treatment to the calling
endpoint and the Failed Event Report with the error PRIVILEGE_
VIOLATION_ON_CALLED_DEVICE (9).
Issue 1 — December 2001

4-75DEFPROG.PDF R10.1 V1

Call Control Service Group
■ Class of Service (COS) — The Class of Service for the callingDevice is
never checked for the Make Call Service.

■ Data Calls — Data calls cannot be originated via the Make Call Service.

■ DCS — A call made by Make Call Service over a DCS network is treated
as an off-PBX call.

■ Display — If the callingDevice has a display set, the display will show the
extension and name of the calledDevice, if the calledDevice is on-PBX, or
the name of the trunk group, if the calledDevice is off-PBX. If the
calledDevice is on-PBX, normal display interactions apply for calledDevice
with displays.

■ Forced Entry of Account Codes — Make Call Service request attempted to
trunk groups with the Forced Entry of Account Codes feature assigned
which is allowed. It is up to the user at the callingDevice to enter the
account codes via the touch-tone pad. Account code may not be provided
via the TSAPI. If the originator of such a call is logged into an
adjunct-controlled split (and therefore has the voice set locked), such a
user will be unable to enter the required codes and will eventually get
denial treatment.

■ Hot Line — A Make Call Service request made on behalf of a station that
has the Hot Line feature administered will be denied.

■ Last Number Dialed — The calledDevice in a Make Call Service request is
the last number dialed for the calledDevice until the next call origination
from the callingDevice. Therefore, the user can use the “last number
dialed” button to originate a call to the destination provided in the last Make
Call Service request.

■ Logical Agents — The callingDevice may contain a logical agent’s login ID
or a logical agent’s physical station. If a logical agent’s login ID is specified
and the logical agent is logged in, the call is originated from the agent’s
station extension associated with the agent’s login ID. If a logical agent’s
login ID is specified and the logical agent is not logged in, the call is denied
with error INVALID_CALLING_DEVICE.

If the calledDevice contains a logical agent’s login ID, the call is originated
as if the call had been dialed from the callingDevice to the requested login
ID. If the callingDevice and the calledDevice CORs permit, the call is
treated as a direct agent call; otherwise, the call is treated as a personal
call to the requested agent.

■ Night Service — Make Call Service to splits in night service will go to night
service.

■ Personal Central Office Line (PCOL) — For a Make Call Service request
originated at the PCOL call appearance of a primary extension, that user
must be off-hook on the PCOL call appearance at the time the service is
requested.

■ PRI — An outgoing call over a PRI facility provides call feedback events
from the network.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V14-76

Make Call Service
■ Priority Calling — The user can originate a priority call by going off-hook,
dialing the feature access code for priority calling, and requesting a Make
Call Service.

■ Send All Calls (SAC) — Make Call Service can be requested for a station
(callingDevice) that has SAC activated. SAC has no effect on the
callingDevice for the cstaMakeCall request.

■ Single-Digit Dialing — Make Service request accepts single-digit dialing
(for example, 0 for operator).

■ Skill Hunt Groups — Make Call Service cannot have a skill hunt group
extension as the callingDevice.

■ Station Message Detail Recording (SMDR) — Calls originated by an
application via the Make Call Service are marked with the condition code
“B”.

■ Switch Operation — Once the call is successfully originated, the switch will
not drop it regardless of outcome. The only exception is the denial
outcome, which results in the intercept tone being played for 30 seconds
after the call is disconnected. The originating station user or application
drops cstaMakeCall calls either by going on-hook or via CSTA call control
services. For example, if the application places a call to a busy destination,
the originator will be busy until he/she normally drops or until the
application sends a Clear Call or Clear Connection Service to drop the call.

■ Terminating Extension Group (TEG) — Make Call Service requests cannot
have the TEG group extension as the callingDevice. TEGs can only
receive calls, not originate them.

■ VDN — VDN cannot be the callingDevice of a Make Call Service, but it can
be the calledDevice.

■ VDN Destination — When the calledDevice is a VDN extension, vector
processing rules apply.
Issue 1 — December 2001

4-77DEFPROG.PDF R10.1 V1

Call Control Service Group
Syntax

#include <acs.h>
#include <csta.h>

// cstaMakeCall() - Service Request

RetCode_t cstaMakeCall (
ACSHandle_t acsHandle,
InvokeID_t invokeID,
DeviceID_t *callingDevice,
DeviceID_t *calledDevice,
PrivateData_t *privateData);

// CSTAMakeCallConfEvent - Service Response

typedef struct
{

ACSHandle_t acsHandle;
EventClass_t eventClass;// CSTACONFIRMATION
EventType_t eventType; // CSTA_HOLD_CALL_CONF

} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{

struct
{

InvokeID_t invokeID;
union
{
CSTAMakeCallConfEvent_t makeCall;
} u;

} cstaConfirmation;
} event;
char heap[CSTA_MAX_HEAP];

} CSTAEvent_t;

typedef struct CSTAMakeCallConfEvent_t {
Nulltype null;

} CSTAMakeCallConfEvent_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 V14-78

Make Call Service
Private Data Version 6 Syntax

#include <acs.h>
#include <csta.h>
#include <attpriv.h>

// attV6MakeCall() - Service Request Private Data Setup
Function

RetCode_t attV6MakeCall(
ATTPrivateData_t*privateData,
DeviceID_t *split, // NULL indicates not

specified
ATTUserToUserInfo_t *userInfo); // NULL indicates not

// specified

typedef struct ATTPrivateData_t {
char vendor[32];
ushort length;
char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

#define ATT_MAX_USER_INFO 129
#define ATT_MAX_UUI_SIZE 96
#define ATTV5_MAX_UUI_SIZE 32

typedef struct ATTUserToUserInfo_t {
ATTUUIProtocolType_t type;
struct {

short length; // 0 indicates UUI not present
unsigned char value[ATT_MAX_USER_INFO];

} data;
} ATTUserToUserInfo_t;

typedef enum ATTUUIProtocolType_t {
UUI_NONE = -1, // indicates not specified
UUI_USER_SPECIFIC = 0, // user-specific
UUI_IA5_ASCII = 4 // null-terminated ascii

// character string
} ATTUUIProtocolType_t;
Issue 1 — December 2001

4-79DEFPROG.PDF R10.1 V1

Call Control Service Group
Private Data Version 6 Syntax (Continued)

// ATTMakeCallConfEvent - Service Response Private
// Data (supported by private data version 5 and later only)

typedef struct
{

ATTEventType_t eventType;// ATT_MAKE_CALL_CONF
union
{
ATTMakeCallConfEvent_t makeCall;
}u;

} ATTEvent_t;

typedef struct ATTMakeCallConfEvent_t
{

ATTUCID_t ucid;
} ATTMakeCallConfEvent_t;

typedef char ATTUCID_t[64];
Issue 1 — December 2001

DEFPROG.PDF R10.1 V14-80

Make Call Service
Private Data Version 2-5 Syntax

#include <acs.h>
#include <csta.h>
#include <attpriv.h>

// attMakeCall() - Service Request Private Data Setup Function

RetCode_t attMakeCall(
ATTPrivateData_t *privateData,
DeviceID_t *split, // NULL indicates not specified
ATTUserToUserInfo_t *userInfo); // NULL indicates not

// specified

typedef struct ATTPrivateData_t {
char vendor[32];
ushort length;
char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

typedef struct ATTV5UserToUserInfo_t {
ATTUUIProtocolType_t type;
struct {

short length; // 0 indicates UUI not present
unsigned char value[33];

} data;
} ATTV5UserToUserInfo_t;

typedef enum ATTUUIProtocolType_t {
UUI_NONE = -1, // indicates not specified
UUI_USER_SPECIFIC = 0, // user-specific
UUI_IA5_ASCII = 4 // null-terminated ascii

// character string
} ATTUUIProtocolType_t;

// ATTMakeCallConfEvent - Service Response Private
// Data (supported by private data version 5 and later only)

typedef struct
{

ATTEventType_t eventType;// ATT_MAKE_CALL_CONF
union
{
ATTMakeCallConfEvent_t makeCall;
}u;

} ATTEvent_t;

typedef struct ATTMakeCallConfEvent_t
{

ATTUCID_t ucid;
} ATTMakeCallConfEvent_t;

typedef char ATTUCID_t[64];
Issue 1 — December 2001

4-81DEFPROG.PDF R10.1 V1

Call Control Service Group
Make Direct-Agent Call Service

Direction: Client to Switch
Function: cstaMakeCall()
Confirmation Event: CSTAMakeCallConfEvent
Private Data Function: attV6DirectAgentCall() (private data version 6),
attDirectAgentCall() (private data version 2, 3, 4, and 5)
Private Data Confirmation Event: ATTMakeCallConfEvent
Service Parameters: callingDevice, calledDevice
Private Parameters: split, priorityCalling, userInfo
Ack Parameters: newCall
Ack Private Parameters: ucid
Nak Parameter: universalFailure

Functional Description:

Make Direct-Agent Call Service is a special type of Make Call Service. Make
Direct-Agent Call Service originates a call between two devices: a user station
and an ACD agent logged into a specified split. The service attempts to create a
new call and establish a connection with the originating device (callingDevice)
first. The Direct-Agent Call service also provides a CSTA connection Identifier
(newCall) that indicates the connection of the originating device in the
CSTAMakeCallConfEvent.

This type of call may be used by applications whenever the application decides
that the call originator should talk to a specific ACD agent. The application must
specify the split extension (via database lookup) to which the calledDevice (ACD
agent) is logged in. Direct-Agent calls can be tracked by Call Management
Service (CMS) through the split measurements.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V14-82

Make Direct-Agent Call Service
Service Parameters:

callingDevice [mandatory] Must be a valid station extension or an AWOH
station extension (for phantom calls).1 This parameter may
contain a logical agent’s login ID (Logical Direct-Agent Call)
or an agent’s physical station extension. If the callingDevice
contains a logical agent’s login ID and the logical agent is
logged in, the direct-agent call is originated from the agent’s
station. If the callingDevice contains a logical agent’s login
ID and the logical agent is not logged in, the direct-agent call
is denied. The Logical Direct-Agent Call is only available
when the Expert Agent Selection (EAS) feature is enabled
on the G3 switch.

1. For DEFINITY ECS switch software Release 6.3 and later, a call can be originated from
an AWOH station or some group extensions (i.e., a plain [non-ACD] hunt group). This is
termed a phantom call. Most calls that can be requested for a physical extension can also
be requested for an AWOH station and the associated event will also be received. If the
call is made on behalf of a group extension, this may not apply. For a detailed description
of the phantom call switch feature, refer to CallVisor technical Reference (555-230-220).

calledDevice [mandatory] Must be a valid ACD agent extension. Agent at
calledDevice must be logged in. If calledDevice is a logical
agent’s ID, it is already treated by DEFINITY as a direct
agent call and, in this case, private data should not be used.
Doing so would result in error INVALID_CSTA_DEVICE_
IDENTIFIER (12).
Issue 1 — December 2001

4-83DEFPROG.PDF R10.1 V1

Call Control Service Group
Private Parameters:

Ack Parameters:

split [mandatory] Contains a valid split extension. Agent at
calledDevice must be logged into this split.

priorityCalling [mandatory] Specifies the priority of the call. Values are On
(TRUE) or Off (FALSE). If On is selected, a priority call is
attempted for an on-PBX calledDevice. Note that the G3
PBX does not permit priority calls to certain types of
extensions (such as VDNs).

userInfo [optional] Contains user-to-user information. This
parameter allows the application to associate caller
information, up to 32 or 96 bytes, with a call. It may be a
customer number, credit card number, alphanumeric digits,
or a binary string.

It is propagated with the call. The switch sends the UUI in
the Delivered Event Report to the application. A NULL
indicates that this parameter is not present.

Prior to G3V8, the maximum length of userInfo was 32
bytes. Beginning with G3V8, the maximum length of
userInfo was increased to 96 bytes.

NOTE:
An application using private data version 5 and earlier
can only receive a maximum of 32-byte data for
userInfo, regardless of the size data that is sent by the
switch.

The following UUI protocol types are supported:

■ UUI_NONE — There is no data provided in the data
parameter.

■ UUI_USER_SPECIFIC — The content of the data
parameter is a binary string. The correct size (maximum
of 32 or 96 bytes) of data must be specified in the size
parameter.

■ UUI_IA5_ASCII — The content of the data parameter
must be a null-terminated IA5 (ASCII) character string.
The correct size (maximum of 32 or 96 bytes excluding
the null terminator) of data must be specified in the size
parameter.

newCall [mandatory] A connection identifier that indicates the
connection between the originating device and the call. The
newCall parameter contains the callID of the call and the
station extension of the callingDevice.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V14-84

Make Direct-Agent Call Service
Ack Private Parameters:

Nak Parameter:

ucid [optional] Specifies the Universal Call ID (UCID) of newCall.
The UCID is a unique call identifier across switches and the
network. A valid UCID is a null-terminated ASCII character
string. If there is no UCID associated with this call, the ucid
contains the ATT_NULL_UCID (a 20-character string of all
zeros). This parameter is supported by private data version
5 and later only.

A Make Call request will be denied if the request fails before
the call is attempted by the PBX.

universalFailure If the request is not successful, the application will receive a
CSTAUniversalFailureConfEvent. The error parameter in
this event may contain the following error values, or one of
the error values described in the
‘‘CSTAUniversalFailureConfEvent’’ section in Chapter 3:

■ GENERIC_UNSPECIFIED (0) The specified data
provided for the userInfo parameter exceeds the
maximum allowable size. Prior to G3V8, the maximum
length of userInfo was 32 bytes. Beginning with G3V8,
the maximum length of userInfo was increased to 96
bytes. See the description of the userInfo parameter.

■ GENERIC_UNSPECIFIED (0) (CS3/11, CS3/15) Agent
is not a member of the split or agent is not currently
logged in split.

■ VALUE_OUT_OF_RANGE (3) (CS0/100, CS0/96) The
split contains an invalid value or invalid information
element contents was detected.

■ INVALID_CALLING_DEVICE (5) (CS3/27) The
callingDevice is out of service or not administered
correctly in the switch.

■ PRIVILEGE_VIOLATION_ON_CALLED_DEVICE (9)
(CS0/21, CS0/52) The COR check for completing the
call failed. The call was attempted over a trunk that the
originator has restricted from use.

■ INVALID_DESTINATION (14) (CS3/24) The call was
answered by an answering machine.

■ INVALID_OBJECT_STATE (22) (CS0/98) Request
(message) is incompatible with call state.
Issue 1 — December 2001

4-85DEFPROG.PDF R10.1 V1

Call Control Service Group
Detailed Information:

See ‘‘Detailed Information:’’ in the “Make Call Service” section in this chapter.

■ Display — If the calledDevice has a display set, it will show the specified
split’s name and extension. If the destination ACD agent has a display, it
will show the name of the originator and the name of the specified split.

■ Logical Agents — The callingDevice may contain a logical agent’s login ID
or a logical agent’s physical station. If a logical agent’s login ID is specified
and the logical agent is logged in, the call originates from the agent’s
station extension associated with the agent’s login ID. If a logical agent’s
login ID is specified and the logical agent is not logged in, the call is denied
with the error INVALID_CALLING_DEVICE.

■ INVALID_CSTA_DEVICE_IDENTIFIER (12) (CS0/28)
The split does not contain a valid hunt group extension.
The callingDevice or calledDevice is an invalid station
extension.

■ INVALID_OBJECT_TYPE (18) (CS0/58, CS3/80) There
is an incompatible bearer service for the originating or
destination address (for example, the originator is
administered as a data hotline station or the destination
is a data station).

Call options are incompatible with this service.

■ GENERIC_STATE_INCOMPATIBILITY (21) (CS0/18)
The originator does not go off-hook within five seconds
after originating the call and cannot be forced off-hook.

■ RESOURCE_BUSY (33) (CS0/17) The user is busy on
another call and cannot originate this call. The switch is
busy with another CSTA request. This can happen
when two G3PDs are issuing requests (for example,
Hold Call, Retrieve Call, Clear Connection, Make Call,
etc.) to the same device.

■ GENERIC_SUBSCRIBED_RESOURCE_AVAILABILTY
(41) (CS0/50) Service or option not
subscribed/provisioned (AMD must be enabled).
Issue 1 — December 2001

DEFPROG.PDF R10.1 V14-86

Make Direct-Agent Call Service
Syntax

#include <acs.h>
#include <csta.h>

// cstaMakeCall() - Service Request

RetCode_t cstaMakeCall (
ACSHandle_t acsHandle,
InvokeID_t invokeID,
DeviceID_t *callingDevice,
DeviceID_t *calledDevice,
PrivateData_t *privateData);

// CSTAMakeCallConfEvent - Service Response

typedef struct
{

ACSHandle_t acsHandle;
EventClass_t eventClass;// CSTACONFIRMATION
EventType_t eventType; // CSTA_MAKE_CALL_CONF

} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{

struct
{

InvokeID_t invokeID;
union
{
CSTAMakeCallConfEvent_t makeCall;
} u;

} cstaConfirmation;
} event;
char heap[CSTA_MAX_HEAP];

} CSTAEvent_t;

typedef struct CSTAMakeCallConfEvent_t
{

ConnectionID_t newCall; // devIDType = STATIC_ID
} CSTAMakeCallConfEvent_t;
Issue 1 — December 2001

4-87DEFPROG.PDF R10.1 V1

Call Control Service Group
Private Data Version 6 Syntax

#include <acs.h>
#include <csta.h>
#include <attpriv.h>

// attV6DirectAgentCall() - Service Request Private Data
// Setup Function

RetCode_t attV6DirectAgentCall(
ATTPrivateData_t*privateData,
DeviceID_t *split, // mandatory

// NULL indicates not
specified

Boolean priorityCalling;// TRUE = On, FALSE = Off

ATTUserToUserInfo_t *userInfo); // NULL indicates not
// specified

typedef struct ATTPrivateData_t {
char vendor[32];
ushort length;
char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

#define ATT_MAX_USER_INFO 129
#define ATT_MAX_UUI_SIZE 96
#define ATTV5_MAX_UUI_SIZE 32

typedef struct ATTUserToUserInfo_t {
ATTUUIProtocolType_t type;
struct {

short length; // 0 indicates UUI not present
unsigned char value[ATT_MAX_USER_INFO];

} data;
} ATTUserToUserInfo_t;

typedef enum ATTUUIProtocolType_t {
UUI_NONE = -1, // indicates not specified
UUI_USER_SPECIFIC = 0, // user-specific
UUI_IA5_ASCII = 4 // null-terminated ascii

// character string
} ATTUUIProtocolType_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 V14-88

Make Direct-Agent Call Service
Private Data Version 6 Syntax (Continued)

// ATTMakeCallConfEvent - Service Response Private
// Data (supported by private data version 5 and later only)

typedef struct
{

ATTEventType_t eventType;// ATT_MAKE_CALL_CONF
union
{
ATTMakeCallConfEvent_t makeCall;
}u;

} ATTEvent_t;

typedef struct ATTMakeCallConfEvent_t
{

ATTUCID_t ucid;
} ATTMakeCallConfEvent_t;

typedef char ATTUCID_t[64];
Issue 1 — December 2001

4-89DEFPROG.PDF R10.1 V1

Call Control Service Group
Private Data Version 2-5 Syntax

#include <acs.h>
#include <csta.h>
#include <attpriv.h>

// attDirectAgentCall() - Service Request Private Data
// Setup Function

RetCode_t attDirectAgentCall(
ATTPrivateData_t *privateData,
DeviceID_t *split, // mandatory

// NULL indicates not specified
Boolean priorityCalling; // TRUE = On, FALSE = Off
ATTUserToUserInfo_t *userInfo); // NULL indicates not

// specified

typedef struct ATTPrivateData_t {
char vendor[32];
ushort length;
char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

typedef struct ATTV5UserToUserInfo_t {
ATTUUIProtocolType_t type;
struct {

short length; // 0 indicates UUI not present
unsigned char value[33];

} data;
} ATTV5UserToUserInfo_t;

typedef enum ATTUUIProtocolType_t {
UUI_NONE = -1, // indicates not specified
UUI_USER_SPECIFIC = 0, // user-specific
UUI_IA5_ASCII = 4 // null-terminated ascii

// character string
} ATTUUIProtocolType_t;

// ATTMakeCallConfEvent - Service Response Private
// Data (supported by private data version 5 and later only)

typedef struct
{

ATTEventType_t eventType;// ATT_MAKE_CALL_CONF
union
{
ATTMakeCallConfEvent_t makeCall;
}u;

} ATTEvent_t;

typedef struct ATTMakeCallConfEvent_t
{

ATTUCID_t ucid;
} ATTMakeCallConfEvent_t;

typedef char ATTUCID_t[64];
Issue 1 — December 2001

DEFPROG.PDF R10.1 V14-90

Make Predictive Call Service
Make Predictive Call Service

Direction: Client to Switch
Function: cstaMakePredictiveCall()
Confirmation Event: CSTAMakePredictiveCallConfEvent
Private Data Function: attV6MakePredictiveCall() (private data version 6),
attMakePredictiveCall() (private data version 2, 3, 4, and 5)
Private Data Confirmation Event: ATTMakePredictiveCallConfEvent
Service Parameters: callingDevice, calledDevice, allocationState
Private Parameters: priorityCalling, maxRings, answerTreat, destRoute,
userInfo
Ack Parameters: newCall
Ack Private Parameters: ucid
Nak Parameter: universalFailure

Functional Description:

The Make Predictive Call Service originates a Switch-Classified call between two
devices. The service attempts to create a new call and establish a connection
with the terminating (called) device first. The Make Predictive Call service also
provides a CSTA Connection Identifier that indicates the connection of the
terminating device. The call will be dropped if the call is not answered after the
maximum ring cycle has expired. When a G3 is administered to return a
classification, the classification appears in the Established event.

Predictive dial calls cannot use TAC dialing to either access trunks or to make
outbound calls — TAC dialing will be blocked by the DEFINITY switch.
Issue 1 — December 2001

4-91DEFPROG.PDF R10.1 V1

Call Control Service Group
Service Parameters:

Private Parameters:

callingDevice [mandatory] Must be a valid local extension number
associated with an ACD split, hunt group, or announcement,
a VDN in an EAS environment, or an AWOH station
extension (for phantom calls).1

1. For DEFINITY ECS switch software Release 6.3 and later, a call can be originated from
an AWOH station or some group extensions (i.e., a plain [non-ACD] hunt group). This is
termed a phantom call. Most calls that can be requested for a physical extension can also
be requested for an AWOH station and the associated event will also be received. If the
call is made on behalf of a group extension, this may not apply. For a detailed description
of the phantom call switch feature, refer to CallVisor technical Reference (555-230-220).

calledDevice [mandatory] Must be a valid on-PBX extension or off-PBX
number. On-PBX extension must be a station extension.
The calledDevice may include ARS/AAR information for
off-PBX numbers. Authorization Codes and Force Entry of
Account Codes can be specified with the calledDevice as if
they were entered from the voice terminal using the keypad.

allocationState [optional — partially supported] Specifies the condition in
which the call attempts to connect to the caller
(callingDevice). Only AS_CALL_ESTABLISHED is
supported, meaning that G3 PBX will attempt to connect the
call to the callingDevice if connected state is determined at
the calledDevice. If AS_CALL_DELIVERED is specified, it
will be ignored and default to AS_CALL_ESTABLISHED.

priorityCalling [mandatory] Specifies the priority of the call. Values are On
(TRUE) or Off (FALSE). If On is selected, a priority call is
attempted for an on-PBX calledDevice. Note that the G3
PBX does not permit priority calls to certain types of
extensions (such as VDNs).

maxRings [optional] Specifies the number of rings that are allowed
before classifying the call as no answer. The minimum is
two; the maximum is 15. If an out-of-range value is
specified, it defaults to 10.

answerTreat [mandatory] Specifies the call treatment when an answering
machine is detected.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V14-92

Make Predictive Call Service
■ AT_NONE — Treatment follows the switch answering
machine detection administration.

■ AT_DROP — Drops the call if an answering machine is
detected.

■ AT_CONNECT — Connects the call if an answering
machine is detected.

■ AT_NO_TREATMENT — Indicates that no answering
machine treatment is specified.
Issue 1 — December 2001

4-93DEFPROG.PDF R10.1 V1

Call Control Service Group
destRoute [optional] Specifies the TAC/ARS/AAR information for
off-PBX destinations if the information is not included in the
calledDevice. A NULL indicates that this parameter is not
specified.

userInfo [optional] Contains user-to-user information. This
parameter allows the application to associate caller
information, up to 32 or 96 bytes, with a call. It may be a
customer number, credit card number, alphanumeric digits,
or a binary string.

It is propagated with the call whether the call is made to a
destination on the local switch or to a destination on a
remote switch over PRI trunks. The switch sends the UUI in
the ISDN SETUP message over the PRI trunk to establish
the call. The local and the remote switch include the UUI in
the Delivered Event Report and in the
cstaRouteRequestEvent to the application. A NULL
indicates that this parameter is not present.

Prior to G3V8, the maximum length of userInfo was 32
bytes. Beginning with G3V8, the maximum length of
userInfo was increased to 96 bytes.

NOTE:
An application using private data version 5 and earlier
can only receive a maximum of 32-byte data for
userInfo, regardless of the size data that is sent by the
switch.

The following UUI protocol types are supported:

■ UUI_NONE — There is no data provided in the data
parameter.

■ UUI_USER_SPECIFIC — The content of the data
parameter is a binary string. The correct size (maximum
of 32 or 96 bytes) of data must be specified in the size
parameter.

■ UUI_IA5_ASCII — The content of the data parameter
must be a null-terminated IA5 (ASCII) character string.
The correct size (maximum of 32 or 96 bytes excluding
the null terminator) of data must be specified in the size
parameter.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V14-94

Make Predictive Call Service
Ack Parameters:

Ack Private Parameters:

Nak Parameter:

newCall [mandatory] A connection identifier that indicates the
connection between the originating device and the call. The
newCall parameter contains the callID of the call and the
station extension of the callingDevice.

ucid [optional] Specifies the Universal Call ID (UCID) of newCall.
The UCID is a unique call identifier across switches and the
network. A valid UCID is a null-terminated ASCII character
string. If there is no UCID associated with this call, the ucid
contains the ATT_NULL_UCID (a 20-character string of all
zeros). This parameter is supported by private data version
5 and later only.

A Make Call request will be denied if the request fails before
the call is attempted by the PBX.

universalFailure If the request is not successful, the application will receive a
CSTAUniversalFailureConfEvent. The error parameter in
this event may contain the following error values, or one of
the error values described in the
‘‘CSTAUniversalFailureConfEvent’’ section in Chapter 3:

■ GENERIC_UNSPECIFIED (0) The specified data
provided for the userInfo parameter exceeds the
maximum allowable size. Prior to G3V8, the maximum
length of userInfo was 32 bytes. Beginning with G3V8,
the maximum length of userInfo was increased to 96
bytes. See the description of the userInfo parameter.

■ VALUE_OUT_OF_RANGE (3) (CS0/100, CS0/96)
Invalid information element contents was detected.

■ INVALID_CALLING_DEVICE (5) (CS3/27) The
callingDevice is out of service or not administered
correctly in the switch.

■ PRIVILEGE_VIOLATION_ON_CALLED_DEVICE (9)
(CS0/21, CS0/52) Attempted to use a Trunk Access
Code (TAC) to access a PRI trunk (only AAR/ARS
feature access codes may be used to place a
switch-classified call over a PRI trunk). The COR check
for completing the call failed. The call was attempted
over a trunk that the originator has restricted from use.
Issue 1 — December 2001

4-95DEFPROG.PDF R10.1 V1

Call Control Service Group
Detailed Information:

■ NT Version 4.2/NetWare Release 2.22d and earlier: Prior to Release
2.22e, the CSTAMakePredictiveCallConfEvent is not sent to the application
until the destination answers the call and the switch connects the call to the
calling device. When the application receives the
CSTAMakePredictiveCallConfEvent, it is too late to monitor the call and
receive the events for connecting the destination. This has been corrected
in Release 2.22e.

■ NT Version 4.3/NetWare Release 2.22e and later: The
CSTAMakePredictiveCallConfEvent is sent to the application immediately
after the switch accepts the CSTAMakePredictiveCall request and attempts
to call the destination. The application receives a call ID in the
CSTAMakePredictiveCallConfEvent. The application can monitor the
outbound call and receives events of the call when the switch tries to
connect the destination. When the outbound call is monitored, the call ID
in the reported events remains unchanged when the destination answers
and when the switch connects the calling device (normally this is a VDN or
an ACD Split); that is, the call ID remains unchanged until the call is
conferenced or transferred.

■ INVALID_CSTA_DEVICE_IDENTIFIER (12) (CS0/28)
The callingDevice is neither a split nor an
announcement extension.

■ INVALID_OBJECT_TYPE (18) (CS0/58, CS3/80) There
is incompatible bearer service for the originating or
destination address. For example, the originator is
administered as a data hotline station or the destination
is a data station. Call options are incompatible with this
service.

■ INVALID_OBJECT_STATE (22) (CS0/98) Request
(message) is incompatible with the call state.

■ GENERIC_SYSTEM_RESOURCE_AVAILABILITY (31)
(CS3/22)

One of the following conditions exists when switch
attempted to make the call:

— No Call classifier available

— No time slot available

— No trunk available

— Queue full

■ GENERIC_SUBSCRIBED_RESOURCE_AVAILABILTY
(41) (CS0/50) Service or option not
subscribed/provisioned. Answer Machine Detection is
requested, but AMD is not enabled on the switch.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V14-96

Make Predictive Call Service
NOTE:
If the calling device (the VDN or the ACD Split) is monitored by
CSTAMonitorCallsViaDevice (or the agent receives a call monitored by
CSTAMonitorDevice), when the CSTAMakePredictiveCall reaches the
VDN/ACD Split (or when an agent connects to the call), the call ID in the
reported events from CSTAMonitorCallsViaDevice (or CSTAMonitorDevice)
is different from the one reported in the CSTAMakePredictiveCallConfEvent
and the CSTAMonitorCall (using the call ID reported in the
CSTAMakePredictiveCallConfEvent). In other words, there are two call IDs
associated with the same CSTAMakePredictiveCall and they are reported in
events of their respective monitorings, however, both call IDs can be used
for CSTAMonitorCall and the call IDs will remain the same during their
respective monitorings until the call is conferenced or transferred.

NOTE:
The switch assigns a call ID to the outbound call when it connects to the
destination and a different call ID to the inbound call when it arrives at the
VDN/ACD Split. If the outbound call is monitored and the VDN/ACD Split (or
the agent’s station) is also monitored, an application cannot determine that
the two unique call IDs are actually associated with the same
CSTAMakePredictiveCall. Other methods must be used to determine that
these two call IDs are associated with the same call. One way to do this is to
use the called device parameter, if it is unique among all calls. Another way
is to use the UUI parameter. The application can send a unique ID in the
UUI with the CSTAMakePredictiveCall and this ID is reported in the events
of the CSTAMonitorCallsViaDevice for the VDN/ACD Split (or the
CSTAMonitorDevice for the agent’s station), if the UUI is not used for
another purpose.

NOTE:
The callingDevice and the calledDevice in the event reports resulting from
the outbound call monitored by CSTAMonitorCall (using the call ID reported
in the CSTAMakePredictiveCallConfEvent) are the same as those specified
in the CSTAMakePredictiveCall request. However, this is different from the
callingDevice and calledDevice in the events reported from the
CSTAMonitorCallsViaDevice of the VDN/ACD Split or the
CSTAMonitorDevice of the agent station. These monitors have an inbound
call view instead of an outbound call view. Thus, the callingDevice is the
calledDevice specified in the CSTAMakePredictiveCall request. The
calledDevice is the callingDevice specified in the CSTAMakePredictiveCall
request.

NOTE:
If a client application wants to receive events for answering machine
detection, the client application should establish a monitorCall, after the
application receives a confirmation for the makePredictiveCall.
Issue 1 — December 2001

4-97DEFPROG.PDF R10.1 V1

Call Control Service Group
Syntax

#include <acs.h>
#include <csta.h>

// cstaMakePredictiveCall() - Service Request

RetCode_t cstaMakePredictiveCall (
ACSHandle_t acsHandle,
InvokeID_t invokeID,
DeviceID_t *callingDevice,
DeviceID_t *calledDevice,
AllocationState_t allocationState,
PrivateData_t *privateData);

// CSTAMakePredictiveCallConfEvent - Service Response

typedef struct
{

ACSHandle_t acsHandle;
EventClass_t eventClass;// CSTACONFIRMATION
EventType_t eventType; // CSTA_MAKE_PREDICTIVE_CALL_CONF

} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{

struct
{

InvokeID_t invokeID;
union
{
CSTAMakePredictiveCallConfEvent_t makePredictiveCall;

} u;
} cstaConfirmation;

} event;
char heap[CSTA_MAX_HEAP];

} CSTAEvent_t;

typedef struct CSTAMakePredictiveCallConfEvent_t
{

ConnectionID_t newCall; // devIDType = STATIC_ID
} CSTAMakePredictiveCallConfEvent_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 V14-98

Make Predictive Call Service
Private Data Version 6 Syntax

#include <acs.h>
#include <csta.h>
#include <attpriv.h>

// attV6MakePredictiveCall() - Service Request Private Data
// Setup Function

RetCode_t attV6MakePredictiveCall(
ATTPrivateData_t*privateData,
Boolean priorityCalling;//TRUE = On, FALSE = Off
short maxRings, // less than 2 or greater 15

// are treated as not
// specified

ATTAnswerTreat_tanswerTreat, // AT_NONE, AT_DROP, or
// AT_CONNECT

DeviceID_t *destRoute, // NULL = not specified
ATTUserToUserInfo_t *userInfo); // NULL = not specified

typedef struct ATTPrivateData_t {
char vendor[32];
ushort length;
char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

#define ATT_MAX_USER_INFO 129
#define ATT_MAX_UUI_SIZE 96
#define ATTV5_MAX_UUI_SIZE 32

typedef struct ATTUserToUserInfo_t {
ATTUUIProtocolType_t type;
struct {

short length; // 0 indicates UUI not present
unsigned char value[ATT_MAX_USER_INFO];

} data;
} ATTUserToUserInfo_t;
Issue 1 — December 2001

4-99DEFPROG.PDF R10.1 V1

Call Control Service Group
Private Data Version 6 Syntax (Continued)

typedef enum ATTUUIProtocolType_t {
UUI_NONE = -1, // indicates not specified
UUI_USER_SPECIFIC = 0, // user-specific
UUI_IA5_ASCII = 4 // null-terminated ascii

// character string
} ATTUUIProtocolType_t;

typedef enum ATTAnswerTreat_t {
AT_NO_TREATMENT= 0, // indicates treatment not specified

AT_NONE = 1, // treatment follows machine
instruct

AT_DROP = 2, // drop call if machine detected
AT_CONNECT = 3 // connect call if machine detected

} ATTAnswerTreat_t;

// ATTMakePredictiveCallConfEvent - Service Response
// Private Data
(supported by private data version 5 and later only)

typedef struct
{

ATTEventType_t eventType;
// ATT_MAKE_PREDICTIVE_CALL_CONF

union
{

ATTMakePredictiveCallConfEvent_tmakePredictiveCall;
}u;

} ATTEvent_t;

typedef struct ATTMakePredictiveCallConfEvent_t
{

ATTUCID_t ucid;
} ATTMakePredictiveCallConfEvent_t;

typedef char ATTUCID_t[64];
Issue 1 — December 2001

DEFPROG.PDF R10.1 V14-100

Make Predictive Call Service
Private Data Version 2-5 Syntax

#include <acs.h>
#include <csta.h>
#include <attpriv.h>

// attMakePredictiveCall() - Service Request Private Data
// Setup Function

RetCode_t attMakePredictiveCall(
ATTPrivateData_t*privateData,
Boolean priorityCalling;//TRUE = On, FALSE = Off
short maxRings, // less than 2 or greater 15

// are treated as not
// specified

ATTAnswerTreat_tanswerTreat, // AT_NONE, AT_DROP, or
// AT_CONNECT

DeviceID_t *destRoute, // NULL = not specified
ATTUserToUserInfo_t *userInfo); // NULL = not specified

typedef struct ATTPrivateData_t {
char vendor[32];
ushort length;
char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

typedef struct ATTV5UserToUserInfo_t {
ATTUUIProtocolType_t type;
struct {

short length; // 0 indicates UUI not present
unsigned char value[33];

} data;
} ATTV5UserToUserInfo_t;
Issue 1 — December 2001

4-101DEFPROG.PDF R10.1 V1

Call Control Service Group
Private Data Version 2-5 Syntax (Continued)

typedef enum ATTUUIProtocolType_t {
UUI_NONE = -1, // indicates not specified
UUI_USER_SPECIFIC = 0, // user-specific
UUI_IA5_ASCII = 4 // null-terminated ascii

// character string
} ATTUUIProtocolType_t;

typedef enum ATTAnswerTreat_t {
AT_NO_TREATMENT= 0, // indicates treatment not specified

AT_NONE = 1, // treatment follows machine
instruct

AT_DROP = 2, // drop call if machine detected
AT_CONNECT = 3 // connect call if machine detected

} ATTAnswerTreat_t;

// ATTMakePredictiveCallConfEvent - Service Response
// Private Data
(supported by private data version 5 and later only)

typedef struct
{

ATTEventType_t eventType;
// ATT_MAKE_PREDICTIVE_CALL_CONF

union
{

ATTMakePredictiveCallConfEvent_tmakePredictiveCall;
}u;

} ATTEvent_t;

typedef struct ATTMakePredictiveCallConfEvent_t
{

ATTUCID_t ucid;
} ATTMakePredictiveCallConfEvent_t;

typedef char ATTUCID_t[64];
Issue 1 — December 2001

DEFPROG.PDF R10.1 V14-102

Make Supervisor-Assist Call Service
Make Supervisor-Assist Call Service

Direction: Client to Switch
Function: cstaMakeCall()
Confirmation Event: CSTAMakeCallConfEvent
Private Data Function: attV6SupervisorAssistCall() (private data version 6),
attSupervisorAssistCall() (private data version 2, 3, 4, and 5)
Private Data Confirmation Event: ATTMakeCallConfEvent
Service Parameters: callingDevice, calledDevice
Private Parameters: split, userInfo
Ack Parameters: newCall
Ack Private Parameters: ucid
Nak Parameter: universalFailure

Functional Description:

Make Supervisor-Assist Call Service is a special type of Make Call Service. This
service originates a call between two devices: an ACD agent’s extension and
another station extension (typically a supervisor). The service attempts to create
a new call and establish a connection with the originating (calling) device first.
The Supervisor-Assist Call service also provides a CSTA Connection Identifier
that indicates the connection of the originating device.

A call of this type is measured by CMS as a supervisor-assist call and is always a
priority call.

This type of call is used by the application whenever an agent wants to consult
with the supervisor. The agent must be logged into the specified ACD split to use
this service.
Issue 1 — December 2001

4-103DEFPROG.PDF R10.1 V1

Call Control Service Group
Service Parameters:

callingDevice [mandatory] Must be a valid ACD agent extension or an
AWOH station extension (for phantom calls).1 Agent must
be logged in.

1. For DEFINITY ECS switch software Release 6.3 and later, a call can be originated from
an AWOH station or some group extensions (i.e., a plain [non-ACD] hunt group). This is
termed a phantom call. Most calls that can be requested for a physical extension can also
be requested for an AWOH station and the associated event will also be received. If the
call is made on behalf of a group extension, this may not apply. For a detailed description
of the phantom call switch feature, refer to CallVisor technical Reference (555-230-220).

calledDevice [mandatory] Must be valid on-PBX station extension
(excluding VDNs, splits, off-PBX DCS and UDP extensions).
Issue 1 — December 2001

DEFPROG.PDF R10.1 V14-104

Make Supervisor-Assist Call Service
Private Parameters:

Ack Parameters:

split [mandatory] Specifies the ACD agent’s split extension. The
agent at callingDevice must be logged into this split.

userInfo [optional] Contains user-to-user information. This
parameter allows the application to associate caller
information, up to 32 or 96 bytes, with a call. It may be a
customer number, credit card number, alphanumeric digits,
or a binary string. It is propagated with the call. The switch
sends the UUI in the Delivered Event Report to the
application. A NULL indicates that this parameter is not
present.

Prior to G3V8, the maximum length of userInfo was 32
bytes. Beginning with G3V8, the maximum length of
userInfo was increased to 96 bytes.

NOTE:
An application using private data version 5 and earlier
can only receive a maximum of 32-byte data for
userInfo, regardless of the size data that is sent by the
switch.

The following UUI protocol types are supported:

■ UUI_NONE — There is no data provided in the data
parameter.

■ UUI_USER_SPECIFIC — The content of the data
parameter is a binary string. The correct size (maximum
of 32 or 96 bytes) of data must be specified in the size
parameter.

■ UUI_IA5_ASCII — The content of the data parameter
must be a null-terminated IA5 (ASCII) character string.
The correct size (maximum of 32 or 96 bytes excluding
the null terminator) of data must be specified in the size
parameter.

newCall [mandatory] A connection identifier that indicates the
connection between the originating device and the call. The
newCall parameter contains the callID of the call and the
station extension of the callingDevice.
Issue 1 — December 2001

4-105DEFPROG.PDF R10.1 V1

Call Control Service Group
Ack Private Parameters:

Nak Parameter:

ucid [optional] Specifies the Universal Call ID (UCID) of newCall.
The UCID is a unique call identifier across switches and the
network. A valid UCID is a null-terminated ASCII character
string. If there is no UCID associated with this call, the ucid
contains the ATT_NULL_UCID (a 20-character string of all
zeros). This parameter is supported by private data version
5 and later only.

A Make Call request will be denied if the request fails before
the call is attempted by the PBX.

universalFailure If the request is not successful, the application will receive a
CSTAUniversalFailureConfEvent. The error parameter in
this event may contain the following error values, or one of
the error values described in the
‘‘CSTAUniversalFailureConfEvent’’ section in Chapter 3:

■ GENERIC_UNSPECIFIED (0) The specified data
provided for the userInfo parameter exceeds the
maximum allowable size. Prior to G3V8, the maximum
length of userInfo was 32 bytes. Beginning with G3V8,
the maximum length of userInfo was increased to 96
bytes. See the description of the userInfo parameter.

■ GENERIC_UNSPECIFIED (0) (CS3/11, CS3/15) The
agent is not a member of the split or the agent is not
currently logged into the split.

■ VALUE_OUT_OF_RANGE (3) (CS0/100, CS0/96) The
split contains an invalid value or invalid information
element contents was detected.

■ INVALID_CALLING_DEVICE (5) (CS3/27) The
callingDevice is out of service or not administered
correctly in the switch.

■ PRIVILEGE_VIOLATION_ON_CALLED_DEVICE (9)
(CS0/21, CS0/52) The COR check for completing the
call failed. The call was attempted over a trunk that the
originator has restricted from use.

■ INVALID_DESTINATION (14) (CS3/24) The call was
answered by an answering machine.

■ INVALID_CSTA_DEVICE_IDENTIFIER (12) (CS0/28)
The split does not contain a valid hunt group extension.
The callingDevice or calledDevice is an invalid station
extension.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V14-106

Make Supervisor-Assist Call Service
Detailed Information:

See ‘‘Detailed Information:’’ in the “Make Call Service” section in this chapter.

■ INVALID_OBJECT_TYPE (18) (CS0/58, CS3/80) There
is incompatible bearer service for the originating or
destination address. For example, the originator is
administered as a data hotline station or the destination
is a data station. Call options are incompatible with this
service.

■ GENERIC_STATE_INCOMPATIBILITY (21) (CS0/18)
The originator does not go off-hook within five seconds
after originating the call and cannot be forced off-hook.

■ INVALID_OBJECT_STATE (22) (CS0/98) Request
(message) is incompatible with call state.

■ RESOURCE_BUSY (33) (CS0/17) The user is busy on
another call and cannot originate this call. The switch is
busy with another CSTA request. This can happen
when two G3PDs are issuing requests (for example,
Hold Call, Retrieve Call, Clear Connection, Make Call,
etc.) to the same device.

■ GENERIC_SUBSCRIBED_RESOURCE_AVAILABILTY
(41) (CS0/50) Service or option not
subscribed/provisioned (AMD must be enabled).
Issue 1 — December 2001

4-107DEFPROG.PDF R10.1 V1

Call Control Service Group
Syntax

#include <acs.h>
#include <csta.h>

// cstaMakeCall() - Service Request

RetCode_t cstaMakeCall (
ACSHandle_t acsHandle,
InvokeID_t invokeID,
DeviceID_t *callingDevice,
DeviceID_t *calledDevice,
PrivateData_t *privateData);

// CSTAMakeCallConfEvent - Service Response

typedef struct
{

ACSHandle_t acsHandle;
EventClass_t eventClass;// CSTACONFIRMATION
EventType_t eventType; // CSTA_MAKE_CALL_CONF

} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{

struct
{

InvokeID_t invokeID;
union
{
CSTAMakeCallConfEvent_t makeCall;
} u;

} cstaConfirmation;
} event;
char heap[CSTA_MAX_HEAP];

} CSTAEvent_t;

typedef struct CSTAMakeCallConfEvent_t
{

ConnectionID_t newCall; // devIDType = STATIC_ID
} CSTAMakeCallConfEvent_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 V14-108

Make Supervisor-Assist Call Service
Private Data Version 6 Syntax

#include <acs.h>
#include <csta.h>
#include <attpriv.h>

// attV6SupervisorAssistCall() - Service Request Private Data

// Setup Function

RetCode_t attV6SupervisorAssistCall(
ATTPrivateData_t*privateData,
DeviceID_t *split, // mandatory

// NULL indicates not
specified

ATTUserToUserInfo_t *userInfo); // NULL indicates not
// specified

typedef struct ATTPrivateData_t {
char vendor[32];
ushort length;
char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

#define ATT_MAX_USER_INFO 129
#define ATT_MAX_UUI_SIZE 96
#define ATTV5_MAX_UUI_SIZE 32

typedef struct ATTUserToUserInfo_t {
ATTUUIProtocolType_t type;
struct {

short length; // 0 indicates UUI not present
unsigned char value[ATT_MAX_USER_INFO];

} data;
} ATTUserToUserInfo_t;

typedef enum ATTUUIProtocolType_t {
UUI_NONE = -1, // indicates not specified
UUI_USER_SPECIFIC = 0, // user-specific
UUI_IA5_ASCII = 4 // null-terminated ascii

// character string
} ATTUUIProtocolType_t;
Issue 1 — December 2001

4-109DEFPROG.PDF R10.1 V1

Call Control Service Group
Private Data Version 6 Syntax (Continued)

// ATTMakeCallConfEvent - Service Response Private
// Data (supported by private data version 5 and later only)

typedef struct
{

ATTEventType_t eventType;// ATT_MAKE_CALL_CONF
union
{
ATTMakeCallConfEvent_t makeCall;
}u;

} ATTEvent_t;

typedef struct ATTMakeCallConfEvent_t
{

ATTUCID_t ucid;
} ATTMakeCallConfEvent_t;

typedef char ATTUCID_t[64];
Issue 1 — December 2001

DEFPROG.PDF R10.1 V14-110

Make Supervisor-Assist Call Service
Private Data Version 2-5 Syntax

#include <acs.h>
#include <csta.h>
#include <attpriv.h>

// attSupervisorAssistCall() - Service Request Private Data
// Setup Function

RetCode_t attSupervisorAssistCall(
ATTPrivateData_t*privateData,
DeviceID_t *split, // mandatory

// NULL indicates not
specified

ATTUserToUserInfo_t *userInfo); // NULL indicates not
// specified

typedef struct ATTPrivateData_t {
char vendor[32];
ushort length;
char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

typedef struct ATTV5UserToUserInfo_t {
ATTUUIProtocolType_t type;
struct {

short length; // 0 indicates UUI not present
unsigned char value[33];

} data;
} ATTV5UserToUserInfo_t;

typedef enum ATTUUIProtocolType_t {
UUI_NONE = -1, // indicates not specified
UUI_USER_SPECIFIC = 0, // user-specific
UUI_IA5_ASCII = 4 // null-terminated ascii

// character string
} ATTUUIProtocolType_t;
Issue 1 — December 2001

4-111DEFPROG.PDF R10.1 V1

Call Control Service Group
Private Data Version 2-5 Syntax (Continued)

// ATTMakeCallConfEvent - Service Response Private
// Data (supported by private data version 5 and later only)

typedef struct
{

ATTEventType_t eventType;// ATT_MAKE_CALL_CONF
union
{
ATTMakeCallConfEvent_t makeCall;
}u;

} ATTEvent_t;

typedef struct ATTMakeCallConfEvent_t
{

ATTUCID_t ucid;
} ATTMakeCallConfEvent_t;

typedef char ATTUCID_t[64];
Issue 1 — December 2001

DEFPROG.PDF R10.1 V14-112

Pickup Call Service
Pickup Call Service

Direction: Client to Switch
Function: cstaPickupCall ()
Confirmation Event: CSTAPickupCallConfEvent
Service Parameters: deflectCall, calledDevice
Ack Parameters: noData
Nak Parameter: universalFailure

Functional Description:

This service takes an alerting call at a device to another on-PBX device (within a
DCS environment). The call at the alerting device is dropped after a successful
redirection. An application may take an alerting call (at different devices) to
another device any number of times until the call is answered or dropped by the
caller.

The service request is positively acknowledged, if the call has successfully taken
to another device.

If the service request is negatively acknowledged, the call remains at the alerting
device and the calledDevice is not involved in the call.
Issue 1 — December 2001

4-113DEFPROG.PDF R10.1 V1

Call Control Service Group
Service Parameters:

Ack Parameter:

Nak Parameter:

deflectCall [mandatory] Specifies the connectionID of the call that is to
be taken to another destination. The call must be in alerting
state at the device. The device must be a valid voice station
extension.

calledDevice [mandatory] Specifies the destination of the call. The
destination must be an on-PBX endpoint. The calledDevice
may be stations, queues, announcements, VDNs, or logical
agent extension. Note that the calledDevice can be a
device within a DCS environment.

noData None for this service.

universalFailure If the request is not successful, the application will receive a
CSTAUniversalFailureConfEvent. The error parameter in
this event may contain the following error values, or one of
the error values described in the
‘‘CSTAUniversalFailureConfEvent’’ section in Chapter 3:

■ PRIVILEGE_VIOLATION_ON_CALLED_DEVICE (9)
(CS3/42)

— Attempted to take a call back to the call originator or
to the alerting device itself.

— Attempted to take a call on the calledDevice of a
cstaMakePredictiveCall.

■ INVALID_OBJECT_STATE (22) (3/63)

— An invalid callID or device identifier is specified in
deflectCall.

— The deflectCall is not at alerting state.

— Attempted to take the call while in vector processing.

■ INVALID_DESTINATION (14) (CS3/43) The request
may fail because of one of the following:

— Invalid destination specified

— Toll restrictions on destination

— COR restrictions on destination

— Destination is remote access extension

— Call origination restriction on the redirecting device

— Call is in vector processing
Issue 1 — December 2001

DEFPROG.PDF R10.1 V14-114

Pickup Call Service
Detailed Information:

■ Administration Without Hardware — A call cannot be redirected from/to an
AWOH station. However, if the AWOH station is forwarded to a real
physical station, the call can be redirected from/to such a station, if it is
being alerted.

■ Attendants — Calls on attendants cannot be redirected.

■ Auto Call Back — ACB calls cannot be redirected by the cstaDeflectCall
service from the call originator.

■ Bridged Call Appearance — A call may be redirected away from a primary
extension or from a bridged station. When that happens, the call is
redirected away from the primary and all bridged stations.

■ Call Forwarding, Cover All, Send All Call — Call redirection to a station with
Call Forwarding/Cover All/Send All Call active can be picked up.

■ Call Waiting — A call may be redirected while waiting at a busy analog set.

■ cstaDeflectCall — The cstaPickupCall Service is similar to the
cstaDeflectCall service, except that the calledDevice must be an on-PBX
device. Note that the calledDevice can be a device within a DCS
environment.

■ Deflect From Queue — This service will not redirect a call from a queue to
a new destination.

■ Delivered Event — If the calling device or call is monitored, an application
subsequently receives Delivered (or Network Reached) Event when
redirection succeeds.

■ Diverted Event — If the redirecting device is monitored by a
cstaMonitorDevice or the call is monitored by a cstaMonitorCallsViaDevice,
it will receive a Diverted Event when the call is successfully redirected, but
there will be no Diverted Event for a cstaMonitorCall association.

■ Loop Back — A call cannot be redirected back to call originator or to the
redirecting device itself.

■ RESOURCE_BUSY (33) (CS0/17) The calledDevice is
busy.

■ GENERIC_SUBSCRIBED_RESOURCE_AVAILABILITY
(41) (CS0/50) This service is requested on a G3 PBX
administered as a release earlier than G3V4.

■ GENERIC_OPERATION (1) (CS0/111) This service is
requested on a queued call or protocol error in the
request.
Issue 1 — December 2001

4-115DEFPROG.PDF R10.1 V1

Call Control Service Group
■ Off-PBX Destination — If the call is redirected to an off-PBX destination,
the caller will hear call progress tones. Some conditions (for example,
trunk not available) may prevent the call from being placed. The call is
nevertheless routed in those cases, and the caller receives busy or reorder
treatment. An application may subsequently receive Failed, Call Cleared,
Connection Cleared Events if redirection fails.

If trunk-to-trunk transfer is disallowed by the switch administration,
redirection of an incoming trunk call to an off-PBX destination will fail.

■ Priority and Forwarded Calls — Priority and forwarded calls are allowed to
be redirected with cstaDeflectCall.

■ Service Availability — This service is only available on a G3 PBX with
G3V4 or later software.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V14-116

Pickup Call Service
Syntax

#include <acs.h>
#include <csta.h>

// cstaPickupCall() - Service Request

RetCode_t cstaPickupCall (
ACSHandle_t acsHandle,
InvokeID_t invokeID,
ConnectionID_t *deflectCall,
DeviceID_t *calledDevice,
PrivateData_t *privateData);

// CSTAPickupCallConfEvent - Service Response

typedef struct
{

ACSHandle_t acsHandle;
EventClass_t eventClass;// CSTACONFIRMATION
EventType_t eventType; // CSTA_PICKUP_CALL_CONF

} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{

struct
{

InvokeID_t invokeID;
union
{
CSTAPickupCallConfEvent_t pickupCall;
} u;

} cstaConfirmation;
} event;
char heap[CSTA_MAX_HEAP];

} CSTAEvent_t;

typedef struct CSTAPickupCallConfEvent_t {
Nulltype null;

} CSTAPickupCallConfEvent_t;
Issue 1 — December 2001

4-117DEFPROG.PDF R10.1 V1

Call Control Service Group
Reconnect Call Service

Direction: Client to Switch
Function: cstaReconnectCall()
Confirmation Event: CSTAReconnectCallConfEvent
Private Data Function: attV6ReconnectCall() (private data version 6),
attReconnectCall() (private data version 2, 3, 4, and 5)
Service Parameters: activeCall, heldCall
Private Parameters: dropResource, userInfo
Ack Parameters: noData
Nak Parameter: universalFailure

Functional Description:

The Reconnect Call Service allows a client to disconnect (drop) an existing
connection from a call and then reconnect a previously held connection or answer
an alerting (or bridged) call at the same device. It provides the compound action
of the Clear Connection Service followed by a Retrieve Call Service or an Answer
Call Service.

The Reconnect Call Service request is acknowledged (Ack) by the switch if the
switch is able to retrieve the specified held heldCall or answer the specified
alerting heldCall. The request is negatively acknowledged if switch fails to
retrieve or answer heldCall.

The switch continues to retrieve or answer heldCall, even if it fails to drop
activeCall.3

If the request is negatively acknowledged, the activeCall will not be in the active
state, if it was in the active state.

3. A race condition may exist between human operation and the application request. The
activeCall may be dropped before the service request is received by the switch. Since a
station can have only one active call, the reconnect operation continues when the switch
fails to drop the activeCall. If the activeCall cannot be dropped because a wrong
connection is specified and there is another call active at the station, the retrieve heldCall
operation will fail.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V14-118

Reconnect Call Service
Service Parameters:

activeCall [mandatory] A valid connection identifier that indicates the
callID and the station extension (STATIC_ID). The
deviceID in activeCall must contain the station extension of
the controlling device. The local connection state of the call
must be active.

heldCall [mandatory] A valid connection identifier that indicates the
callID and the station extension (STATIC_ID). The
deviceID in heldCall must contain the station extension of
the controlling device. The local connection state of the call
can be either alerting, bridged, or held.
Issue 1 — December 2001

4-119DEFPROG.PDF R10.1 V1

Call Control Service Group
Private Parameters:

Ack Parameter:

dropResource [optional] Specifies the resource to be dropped from the
call. The available resources are and DR_CALL_
CLASSIFIER and DR_TONE_GENERATOR. The tone
generator is any G3 PBX applied denial tone that is timed by
the switch.

userInfo [optional] Contains user-to-user information. This
parameter allows the application to associate caller
information, up to 32 or 96 bytes, with a call. It may be a
customer number, credit card number, alphanumeric digits,
or a binary string.

It is propagated with the call when the call is dropped and
passed to the application in a Connection Cleared Event
Report. A NULL indicates that this parameter is not present.

Prior to G3V8, the maximum length of userInfo was 32
bytes. Beginning with G3V8, the maximum length of
userInfo was increased to 96 bytes.

NOTE:
An application using private data version 5 and earlier
can only receive a maximum of 32-byte data for
userInfo, regardless of the size data that is sent by the
switch.

The following UUI protocol types are supported:

■ UUI_NONE — There is no data provided in the data
parameter.

■ UUI_USER_SPECIFIC — The content of the data
parameter is a binary string. The correct size (maximum
of 32 or 96 bytes) of data must be specified in the size
parameter.

■ UUI_IA5_ASCII — The content of the data parameter
must be a null-terminated IA5 (ASCII) character string.
The correct size (maximum of 32 or 96 bytes excluding
the null terminator) of data must be specified in the size
parameter.

noData None for this service.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V14-120

Reconnect Call Service
Nak Parameter:

universalFailure If the request is not successful, the application will receive a
CSTAUniversalFailureConfEvent. The error parameter in
this event may contain the following error values, or one of
the error values described in the
‘‘CSTAUniversalFailureConfEvent’’ section in Chapter 3:

■ GENERIC_UNSPECIFIED (0) The specified data
provided for the userInfo parameter exceeds the
maximum allowable size. Prior to G3V8, the maximum
length of userInfo was 32 bytes. Beginning with G3V8,
the maximum length of userInfo was increased to 96
bytes. See the description of the userInfo parameter.

■ INVALID_CSTA_DEVICE_IDENTIFIER (12) An invalid
device identifier or extension is specified in heldCall.

■ INVALID_CSTA_CONNECTION_IDENTIFIER (13) An
incorrect callID or an incorrect deviceID is specified in
heldCall.

■ GENERIC_STATE_INCOMPATIBILITY (21) The station
user did not go off-hook for heldCall within five seconds
and is not capable of being forced off-hook.

■ INVALID_CONNECTION_ID_FOR_ACTIVE_CALL (23)
The controlling deviceIDs in activeCall and heldCall are
different.

■ INVALID_OBJECT_STATE (22) The specified activeCall
at the station is not currently active (in alerting or held
state) so it cannot be dropped. The Reconnect Call
Service operation stops and the heldCall will not be
retrieved.

The specified heldCall at the station is not in the alerting,
connected, held, or bridged state.

■ NO_CALL_TO_ANSWER (28) The call was redirected
to coverage within the five-second interval.

■ GENERIC_SYSTEM_RESOURCE_AVAILABILITY (31)
The switch is busy with another CSTA request. This can
happen when two G3PDs are issuing requests (for
example, Clear Connection, etc.) to the same device.

The client attempted to add a seventh party to a call with
six active parties.

■ RESOURCE_BUSY (33) User at the station is busy on a
call or there are no idle appearances available.

■ MISTYPED_ARGUMENT_REJECTION (74)
DYNAMIC_ID is specified in heldCall.
Issue 1 — December 2001

4-121DEFPROG.PDF R10.1 V1

Call Control Service Group
Detailed Information:

See the ‘‘Detailed Information:’’ in the “Answer Call Service” section, ‘‘Detailed
Information:’’ in the “Clear Connection Service” section and ‘‘Detailed
Information:’’ in the “Retrieve Call Service” section in this chapter.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V14-122

Reconnect Call Service
Syntax

#include <acs.h>
#include <csta.h>

// cstaReconnectCall() - Service Request

RetCode_t cstaReconnectCall (
ACSHandle_t acsHandle,
InvokeID_t invokeID,
ConnectionID_t *heldCall, // devIDType= STATIC_ID
ConnectionID_t *activeCall, // devIDType= STATIC_ID
PrivateData_t *privateData);

// CSTAReconnectCallConfEvent - Service Response

typedef struct
{

ACSHandle_t acsHandle;
EventClass_t eventClass;// CSTACONFIRMATION
EventType_t eventType; // CSTA_RECONNECT_CALL_CONF

} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{

struct
{

InvokeID_t invokeID;
union
{
CSTAReconnectCallConfEvent_t reconnectCall;
} u;

} cstaConfirmation;
} event;
char heap[CSTA_MAX_HEAP];

} CSTAEvent_t;

typedef struct CSTAReconnectCallConfEvent_t {
Nulltype null;

} CSTAReconnectCallConfEvent_t;
Issue 1 — December 2001

4-123DEFPROG.PDF R10.1 V1

Call Control Service Group
Private Data Version 6 Syntax

#include <acs.h>
#include <csta.h>
#include <attpriv.h>

// attV6ReconnectCall() - Service Request Private Data
// Setup Function

RetCode_t attV6ReconnectCall(
ATTPrivateData_t *privateData,
ATTDropResource_t dropResource); // NULL indicates

// no dropResource
// specified

ATTUserToUserInfo_t *userInfo); // NULL indicates
// no userInfo
// specified

typedef struct ATTPrivateData_t {
char vendor[32];
ushort length;
char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

typedef enum ATTDropResource_t {
DR_NONE = -1,// indicates not specified
DR_CALL_CLASSIFIER = 0,// call classifier to be dropped
DR_TONE_GENERATOR = 1 // tone generator to be dropped

} ATTDropResource_t;

#define ATT_MAX_USER_INFO 129
#define ATT_MAX_UUI_SIZE 96
#define ATTV5_MAX_UUI_SIZE 32

typedef structATTUserToUserInfo_t {
ATTUUIProtocolType_t type;
struct {

short length; // 0 indicates UUI not present

unsigned char value[ATT_MAX_USER_INFO];
} data;

} ATTUserToUserInfo_t;

typedef enum ATTUUIProtocolType_t {
UUI_NONE = -1,// indicates not specified
UUI_USER_SPECIFIC = 0, // user-specific
UUI_IA5_ASCII = 4 // null-terminated ascii

// character string
} ATTUUIProtocolType_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 V14-124

Reconnect Call Service
Private Data Version 2-5 Syntax

#include <acs.h>
#include <csta.h>
#include <attpriv.h>

// attReconnectCall() - Service Request Private Data
// Setup Function

RetCode_t attReconnectCall(
ATTPrivateData_t *privateData,
ATTDropResource_t dropResource); // NULL indicates

// no dropResource
// specified

ATTUserToUserInfo_t *userInfo); // NULL indicates
// no userInfo
// specified

typedef struct ATTPrivateData_t {
char vendor[32];
ushort length;
char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

typedef enum ATTDropResource_t {
DR_NONE = -1,// indicates not specified
DR_CALL_CLASSIFIER = 0,// call classifier to be dropped
DR_TONE_GENERATOR = 1 // tone generator to be dropped

} ATTDropResource_t;

typedef structATTV5UserToUserInfo_t {
ATTUUIProtocolType_t type;
struct {

short length; // 0 indicates UUI not present

unsigned char value[33];
} data;

} ATTV5UserToUserInfo_t;

typedef enum ATTUUIProtocolType_t {
UUI_NONE = -1,// indicates not specified
UUI_USER_SPECIFIC = 0, // user-specific
UUI_IA5_ASCII = 4 // null-terminated ascii

// character string
} ATTUUIProtocolType_t;
Issue 1 — December 2001

4-125DEFPROG.PDF R10.1 V1

Call Control Service Group
Retrieve Call Service

Direction: Client to Switch
Function: cstaRetrieveCall ()
Confirmation Event: CSTARetrieveCallConfEvent
Service Parameters: heldCall
Ack Parameters: noData
Nak Parameter: universalFailure

Functional Description:

The Retrieve Call Service connects an on-PBX held connection.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V14-126

Retrieve Call Service
Service Parameters:

Ack Parameter:

Nak Parameter:

Detailed Information:

■ Active State — If the party is already retrieved on the specified call when
the switch receives the request, a positive acknowledgment is returned.

heldCall [mandatory] A valid connection identifier that indicates the
endpoint to be connected. The deviceID in heldCall must
contain the station extension of the endpoint.

noData None for this service.

universalFailure If the request is not successful, the application will receive a
CSTAUniversalFailureConfEvent. The error parameter in
this event may contain the following error values, or one of
the error values described in the
‘‘CSTAUniversalFailureConfEvent’’ section in Chapter 3:

■ INVALID_CSTA_DEVICE_IDENTIFIER (12) An invalid
device identifier or extension is specified in heldCall.

■ INVALID_CSTA_CONNECTION_IDENTIFIER (13) The
connectionID contained in the request is invalid.

■ GENERIC_STATE_INCOMPATIBILITY (21) The user
was on-hook when the request was made and he/she
did not go off-hook within five seconds (call remains on
hold).

■ NO_ACTIVE_CALL (24) The specified call at the station
is cleared so it cannot be retrieved.

■ NO_HELD_CALL (25) The specified connection at the
station is not in the held state (for example, alerting
state) so it cannot be retrieved.

■ RESOURCE_BUSY (33) The switch is busy with
another CSTA request. This can happen when two
G3PDs are issuing requests (for example, Hold Call,
Retrieve Call, Clear Connection, Conference Call, etc.)
to the same device.

■ CONFERENCE_MEMBER_LIMIT_EXCEEDED (38)
The client attempted to add a seventh party to a
six-party conference call.

■ MISTYPED_ARGUMENT_REJECTION (74)
DYNAMIC_ID is specified in heldCall.
Issue 1 — December 2001

4-127DEFPROG.PDF R10.1 V1

Call Control Service Group
■ Bridged Call Appearance — Retrieve Call Service is not permitted on
parties in the bridged state and may also be more restrictive if the principal
of the bridge has an analog station or the exclusion option is in effect from
a station associated with the bridge or PCOL.

■ Hold State — Normally, the party to be retrieved has been placed on hold
from the station or via the Hold Call Service.

■ Switch Operation — A party may be retrieved only to the same call from
which it had been put on hold as long as there is no other active call at the
user’s station.

If the user is on-hook (in the held state), the switch must be able to force
the station off- hook or the user must go off-hook within five seconds after
requesting a Retrieve Call Service. If one of the above conditions is not
met, the request is denied (GENERIC_STATE_INCOMPATIBILITY) and
the party remains held.

If the user is listening to dial tone while a request for Retrieve Call Service
is received, the dial tone will be dropped and the user reconnected to the
held call.

If the user is listening to any other kind of tone (for example, denial) or is
busy talking on another call, the Retrieve Call Service request is denied
(RESOURCE_BUSY).
Issue 1 — December 2001

DEFPROG.PDF R10.1 V14-128

Retrieve Call Service
Syntax

#include <acs.h>
#include <csta.h>

// cstaRetrieveCall() - Service Request

RetCode_t cstaRetrieveCall (
ACSHandle_t acsHandle,
InvokeID_t invokeID,
ConnectionID_t *heldCall, // devIDType= STATIC_ID
PrivateData_t *privateData);

// CSTARetrieveCallConfEvent - Service Response

typedef struct
{

ACSHandle_t acsHandle;
EventClass_t eventClass;// CSTACONFIRMATION
EventType_t eventType; // CSTA_RETRIEVE_CALL_CONF

} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{

struct
{

InvokeID_t invokeID;
union
{
CSTARetrieveCallConfEvent_t retrieveCall;
} u;

} cstaConfirmation;
} event;
char heap[CSTA_MAX_HEAP];

} CSTAEvent_t;

typedef struct CSTARetrieveCallConfEvent_t {
Nulltype null;

} CSTARetrieveCallConfEvent_t;
Issue 1 — December 2001

4-129DEFPROG.PDF R10.1 V1

Call Control Service Group
Send DTMF Tone Service (Private Data
Version 4 and Later)

Direction: Client to Switch
Function: cstaEscapeService()
Confirmation Event: CSTAEscapeServiceConfEvent
Private Data Function: attSendDTMFToneExt() (private data version 5 and
later), attSendDTMFTone() (private data version 4)
Service Parameters: noData
Private Parameters: sender, receivers, tones, toneDuration, pauseDuration
Ack Parameters: noData
Nak Parameter: universalFailure

Functional Description:

The Send DTMF Tone Service on behalf of an on-PBX endpoint sends a
sequence of DTMF tones (maximum of 32) to endpoints on the call. The
endpoints receiving the DTMF signal can be on-PBX or off-PBX. To send the
DTMF tones, the call must be in an established state.

The allowed DTMF tones are digits 0-9 and # and *. Through such a tone
sequence, an application could interact with far-end applications, such as
automated bank tellers, automated attendants, voice mail systems, database
systems, paging services, etc.

A CSTA Confirmation will be returned to the application when the service request
has been accepted or when transmission of the DTMF tones has started. No
event or indication will be provided to the application when the transmission of the
DTMF tones is completed.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V14-130

Send DTMF Tone Service (Private Data Version 4 and
Later)
Service Parameters:

Private Parameters:

Ack Parameter:

noData None for this service.

sender [mandatory] Specifies the connectionID of the endpoint on
whose behalf DTMF tones are to be sent. This
connectionID can be an on-PBX endpoint or an off-PBX
endpoint (via trunk connection) on the call.

receivers [optional — not supported] A list of up to five connectionIDs
that can receive the DTMF tones. If this list is empty (NULL
or the count is 0), all parties on the call will receive the
DTMF tones if eligible (that is, the voice path allows the
party to receive the signals). This parameter is reserved for
future use. If present, it will be ignored.

tones [mandatory] DTMF sequence to be generated. The
maximum tone sequence that can be sent is 32. The
allowed DTMF tones are null-terminated ASCII string with
digits 0-9, ’#’ and ’*’ only. Any other character in tones is
invalid and will cause the request to be denied.

toneDuration [optional] Specifies the number of one hundredth of a
second (for example, 10 means 1/10 of a second) used to
control the tone duration. The only valid values for the
duration are 6 through 35 (one hundredths of a second).

pauseDuration [optional] Specifies the number of one hundredth of a
second used to control the pause duration. The only valid
values are 4 through 10 (one hundredths of a second)

noData None for this service.
Issue 1 — December 2001

4-131DEFPROG.PDF R10.1 V1

Call Control Service Group
Nak Parameter:

Detailed Information:

■ * And # Characters — If * and/or # characters are present, they will not be
interpreted as termination characters or have any other transmission
control function.

■ AUDIX — AUDIX analog line ports connected to the G3 PBX will be able to
receive DTMF tones generated by this service. However, embedded
AUDIX or embedded AUDIX configured to emulate an analog line port
interface is not supported.

■ Call State — This service may be requested for any active call. This
service will be denied when this feature is requested on a call that is
currently receiving any switch-provided tone, such as busy, ringback,
intercept, music-on-hold, etc.

■ Connection State — A sender must have an active voice path to the call. A
sender at alerting or held local state cannot send the DTMF tone. A
receiver must have an active voice path to the sender. A receiver at hold
local state will not receive the tone, although the switch will attempt to send
the tone.

universalFailure If the request is not successful, the application will receive a
CSTAUniversalFailureConfEvent. The error parameter in
this event may contain the following error values, or one of
the error values described in the
‘‘CSTAUniversalFailureConfEvent’’ section in Chapter 3:

■ VALUE_OUT_OF_RANGE (3) (CS0/100) The tones
parameter has length equal to 0 or greater than 32 or
invalid characters are specified in tones. Also, could
indicate that parameter values for either toneDuration or
pauseDuration were incorrectly set.

■ OBJECT_NOT_KNOWN (4) (CS0/96) Mandatory
parameter is missing.

■ INVALID_CSTA_DEVICE_IDENTIFIER (13) (CS0/28)
Invalid deviceID is specified in sender.

■ INVALID_OBJECT_STATE (22) (CS0/98, CS3/63) The
service is requested on a call that is currently receiving
switch-provided tone, such as dial tone, busy tone,
ringback tone, intercept tone, Music-on-Hold/Delay, etc.
The call must be in an established state in order to send
DTMF tones.

■ NO_ACTIVE_CALL (24) (CS3/86) Invalid callID is
specified in sender or receivers.

■ GENERIC_SUBSCRIBED_RESOURCE_AVAILABILITY
(41) (CS0/50) This service is requested on a G3 PBX
administered as a release earlier than G3V4.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V14-132

Send DTMF Tone Service (Private Data Version 4 and
Later)
■ DTMF Receiver — Only parties connected to the switch via analog line
ports, analog trunk ports (including tie trunks), or digital trunk ports
(including ISDN trunk ports) can be a receiver.

■ DTMF Sender — Any voice station or (incoming) trunk caller on an active
call can be a sender. DTMF tones will be sent to all parties (receivers) with
proper connection type except the sender.

■ Multiple Send DTMF Tone Requests — An application can send on behalf
of different endpoints in a conference call such that DTMF tone sequences
overlap or interfere with each other. An application is responsible for
ensuring that it does not ask for multiple send DTMF tone requests from
multiple parties on the same call at nearly the same time.

■ Unsupported DTMF Tones — Tones corresponding to characters A, B, C,
D are not supported by this service.

■ Tone Cadence and Level — The application can only control the sequence
of DTMF tones. The cadence and levels at which the tones are generated
will be controlled by the G3 PBX system administration and/or current
defaults for the tone receiving ports, rather than by the application. When
DTMF tones are sent to a multi-receiver call, the receivers may hear DTMF
sequence with differing cadences.

■ Service Availability — This service is only available on a G3 PBX with
G3V4 or later software.
Issue 1 — December 2001

4-133DEFPROG.PDF R10.1 V1

Call Control Service Group
Syntax

#include <acs.h>
#include <csta.h>

// cstaEscapeService() - Service Request

RetCode_t cstaEscapeService (
ACSHandle_t acsHandle,
InvokeID_t invokeID,
PrivateData_t *privateData);

// CSTAEscapeServiceConfEvent - Service Response

typedef struct
{

ACSHandle_t acsHandle;
EventClass_t eventClass;// CSTACONFIRMATION
EventType_t eventType; // CSTA_ESCAPE_SVC_CONF

} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{

struct
{

InvokeID_t invokeID;
union
{
CSTAEscapeSvcConfEvent_t escapeService;
} u;

} cstaConfirmation;
} event;

} CSTAEvent_t;

typedef struct CSTAEscapeSvcConfEvent_t {
Nulltype null;

} CSTAEscapeSvcConfEvent_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 V14-134

Send DTMF Tone Service (Private Data Version 4 and
Later)
Private Data Version 5 Syntax

#include <acs.h>
#include <csta.h>
#include <attpriv.h>

// attSendDTMFToneExt() - Service Request Private Data
// Setup Function

RetCode_t attSendDTMFToneExt(
ATTPrivateData_t *privateData,
ConnectionID_t *sender; // mandatory - NULL is

// treated as not specified
ATTConnIDList_t *receivers; // ignored - reserved for

// future use (send to all
// parties)

char *tones // mandatory - NULL is
// treated as not specified

short toneDuration, // ignored - reserved for
// future use

short pauseDuration); // ignored - reserved for
// future use

typedef struct ATTPrivateData_t {
char vendor[32];
ushort length;
char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

typedef struct ATTConnIDList_t
{

int count;
ConnectionID_t *pParty;

} ATTConnIDList_t;
Issue 1 — December 2001

4-135DEFPROG.PDF R10.1 V1

Call Control Service Group
Private Data Version 4 Syntax

#include <acs.h>
#include <csta.h>
#include <attpriv.h>

// attSendDTMFToneExt() - Service Request Private Data
// Setup Function

RetCode_t attSendDTMFToneExt(
ATTPrivateData_t *privateData,
ConnectionID_t *sender; // mandatory - NULL is

// treated as not specified
ATTV4ConnIDList_t *receivers; // ignored - reserved for

// future use (send to all
// parties)

char *tones // mandatory - NULL is
// treated as not specified

short toneDuration, // ignored - reserved for
// future use

short pauseDuration); // ignored - reserved for
// future use

typedef struct ATTPrivateData_t {
char vendor[32];
ushort length;
char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

typedef struct ATTV4ConnIDList_t
{

short count; // 0 means not specified
// (send to all parties)

ConnectionID_t party[ATT_MAX_RECEIVERS];

} ATTV4ConnIDList_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 V14-136

Selective Listening Hold Service (Private Data Version 5
and Later)
Selective Listening Hold Service
(Private Data Version 5 and Later)

Direction: Client to Switch
Function: cstaEscapeService()
Confirmation Event: CSTAEscapeServiceConfEvent
Private Data Function: attSelectiveListeningHold() (private data version 5
and later)
Service Parameters: noData
Private Parameters: subjectConnection, allParties, selectedParty
Ack Parameters: noData
Nak Parameter: universalFailure

Functional Description:

The Selective Listening Hold Service allows a client application to prevent a
specific party on a call from hearing anything said by another specific party or all
other parties on the call. It allows a client application to put a party’s
(subjectConnection) listening path to a selected party (selectedParty) on
listen-hold, or all parties on an active call on listen-hold. The selected party or all
parties may be stations or trunks. A party that has been listen-held may continue
to talk and be heard by other connected parties on the call since this service does
not affect the talking or listening path of any other party. A party will be able to
hear parties on the call from which it has not been listen-held, but will not be able
to hear any party from which it has been listen-held. This service will also allow
the listen-held party to be retrieved (i.e., to again hear the other party or parties on
the call).
Issue 1 — December 2001

4-137DEFPROG.PDF R10.1 V1

Call Control Service Group
Service Parameters:

Private Parameters:

Ack Parameter:

noData None for this service.

subjectConnection [mandatory] Specifies the connectionID of the party who will
not hear the voice from all other parties or a single party
specified in the selectedParty. This connectionID can be an
on-PBX endpoint or an off-PBX endpoint (via trunk
connection) on the call.

allParties [mandatory] Specifies either all parties’ or a single party’s
listening path is to be held from the subjectConnection party.

■ True — the listening paths of all parties on the call will
be held from the subjectConnection party. This prevents
the subjectConnection from listening to all other parties
on the call. The subjectConnection endpoint can still talk
and be heard by all other connected parties on the call.
The selectedParty parameter is ignored.

■ False — the listening path of the subjectConnection
party will be held from the selectedParty party. This
prevents the subjectConnection from listening to all
other parties on the call. The subjectConnection
endpoint can still talk and be heard by all other
connected parties on the call. The selectedParty
parameter must be specified.

selectedParty [optional] A connectionID whose voice will not be heard by
the subjectConnection party. If allParties is false, a
connectionID must be specified. If allParties is true, the
connectionID in this parameter is ignored.

noData None for this service.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V14-138

Selective Listening Hold Service (Private Data Version 5
and Later)
Nak Parameter:

Detailed Information:

■ Announcements — A party cannot be listen-held from an announcement.
When a request is made to listen- hold all parties on a call, and there are
more parties than just the announcement, the other parties will be
listen-held, but the announcement will not. When the only other party on
the call is an announcement, the request will fail.

■ Attendants —This feature will not work with attendants.

■ Call Vectoring — A call cannot be listen-held when in vector processing.

■ Conference and Transfer Call — When two calls are
conferenced/transferred, the listen-held state of one party (A) from another
party (B) in the resulting call is determined as follows:

1. If party A was listen-held from party B in at least one of the original
calls prior to the conference/transfer, party A will remain listen-held
from party B in the resulting call.

2. Otherwise party A will not be listen-held from party B.

universalFailure If the request is not successful, the application will receive a
CSTAUniversalFailureConfEvent. The error parameter in
this event may contain the following error values, or one of
the error values described in the
‘‘CSTAUniversalFailureConfEvent’’ section in Chapter 3:

■ VALUE_OUT_OF_RANGE (3) (CS0/100) A party
specified is not part of the call or in wrong state (e.g., a
two-party call with the selectedParty still in the alerting
state).

■ OBJECT_NOT_KNOWN (4) (CS0/96) Mandatory
parameter is missing.

■ INVALID_CSTA_DEVICE_IDENTIFIER (13) (CS0/28)
The party specified is not supported by this service (e.g.,
announcements, extensions without hardware, etc).

■ INVALID_OBJECT_STATE (22) (CS0/98) The request
to listen-hold from all parties is not granted because
there are no other eligible parties on the call (including
any that were previously listen-held).

■ NO_ACTIVE_CALL (24) (CS3/63) Invalid callID is
specified.

■ GENERIC_SYSTEM_RESOURCE_AVAILABILITY (31)
(CS3/40) Switch capacity has been exceeded.

■ GENERIC_SUBSCRIBED_RESOURCE_AVAILABILITY
(41) (CS0/50) This service has not been administratively
enabled on the switch.
Issue 1 — December 2001

4-139DEFPROG.PDF R10.1 V1

Call Control Service Group
When the request is received for a multi-party conference and one of the
parties is still alerting, the request will be positively acknowledged and the
alerting party will be listen- held upon answering.

■ Converse Agent — A converse agent may be listen-held. While in this
state, the converse agent will hear any DTMF digits that might be sent by
the switch (as specified by the switch administration).

■ DTMF Receiver — When a party has been listen-held while DTMF digits
are being transmitted by the same switch (as a result of the Send DTMF
service), the listen-held party will still hear the DTMF digits. However, the
listen-held party will not hear the DTMF digits if the digits are sent by
another switch.

■ Hold Call — A party that is listen-held may be put on hold and retrieved as
usual. A party that is already on hold and is being listen-held will be
listen-held after having been retrieved. The service request on a held party
will be positively acknowledged.

■ Music On Hold — Music on Hold ports may not be listen-held (connection
is not addressable). If a party is being listen-held from all other parties
(while listening to Music on Hold), the party will still hear the Music on Hold.

■ Park/Unpark Call — A call with parties listen-held may be parked. When
the call is unparked, the listening paths that were previously held will
remain on listen-hold.

■ Retrieve Call — If a listen-held party goes on hold and then is retrieved, all
listening paths that were listen-held will remain listen-held.

■ Switch Administration — The Selective Listening Hold Service must be
enabled (set to ‘y’) in order for it to work.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V14-140

Selective Listening Hold Service (Private Data Version 5
and Later)
Syntax

#include <acs.h>
#include <csta.h>

// cstaEscapeService() - Service Request

RetCode_t cstaEscapeService (
ACSHandle_t acsHandle,
InvokeID_t invokeID,
PrivateData_t *privateData);

// CSTAEscapeServiceConfEvent - Service Response

typedef struct
{

ACSHandle_t acsHandle;
EventClass_t eventClass;// CSTACONFIRMATION
EventType_t eventType; // CSTA_ESCAPE_SERVICE_CONF

} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{

struct
{

InvokeID_t invokeID;
} cstaConfirmation;

} event;
char heap[CSTA_MAX_HEAP];

} CSTAEvent_t;
Issue 1 — December 2001

4-141DEFPROG.PDF R10.1 V1

Call Control Service Group
Private Data Version 5 Syntax

#include <acs.h>
#include <csta.h>
#include <attpriv.h>

// attSelectiveListeningHold() - Service Request Private
// Data Setup Function

RetCode_t attSelectiveListeningHold(
ATTPrivateData_t*privateData,
ConnectionID_t *subjectConnection,
Boolean allParties;
ConnectionID_t *selectedParty);

typedef struct ATTPrivateData_t {
char vendor[32];
ushort length;
char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

// attSelectiveListeningHoldConfEvent - Private Data
// Service Response

typedef struct ATTSelectiveListeningHoldConfEvent_t {
Nulltype null;
} ATTSelectiveListeningHoldConfEvent_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 V14-142

Selective Listening Retrieve Service (Private Data
Version 5 and Later)
Selective Listening Retrieve Service
(Private Data Version 5 and Later)

Direction: Client to Switch
Function: cstaEscapeService()
Confirmation Event: CSTAEscapeServiceConfEvent
Private Data Function: attSelectiveListeningRetrieve()
Service Parameters: noData
Private Parameters: subjectConnection, allParties, selectedParty
Ack Parameters: noData
Nak Parameter: universalFailure

Functional Description:

The Selective Listening Retrieve Service allows a client application to retrieve a
party (subjectConnection) from listen-hold to another party (selectedParty) or all
parties that were previously being listen-held.
Issue 1 — December 2001

4-143DEFPROG.PDF R10.1 V1

Call Control Service Group
Service Parameters:

Private Parameters:

Ack Parameter:

noData None for this service.

subjectConnect
ion

[mandatory] Specifies the connectionID of the party whose
listening path will be reconnected to all parties or party
specified in the selectedParty. This connectionID can be an
on-PBX endpoint or an off-PBX endpoint (via trunk
connection) on the call.

allParties [mandatory] Specifies either all parties’ or a single party’s
listening path is to be reconnected from the
subjectConnection party.

■ True — the listening paths of all parties on the call will
be reconnected from the subjectConnection party. This
allows the subjectConnection endpoint to be able to
listen to all other parties on the call. The selectedParty
parameter is ignored.

■ False — the listening path of the subjectConnection
party will be reconnected from the selectedParty party.
This allows the subjectConnection endpoint be able to
listen to selectedParty party. The selectedParty
parameter must be specified.

selectedParty [optional] A connectionID whose listening path will be
retrieved from listen-held by the subjectConnection party. If
allParties is false, connectionIDs must be specified. If
allParties is true, the connectionID in this parameter is
ignored.

noData None for this service.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V14-144

Selective Listening Retrieve Service (Private Data
Version 5 and Later)
Nak Parameter:

Detailed Information:

See ‘‘Detailed Information:’’ in the "Selective Listening Hold Service" section in
this chapter for details.

universalFailure If the request is not successful, the application will receive a
CSTAUniversalFailureConfEvent. The error parameter in
this event may contain the following error values, or one of
the error values described in the
‘‘CSTAUniversalFailureConfEvent’’ section in Chapter 3:

■ VALUE_OUT_OF_RANGE (3) (CS0/100) A party
specified is not part of the call or in the wrong state (e.g.,
a two-party call with the selectedParty still in the alerting
state).

■ OBJECT_NOT_KNOWN (4) (CS0/96) Mandatory
parameter is missing.

■ INVALID_CSTA_DEVICE_IDENTIFIER (13) (CS0/28)
The party specified is not supported by this feature (e.g.,
announcements, extensions without hardware, etc).

■ NO_ACTIVE_CALL (24) (CS3/63) Invalid callID is
specified.

■ GENERIC_SUBSCRIBED_RESOURCE_AVAILABILITY
(41) (CS0/50) This service has not been administratively
enabled on the switch.
Issue 1 — December 2001

4-145DEFPROG.PDF R10.1 V1

Call Control Service Group
Syntax

#include <acs.h>
#include <csta.h>

// cstaEscapeService() - Service Request

RetCode_t cstaEscapeService (
ACSHandle_t acsHandle,
InvokeID_t invokeID,
PrivateData_t *privateData);

// CSTAEscapeServiceConfEvent - Service Response

typedef struct
{

ACSHandle_t acsHandle;
EventClass_t eventClass;// CSTACONFIRMATION
EventType_t eventType; // CSTA_ESCAPE_SERVICE_CONF

} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{

struct
{

InvokeID_t invokeID;
} cstaConfirmation;

} event;
char heap[CSTA_MAX_HEAP];

} CSTAEvent_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 V14-146

Selective Listening Retrieve Service (Private Data
Version 5 and Later)
Private Data Version 5 Syntax

#include <acs.h>
#include <csta.h>
#include <attpriv.h>

// attSelectiveListeningRetrieve() - Service Request Private
// Data Setup Function

RetCode_t attSelectiveListeningRetrieve(
ATTPrivateData_t*privateData,
ConnectionID_t *subjectConnection,
Boolean allParties;
ConnectionID_t *selectedParty);

typedef struct ATTPrivateData_t {
char vendor[32];
ushort length;
char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

// attSelectiveListeningRetrieveConfEvent - Private Data
// Service Response

typedef struct ATTSelectiveListeningRetrieveConfEvent_t {
Nulltype null;

} ATTSelectiveListeningRetrieveConfEvent_t;
Issue 1 — December 2001

4-147DEFPROG.PDF R10.1 V1

Call Control Service Group
Single Step Conference Call Service
(Private Data Version 5 and Later)

Direction: Client to Switch
Function: cstaEscapeService()
Confirmation Event: CSTAEscapeServiceConfEvent
Private Data Function: attSingleStepConferenceCall()
Private Data Confirmation Event: ATTSingleStepConferenceCallConfEvent
Service Parameters: noData
Private Parameters: activeCall, deviceToBeJoin, participationType,
alertDestination
Ack Parameters: noData
Ack Private Parameters: newCall, connList, ucid
Nak Parameter: universalFailure

Functional Description:

The Single Step Conference Call Service will join a new device into an existing
call. This service can be repeated to make n-device conference calls (subject to
switching function limits). Currently DEFINITY supports six (6) parties on a call.

NOTE:
Single Step Conference Call Service is not currently supported by an ISDN
BRI station.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V14-148

Single Step Conference Call Service (Private Data
Version 5 and Later)
Service Parameters:

Private Parameters:

noData None for this service.

activeCall [mandatory] A pointer to a connection identifier in the call to
which a new device is to be added. This can be any
connection on the call.

deviceToBeJoin [mandatory] A pointer to the device identifier that is to be
added to the call. This must be either a physical station
extension of any type or an extension administered without
hardware (AWOH), but not a group extension.

Physical stations may be connected locally (analog, BRI,
DCP, etc.) or remotely as Off-Premises stations. AWOH
extensions count towards the maximum parties in a call.
Trunks cannot be directly added to a call via this feature.
Group extensions (e.g., hunt groups, PCOLs, TEGs, etc.)
may not be added.

participationType [optional] Specifies the type of participation the added
device has in the resulting call. Possible values are:

■ PT_ACTIVE — the added device actively participates in
the resulting conferenced call. As a result, the flow
direction of the deviceToBeJoin’s connection will be
Transmit and Receive. Thus the added device can listen
and talk.

■ PT_SILENT — the added device can listen but cannot
actively participate (cannot talk) in the resulting
conferenced call. As a result, the flow direction of the
deviceToBeJoin’s connection will be Receive only. Thus
the other parties on the call will be unaware that the
added device has joined the call (no display updates).
This option is useful for applications that may desire to
silently conference in devices (e.g., service observing).

NOTE:
If a party is Single Step Conferenced in with PT_
SILENT, holds the call, and then conferences in
another party, the PT_SILENT status of the original
party is negated (i. e., the original party would then be
heard by all other parties).

alertDestination [optional — partially supported] Specifies whether or not the
deviceToBeJoin is to be alerted.
Issue 1 — December 2001

4-149DEFPROG.PDF R10.1 V1

Call Control Service Group
■ TRUE — deviceToBeJoin will be alerted (with Delivered
event) before it joins the call.

NOTE:
The “TRUE” option is not supported in the current
release. If it is specified, the service request will fail
with VALUE_OUT_OF_RANGE.

■ FALSE — deviceToBeJoin will connect to the existing
call without the device being alerted (no Delivered
event). Only the “FALSE” option is supported in the
current release.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V14-150

Single Step Conference Call Service (Private Data
Version 5 and Later)
Ack Parameter:

Ack Private Parameters:

noData None for this service.

newCall [mandatory] A connectionID specifies the callID and the
deviceID of the joining device. The callID is the same callID
as specified in the service request; that is, the callID of the
resulting call is not changed.

connList [optional — supported] Specifies the devices on the
resulting newCall. This includes a count of the number of
devices in the conferenced call and a list of connectionIDs
and deviceIDs that define each connection in the call.

■ If a device is on-PBX, the extension is specified. The
extension consists of station or group extensions.
Group extensions are provided when the conference is
to a group and the conference completes before the call
is answered by one of the group members (TEG, PCOL,
hunt group, or VDN extension). It may contain alerting
or bridged extensions.

■ The static deviceID of a queued endpoint is set to the
split extension of the queue.

■ [optional — partially supported] Specifies whether or not
the deviceToBeJoin is to be alerted.

■ If a party is off-PBX, then its static device identified or its
previously assigned trunk identifier is specified.

ucid [optional — supported] Specifies the Universal Call ID
(UCID) of newCall. The UCID is a unique call identifier
across switches and the network. A valid UCID is a
null-terminated ASCII character string. If there is no UCID
associated with this call, the ucid contains the ATT_NULL_
UCID (a 20-character string of all zeros). This parameter is
supported by private data version 5 and later only.
Issue 1 — December 2001

4-151DEFPROG.PDF R10.1 V1

Call Control Service Group
Nak Parameter:

universalFailure If the request is not successful, the application will receive a
CSTAUniversalFailureConfEvent. The error parameter in
this event may contain the following error values, or one of
the error values described in the
‘‘CSTAUniversalFailureConfEvent’’ section in Chapter 3:

■ VALUE_OUT_OF_RANGE (3) (CS0/100) A not
supported option is specified or some out-of-range value
is specified in a parameter.

■ OBJECT_NOT_KNOWN (4) (CS0/96) Mandatory
parameter is missing.

■ INVALID_CALLED_DEVICE (6) (CS0/28) The
deviceToBeJoin is not a valid station or an AWOH
extension, or an invalid callID is specified

■ INVALID_CALLING_DEVICE (CS3/27) The
deviceToBeJoin is on-hook when Single Step
Conference is initiated. The deviceToBeJoin should be
in off-hook/autoanswer condition.

■ PRIVILEGE_VIOLATION_ON_SPECIFIED_DEVICE (8)
(CS3/43) The class of restriction on deviceToBeJoin is
violated.

■ INVALID_CSTA_DEVICE_IDENTIFIER (12) (CS0/28)
The deviceToBeJoin is not a valid identifier.

■ INVALID_FEATURE (15) (CS3/63) This feature is not
supported on the switch. The switch software is prior to
Release 6.

■ INVALID_OBJECT_TYPE (18) (CS0/58) Call has
conference restriction due to any of the data- related
features (e.g., data restriction, privacy, manual
exclusion, etc.).

■ GENERIC_STATE_INCOMPATIBILITY (21) (CS0/18)
The deviceToBeJoin cannot be forced off-hook and it did
not go off-hook within 5 seconds.

■ INVALID_OBJECT_STATE (22) (CS0/98) The request is
made with option PT_ACTIVE while the call is in vector
processing.

■ RESOURCE_BUSY (33) (CS0/17) The deviceToBeJoin
is busy or not in idle state.

■ CONFERENCE_MEMBER_LIMIT_EXCEEDED (38)
(CS3/42) The maximum allowed number of parties on
the call has been reached.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V14-152

Single Step Conference Call Service (Private Data
Version 5 and Later)
Detailed Information:

■ Bridged Call Appearance — A principal station with bridged call
appearance can be single step conferenced into a call. Stations with
bridged call appearance to the principal have the same bridged call
appearance behavior, that is, if monitored, the station will receive
Established And Conferenced Events when it joins the call. The station will
not receive a Delivered Event.

■ Call and Device Monitoring Event Sequences — A successful
SingleStepConferenceCall request will generate an Established Event
followed by a Conferenced Event for call monitoring and the monitoring of
all devices that are involved in the newCall. The Established Event reports
the connection state change of the DeviceToBeJoin and the Conferenced
Event reports the result of the SingleStepConferenceCall request. All
call-associated information (e.g., original calling and called device, UUI,
collected digits, etc.) is reported in the Conferenced Event and Established
Event. In both events, the cause value is EC_ACTIVE_MONITOR, if PT_
ACTIVE was specified in the SingleStepConferenceCall request and EC_
SILENT_MONITOR, if PT_SILENT was specified. The confController and
addParty parameters in the Conferenced Event have the same device as
specified by DeviceToBeJoin.

The single step conference call event sequences are similar to the
two-step conference call event sequences with one exception. Since the
added party is alerted in the two-step conference call, a Delivered Event is
generated. In a single-step conference call scenario, however; the
deviceToBeJoin is added onto the call without alerting. Therefore, no
Delivered Event is generated.

■ Call State — The call into which a station is to be conferenced with Single
Step Conference Service may be in any state, except the following
situation. If the call is in vector processing and the PT_ACTIVE option is
specified in the request, the request will be denied with INVALID_
OBJECT_STATE. This will avoid interactions with vector steps such as
“collect” when a party joins the call and is able to talk. If the PT_SILENT is
specified, the request will be accepted.

■ Dropping Recording Device — If single-step conference is used to add a
recording device into a call, the application has the responsibility of
dropping the recording device and/or call when appropriate. The DEFINITY
switch cannot distinguish between recording devices and real stations, so if
a recording device is left in the call with one other party, the DEFINITY
switch will leave that call up forever, until one of those parties drops.

■ Drop Button and Last Added Party — A party added by Single Step
Conference Service will never be considered as “last added party” on the
call. Thus, parties added through Single Step Conference Service would
not be able to be dropped by using the Drop button.
Issue 1 — December 2001

4-153DEFPROG.PDF R10.1 V1

Call Control Service Group
■ Feature Availability — The Single Step Conference Service is only
available on the DEFINITY switch with Release 6 and later software.
Software prior to R6 will deny the service request and return INVALID_
FEATURE.

■ Primary Old Call in Conferenced Event — Since the activeCall and the
newCall parameters contain the same callID, there is no meaningful
primaryOldCall in the Conferenced Event. The callID in primaryOldCall will
have the value 0 and the deviceID will have the value “0” with type
DYNAMIC.

■ Remote Agent Trunk to Trunk Conference/Transfer — In this type
application, an incoming call with an external caller is routed to a remote
agent. The remote agent wants to transfer the call to another agent (also
remote). Upon the agent’s transfer request at the desktop, an application
may use Single Step Conference Service to join a local device into this
trunk-to-trunk call. This local device need not be a physical station; it may
be a station AWOH. Having added the local station into the call, the
application can hold the call and make a call to the new agent, and then
transfer the call. The caller is now connected to the second remote agent,
and the local station (physical or AWOH) that was used to accomplish the
transfer is no longer on the call.

■ State of Added Station — A station to be conferenced into a call must be
idle. A station is considered idle when it has an idle call appearance for call
origination. If a station is off-hook idle when the Single Step Conference
Service is received, the station is immediately conferenced in. If a station is
on-hook idle and it may be forced off-hook, it will be forced off-hook and
immediately conferenced in. If a station is on-hook idle and it may not be
forced off-hook, the switch will wait 5 seconds for the user to go off-hook. If
the user does not go off-hook within 5 seconds, then a negative
acknowledgment with GENERIC_STATE_INCOMPATIBILITY is sent.

■ Security — As long as it is allowed by switch administration, an application
can add a party onto a call with Single Step Conference Call Service
without any audible signal or visual display to the existing parties on the
call. If security is a concern, proper switch administration must be
performed.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V14-154

Single Step Conference Call Service (Private Data
Version 5 and Later)
Syntax

#include <acs.h>
#include <csta.h>

// cstaEscapeService() - Service Request

RetCode_t cstaEscapeService (
ACSHandle_t acsHandle,
InvokeID_t invokeID,
PrivateData_t *privateData);

// CSTAEscapeServiceConfEvent - Service Response

typedef struct
{

ACSHandle_t acsHandle;
EventClass_t eventClass;// CSTACONFIRMATION
EventType_t eventType; // CSTA_ESCAPE_SERVICE_CONF

} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{

struct
{

InvokeID_t invokeID;
} cstaConfirmation;

} event;
char heap[CSTA_MAX_HEAP];

} CSTAEvent_t;
Issue 1 — December 2001

4-155DEFPROG.PDF R10.1 V1

Call Control Service Group
Private Data Version 5 Syntax

#include <acs.h>
#include <csta.h>
#include <attpriv.h>

// attSingleStepConferenceCall() - Service Request Private Data
// Setup Function

RetCode_t attSingleStepConferenceCall(
ATTPrivateData_t *privateData,
ConnectionID_t *activeCall, // mandatory
DeviceID_t *deviceToBeJoin, // mandatory
ATTParticipationType_t participation,
Boolean alertDestination);

typedef struct ATTPrivateData_t {
char vendor[32];
ushort length;
char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

// ATTSingleStepConferenceCallConfEvent - Private Data Service Response

typedef struct
{

ATTEventType_t eventType;
// ATT_SINGLE_STEP_CONFERENCE_CALL_CONF

union
{

ATTSingleStepConferenceCallConfEvent_t ssconference;
}u;
char heap[ATTPRIV_MAX_HEAP];

} ATTEvent_t;

typedef struct Connection_t {
ConnectionID_t party;
DeviceID_t staticDevice; // NULL for not present

} Connection_t;

typedef struct ConnectionList_t {
int count;
Connection_t *connection;

} ConnectionList_t;

typedef struct ATTSingleStepConferenceCallConfEvent_t {
ConnectionID_t newCall;
ConnectionList_t connList;
ATTUCID_t ucid;

} ATTSingleStepConferenceCallConfEvent_t;

typedef char ATTUCID_t[64];
Issue 1 — December 2001

DEFPROG.PDF R10.1 V14-156

Transfer Call Service
Transfer Call Service

Direction: Client to Switch
Function: cstaTransferCall ()
Confirmation Event: CSTATransferCallConfEvent
Private Data Confirmation Event: ATTTransferCallConfEvent
Service Parameters: heldCall, activeCall
Ack Parameters: newCall, connList
Ack Private Parameters: ucid
Nak Parameter: universalFailure

Functional Description:

This service provides the transfer of an existing held call (heldCall) and another
active or proceeding call (alerting, queued, held, or connected) (activeCall) at a
device provided that heldCall and activeCall are not both in the alerting state at
the controlling device. The Transfer Call Service merges two calls with
connections at a single common device into one call. Also, both of the
connections to the common device become Null and their connectionIDs are
released. A connectionID that specifies the resulting new connection for the
transferred call is provided.
Issue 1 — December 2001

4-157DEFPROG.PDF R10.1 V1

Call Control Service Group
Service Parameters:

Ack Parameters:

Ack Private Parameters:

heldCall [mandatory] Must be a valid connection identifier for the call
that is on hold at the controlling device and is to be
transferred to the activeCall. The deviceID in heldCall must
contain the station extension of the controlling device.

activeCall [mandatory] Must be a valid connection identifier of an
active or proceeding call at the controlling device to which
the heldCall is to be transferred. The deviceID in activeCall
must contain the station extension of the controlling device.

newCall [mandatory — partially supported] A connection identifier
that specifies the resulting new call identifier for the
transferred call.

connList [optional — supported] Specifies the devices on the
resulting new call. This includes a count of the number of
devices in the new call and a list of up to six connectionIDs
and up to six deviceIDs that define each connection in the
call.

■ If a device is on-PBX, the extension is specified. The
extension consists of station or group of extensions.
Group extensions are provided when the conference is
to a group and the conference completes before the call
is answered by one of the group members (TEG, PCOL,
hunt group, or VDN extension). It may contain alerting
extensions.

■ The static deviceID of a queued endpoint is set to the
split extension of the queue.

■ If a party is off-PBX, then its static device identifier or its
previously assigned trunk identifier is specified.

ucid [optional] Specifies the Universal Call ID (UCID) of newCall.
The UCID is a unique call identifier across switches and the
network. A valid UCID is a null-terminated ASCII character
string. If there is no UCID associated with this call, the ucid
contains the ATT_NULL_UCID (a 20-character string of all
zeros). This parameter is supported by private data version
5 and later only.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V14-158

Transfer Call Service
Nak Parameter:

Detailed Information:

■ Analog Stations — Transfer Call Service will only be allowed if one call is
held and the second is active (talking). Calls on hard-held or alerting
cannot be affected by a Transfer Call Service.

An analog station will support Transfer Call Service even if the
“switch-hook flash” field on the G3 system administered form is set to “no.”
A “no” in this field disables the switch- hook flash function, meaning that a
user cannot conference, hold, or transfer a call from his/her phone set, and
cannot have the call waiting feature administered on the phone set.

universalFailure If the request is not successful, the application will receive a
CSTAUniversalFailureConfEvent. The error parameter in
this event may contain the following error values, or one of
the error values described in the
‘‘CSTAUniversalFailureConfEvent’’ section in Chapter 3:

■ INVALID_CSTA_DEVICE_IDENTIFIER (12) An invalid
device identifier or extension is specified in heldCall or
activeCall.

■ INVALID_CSTA_CONNECTION_IDENTIFIER (13) The
controlling deviceID in activeCall or heldCall has not
been specified correctly.

■ GENERIC_STATE_INCOMPATIBILITY (21) Both calls
are alerting. Both calls are being service-observed. An
active call is in a vector-processing stage.

■ INVALID_OBJECT_STATE (22) The connections
specified in the request are not in the valid states for the
operation to take place. For example, it does not have
one active call and one held call as required.

■ INVALID_CONNECTION_ID_FOR_ACTIVE_CALL (23)
The callID in activeCall or heldCall has not been
specified correctly.

■ RESOURCE_BUSY (33) The switch is busy with
another CSTA request. This can happen when two
G3PDs are issuing requests (for example, Hold Call,
Retrieve Call, Clear Connection, Transfer Call, etc.) to
the same device.

■ CONFERENCE_MEMBER_LIMIT_EXCEEDED (38)
The request attempted to add a seventh party to an
existing six-party conference call.

■ MISTYPED_ARGUMENT_REJECTION (74)
DYNAMIC_ID is specified in heldCall or activeCall.
Issue 1 — December 2001

4-159DEFPROG.PDF R10.1 V1

Call Control Service Group
■ Bridged Call Appearance — Transfer Call Service is not permitted
on parties in the bridged state and may also be more restrictive if the
principal of the bridge has an analog station or the exclusion option
is in effect from a station associated with the bridge or PCOL.

■ Trunk to Trunk Transfer — Existing rules for trunk-to-trunk transfer
from a station user will remain unchanged for application monitored
calls. In such case, transfer requested via Transfer Call Service will
be denied. When this feature is enabled, application monitored calls
transferred from trunk to trunk will be allowed, but there will be no
further event reports (except for the Network Reached, Established,
or Connection Cleared Event Reports sent to the application).
Issue 1 — December 2001

DEFPROG.PDF R10.1 V14-160

Transfer Call Service
Syntax

#include <acs.h>
#include <csta.h>

// cstaTransferCall() - Service Request

RetCode_t cstaTransferCall (
ACSHandle_t acsHandle,
InvokeID_t invokeID,
ConnectionID_t *heldCall, // devIDType= STATIC_ID
ConnectionID_t *activeCall, // devIDType= STATIC_ID
PrivateData_t *privateData);

// CSTATransferCallConfEvent - Service Response

typedef struct
{

ACSHandle_t acsHandle;
EventClass_t eventClass;// CSTACONFIRMATION
EventType_t eventType; // CSTA_TRANSFER_CALL_CONF

} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{

struct
{

InvokeID_t invokeID;
union
{
CSTATransferCallConfEvent_t transferCall;
} u;

} cstaConfirmation;
} event;
char heap[CSTA_MAX_HEAP];

} CSTAEvent_t;

typedef struct Connection_t {
ConnectionID_t party;
DeviceID_t staticDevice; // NULL for not present
} Connection_t;

typedef struct ConnectionList_t {
int count;
Connection_t *connection;

} ConnectionList_t;

typedef struct {
ConnectionID_t newCall;
ConnectionListID_t connList;

} CSTATransferCallConfEvent_t;
Issue 1 — December 2001

4-161DEFPROG.PDF R10.1 V1

Call Control Service Group
Private Data Version 5 Syntax

// ATTTransferCallConfEvent - Service Response Private
// Data (supported by private data version 5 and later only)

typedef struct
{

ATTEventType_t eventType;// ATT_TRANSFER_CALL_CONF
union
{
ATTTransferCallConfEvent_t transferCall;
}u;

} ATTEvent_t;

typedef struct ATTTransferCallConfEvent_t
{

ATTUCID_t ucid;
} ATTTransferCallConfEvent_t;

typedef char ATTUCID_t[64];
Issue 1 — December 2001

DEFPROG.PDF R10.1 V14-162

Issue 1 — December 2001

DEFPROG.PDF R10.1 V1
5

Set Feature Service Group
Overview

These services allow a client application to set switch-controlled features or
values on a G3 device.

Centre Vu Computer Telephony (CVCT) supports the following CSTA Services:

■ Set Advice Of Charge Service (Private Data V5 and later)

■ Set Agent State Service

■ Set Billing Rate Service (Private Data V5 and later)

■ Set Do Not Disturb Feature Service

■ Set Forwarding Feature Service

■ Set Message Waiting Indicator Feature Service
5-1

Set Feature Service Group
Set Advice of Charge Service (Private
Data Version 5 and Later)

Direction: Client to Switch
Function: cstaEscapeService()
Confirmation Event: CSTAEscapeConfEvent
Private Data Function: attSetAdviceOfCharge()
Service Parameters: noData
Private Parameters: featureFlag
Ack Parameters: noData
Ack Private Parameters: noData
Nak Parameter: universalFailure

Functional Description:

DEFINITY ECS Release 5 and later software supports the Charge Advice Event
feature. To receive Charge Advice Events, an application must first turn the
Charge Advice Event feature on using the Set Advice of Charge Service (Private
Data V5).

If the Charge Advice Event feature is turned on, a trunk group monitored by a
cstaMonitorDevice, a station monitored by a cstaMonitorDevice, or a call
monitored by a cstaMonitorCall or cstaMonitorCallsViaDevice will receive Charge
Advice Events. However, this will not occur if the Charge Advice Event is filtered
out by the privateFilter in the monitor request and its confirmation event.

This service enables the DEFINITY to support the collection of charging units over
ISDN Primary Rate Interfaces. See ‘‘Detailed Information:’’ and the ‘‘Charge
Advice Event (Private)’’ section in Chapter 9 for more details of this feature.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V15-2

Set Advice of Charge Service (Private Data Version 5
and Later)
Service Parameters:

Private Parameters:

Ack Parameters:

Ack Private Parameters:

Nak Parameter:

Detailed Information:

■ The result of a successful Set Advice of Charge Service (Private Data V5
and later) request applies to an ACS Stream. This means that any program
using the same acsHandle will be affected. An application must use the
private filter to filter out Advice Of Charge Events, if these events are not
useful to the application.

■ If this feature is heavily used, it will reduce the maximum Busy Hour Call
Completions (BHCC) of the DEFINITY.

■ If more than 100 calls are in a call clearing state waiting for charging
information, the oldest record will not receive final charge information. In
this case a value of 0 and a cause value of EC_NETWORK_
CONGESTION will be reported in the Advice of Charge Event.

noData None for this service.

featureFlag [mandatory] Specify the flag for turning the feature on or off.
A value of TRUE will turn the feature on and a value of
FALSE will turn the feature off. If the feature is already
turned on, subsequent requests to turn the feature on again
will receive positive acknowledgements. If the feature is
turned off, subsequent requests to turn the feature off again
will receive positive acknowledgements.

noData None for this service.

noData None for this service.

universalFailur
e

If the request is not successful, the application will receive a
CSTAUniversalFailureConfEvent. The error parameter in
this event may contain the following error values, or one of
the error values described in the section on
‘‘CSTAUniversalFailureConfEvent’’ in Chapter 3:

■ INVALID_FEATURE (15) The Set Advice of Charge
Service (Private Data V5) is not supported by the switch.

■ VALUE_OUT_OF_RANGE (3) The featureFlag contains
an invalid value.
Issue 1 — December 2001

5-3DEFPROG.PDF R10.1 V1

Set Feature Service Group
Syntax

#include <acs.h>
#include <csta.h>

// cstaEscapeService() - Service Request

RetCode_t cstaEscapeService (
ACSHandle_t acsHandle,
InvokeID_t invokeID,
PrivateData_t*privateData);

// CSTAEscapeServiceConfEvent - Service Response

typedef struct
{

ACSHandle_t acsHandle;
EventClass_teventClass; // CSTACONFIRMATION
EventType_t eventType; // CSTA_ESCAPE_SERVICE_CONF

} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_teventHeader;
union
{

struct
{

InvokeID_t invokeID;
} cstaConfirmation;

} event;
char heap[CSTA_MAX_HEAP];

} CSTAEvent_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 V15-4

Set Advice of Charge Service (Private Data Version 5
and Later)
Private Parameter Syntax

#include <acs.h>
#include <csta.h>
#include <attpriv.h>

// attSetAdviceOfCharge() - Service Request Private Data Setup Function

RetCode_t attAdviceOfCharge(
ATTPrivateData *privateData,

Boolean featureFlag);

typedef struct ATTPrivateData_t {
char vendor[32];
ushort length;
char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;
Issue 1 — December 2001

5-5DEFPROG.PDF R10.1 V1

Set Feature Service Group
Set Agent State Service

Direction: Client to Switch
Function: cstaSetAgentState()
Confirmation Event: CSTASetAgentStateConfEvent
Private Data Function: attV6SetAgentState (private data version 6),
attSetAgentStateExt (private data version 5), attSetAgentState (private data
versions 2-4)
Service Parameters: device, agentMode, agentID, agentGroup,
agentPassword
Private Parameters: workMode, reasonCode, enablePending
Ack Parameters: noData
Ack Private Parameters: isPending
Nak Parameter: universalFailure

Functional Description:

This service allows a client to log an ACD agent into or out of a G3 ACD Split and
to specify a change of work mode for a G3 ACD agent.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V15-6

Set Agent State Service
Service Parameters:

device [mandatory] Specifies the agent extension. This must be a
valid on-PBX station extension for an ACD agent.

agentMode [mandatory — partially supported] Specifies log in or log out
for an Agent into or out of an ACD split, or a change of work
mode for an Agent logged into an ACD split:

■ AM_LOG_IN — Log in the Agent. This does not imply
that the Agent is ready to accept calls. The initial mode
for the ACD agent can be set via the workMode private
parameter (see the private parameter workMode). If the
workMode private parameter is not supplied, the initial
work mode for the ACD agent will be set to the G3
specific “Auxiliary-Work Mode”.

■ AM_LOG_OUT — Log an Agent out of a specific ACD
split. The Agent will be unable to accept additional calls
for the ACD split.

■ AM_NOT_READY — Change the work mode for an
Agent logged into an ACD split to “Not Ready”
(equivalent to G3 “Auxiliary-Work Mode”), indicating that
the Agent is occupied with some task other than serving
a call.

■ AM_READY — Change the work mode for Agent logged
into an ACD split to “Ready”. The Agent in the Ready
state is ready to accept calls or is currently busy with an
ACD call. The workMode private parameter may be
used to set the ACD agent work mode to the ATT
specific “Auto-In-Work Mode” or “Manual-In-Work
Mode”. If the workMode private parameter is not
supplied, the ACD agent work mode will be set to the
ATT specific “Auto-In-Work Mode”.

■ AM_WORK_NOT_READY — Change the work mode
for an Agent logged into an ACD split to “Work Not
Ready” (equivalent to G3 PBX “After-Call-Work Mode”).
The Agent in the Work Not Ready state is occupied with
the task of serving a call after the call has disconnected,
and the Agent is not ready to accept additional calls for
the ACD split.

■ AM_WORK_READY — A change to “Work Ready” is
not currently supported for G3 PBX.
Issue 1 — December 2001

5-7DEFPROG.PDF R10.1 V1

Set Feature Service Group
agentID [optional] Specifies the Agent login identifier for the ACD
agent. This parameter is mandatory when the agentMode
parameter is AM_LOG_IN; otherwise it is ignored. An
agentID containing a Logical Agent’s login Identifier can be
used to log in a Logical Agent (Expert Agent Selection
[EAS]) when paired with the agentPassword.

agentGroup [mandatory] Specifies the ACD agent split to use to log in,
log out, or change the agent work mode to “Not Ready”,
“Ready” or “Work Not Ready”. In an Expert Agent Selection
(EAS) environment, the agentGroup parameter must
contain the skill group extension.

agentPassword [optional — partially supported] Specifies a password that
allows an ACD agent to log into an ACD Split. This service
parameter is only used if agentMode is set to AM_LOG_IN;
otherwise it is ignored. The agentPassword can be used to
log in a Logical Agent (with EAS) when included with the
Logical Agent’s login Identifier, the agentID.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V15-8

Set Agent State Service
Private Parameters:

workMode [optional] Specifies the work mode for the agent as
Auxiliary- Work Mode (WM_AUX_WORK), After-Call-Work
Mode (WM_AFT_CALL), Auto-In Mode (WM_AUTO_IN), or
Manual- In-Work Mode (WM_MANUAL_IN) based on the
agentMode service parameter as follows:

■ AM_LOG_IN — The workMode private parameter
specifies the initial work mode for the ACD agent. Valid
values include “Auxiliary-Work Mode” (Default),
“After-Call-Work Mode”, “Auto-In Mode”, or “Manual-In
Mode”.

■ AM_LOG_OUT — The workMode is ignored.

■ AM_NOT_READY — The workMode is ignored.

■ AM_READY — The workMode private parameter
specifies the work mode for the ACD agent. Valid
values include “Auto-In-Work Mode” (Default), or
“Manual-In-Work Mode”.

■ AM_WORK_NOT_READY — The workMode is ignored.
Issue 1 — December 2001

5-9DEFPROG.PDF R10.1 V1

Set Feature Service Group
■ AM_WORK_READY — The workMode is ignored.

reasonCode [optional] Specifies the reason for change of work mode to
WM_AUX_WORK or the logged-out (AM_LOG_OUT) state.
Valid reason codes are a single digit 1– 9. A value of 0
indicates that the reason code is not available. The meaning
of the code (1-9) is defined by the application. This
parameter is supported by private data version 5 and later
only.

enablePending [optional] Specifies whether the requested change can be
made pending.

■ A value of TRUE will enable the pending feature. If the
agent is busy on a call when an attempt is made to
change the agentMode to AM_NOT_READY or AM_
WORK_NOT_READY, and enablePending is set to
TRUE, the change will be made pending and will take
effect as soon as the agent clears the call. The request
will be acknowledged (Ack).

■ If enablePending is not set to TRUE and the agent is
busy on a call, the requested change will not be made
pending and the request will not be acknowledged
(Nak).

NOTE:
Subsequent requests may override a pending change
and only the most recent pending change will take
effect when the call is cleared. The enablePending
parameter applies to the reasonCode when the
request is to change the agentMode to AM_NOT_
READY.

This parameter is supported by private data version 6 and
later only.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V15-10

Set Agent State Service
Ack Parameters:

Ack Private Parameters:

Nak Parameter:

noData None for this service.

isPending [optional]If isPending is set to TRUE, the requested change
in workmode is pending. Otherwise, the requested change
took effect immediately.

universalFailure If the request is not successful, the application will receive a
CSTAUniversalFailureConfEvent. The error parameter in
this event may contain the following error values, or one of
the error values described in the section on
‘‘CSTAUniversalFailureConfEvent’’ in Chapter 3:

■ GENERIC_UNSPECIFIED (0) An attempt to log out an
ACD agent who is already logged out, an attempt to log
in an ACD agent to a split of which they are not a
member, or an attempt to log in an ACD agent with an
incorrect password.

■ GENERIC_OPERATION (1) An attempt to log in an
ACD agent that is already logged in.

■ VALUE_OUT_OF_RANGE (3) The workMode private
parameter is not valid for the agentMode (see Table
5-1).

The reason code is out of the acceptable range (1- 9).
(CS0/100).

■ OBJECT_NOT_KNOWN (4) Did not specify a valid
on-PBX station for the ACD agent in device, the
agentGroup or device parameters were NULL, or the
agentID parameter was NULL when agentMode was set
to AM_LOG_IN.

■ INVALID_CSTA_DEVICE_IDENTIFIER (12) An invalid
device identifier has been specified in device.

■ INVALID_FEATURE (15) The feature is not available for
the agentGroup, or the enablePending feature is not
available for the administered switch version.

■ INVALID_OBJECT_TYPE (18) (CS3/80) The reason
code is specified, but the workMode is not WM_AUX_
WORK, or agentMode is not AM_LOG_OUT.

■ GENERIC_STATE_INCOMPATIBILITY (21) A work
mode change was requested for a non-ACD agent, or
the Agent station is maintenance busy or out of service.
Issue 1 — December 2001

5-11DEFPROG.PDF R10.1 V1

Set Feature Service Group
Detailed Information:

■ A request to log in an ACD agent (agentMode is AM_LOG_IN) that does
not include the private parameter workMode, will set the initial Agent work
state to Auxiliary-Work Mode (Not Ready).

■ The AM_WORK_READY agentMode is not supported by G3 PBX.

■ The agentPassword service parameter applies only for requests to log in
an ACD agent (agentMode is AM_LOG_IN). In all other cases, it is
ignored. The agentPassword can be used to log in a Logical Agent (with
Expert Agent Selection [EAS]) when included with the Logical Agent’s login
Identifier, the agentID.

■ Valid combinations of the agentMode service parameter and the
workMode, reasonCode, and enablePending private parameters are
shown in Table 5-1.

■ AttSetAgentStateExt() and attSetAgentState() do not accept the
enablePending parameter. These functions will never cause the requested
work mode change to be made pending, even if the switch is G3V8 or later.

■ Subsequent pending work mode requests replace earlier requests.

■ INVALID_OBJECT_STATE (22) The Agent is already
logged into another split.

■ GENERIC_SYSTEM_RESOURCE_AVAILABILITY (31)
The request cannot be completed due to lack of
available switch resources.

■ RESOURCE_BUSY (33) Attempt to log in an ACD
agent that is currently on a call.

Table 5-1. AgentMode Service Parameter and Associated Private Parameters

agentMode workMode reasonMode enablePending

AM_LOG_IN WM_AUX_WORK
(Default)
WM_AFTCAL_WK
WM_AUTO_IN
WM_MANUAL_IN

1-9 NA

AM_LOG_OUT NA NA NA

AM_NOT_READY NA 1-9 TRUE/FALSE

AM_READY WM_AUTO_IN (Default)
WM_MANUAL_IN

NA NA

AM_WORK_NOT_READY NA NA TRUE/FALSE

AM_WORK_READY NA NA NA
Issue 1 — December 2001

DEFPROG.PDF R10.1 V15-12

Set Agent State Service
Syntax

#include <acs.h>
#include <csta.h>

// cstaSetAgentState() - Service Request

RetCode_t cstaSetAgentState (
ACSHandle_t acsHandle,
InvokeID_t invokeID,
DeviceID_t *device,
AgentMode_t agentMode,
AgentID_t *agentID,
AgentGroup_t *agentGroup,
AgentPassword_t*agentPassword,
PrivateData_t *privateData);

typedef char DeviceID_t[64];

typedef enum AgentMode_t {
AM_LOG_IN = 0,
AM_LOG_OUT = 1,
AM_NOT_READY = 2,
AM_READY = 3,
AM_WORK_NOT_READY = 4,
AM_WORK_READY = 5

} AgentMode_t;

typedef char AgentID_t[32];

typedef DeviceID_t AgentGroup_t;

typedef char AgentPassword_t[32];

typedef struct PrivateData_t {
char vendor[32];
unsigned short length;
char data[1]; // actual length determined by

// application
} PrivateData_t;

// CSTASetAgentStateConfEvent - Service Response

typedef struct
{

ACSHandle_t acsHandle;
EventClass_t eventClass; // CSTACONFIRMATION
EventType_t eventType; // CSTA_SET_AGENT_STATE_CONF

} ACSEventHeader_t;

typedef struct CSTASetAgentStateConfEvent_t {
Nulltype null;
Issue 1 — December 2001

5-13DEFPROG.PDF R10.1 V1

Set Feature Service Group
Syntax (Continued)

} CSTASetAgentStateConfEvent_t;

typedef struct
{

ACSEventHeader_teventHeader;

union
{

struct
{

InvokeID_t invokeID;
union
{

CSTASetAgentStateConfEvent_tsetAgentState;
} u;
} cstaConfirmation;
} event;
char heap[CSTA_MAX_HEAP];

} CSTAEvent_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 V15-14

Set Agent State Service
Private Data Version 6 Syntax

#include <acs.h>
#include <csta.h>
#include <attpriv.h>

// attV6SetAgentState() - Service Request Private Data Setup Function

RetCode_t attV6SetAgentState(
ATTPrivateData_t*attPrivateData,
ATTWorkMode_t workMode, // Work Modes
long reasonCode, // single digit 1-9
Boolean enablePending); // TRUE = enabled

typedef struct ATTPrivateData_t
{

char vendor[32];
ushort length;
char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

typedef enum ATTWorkMode_t
{

WM_AUX_WORK = 1, // Same As C_AUX_WORK
WM_AFTCAL_WK = 2, // Same as C_AFTCAL_WK
WM_AUTO_IN = 3, // Same as C_AUTO_IN
WM_MANUAL_IN = 4 // Same as C_MANUAL_IN

} ATTWorkMode_t;

// ATTSetAgentStateConfEvent - Confirmation Event Private Data

typedef struct
{

ATTEventType eventType; // ATT_SET_AGENT_STATE_CONF
union
{
ATTSetAgentStateConfEvent_tsetAgentState;

}u;
char heap[ATTPRIV_MAX_HEAP];

} ATTEvent_t;

typedef struct ATTSetAgentStateConfEvent_t {
Boolean isPending; // TRUE if the request is pending

} ATTSetAgentStateConfEvent_t;
Issue 1 — December 2001

5-15DEFPROG.PDF R10.1 V1

Set Feature Service Group
Private Data Version 5 Syntax

#include <acs.h>
#include <csta.h>
#include <attpriv.h>

// attSetAgentState() - Service Request Private Data Setup Function

RetCode_t attSetAgentState(
ATTPrivateData_t*attPrivateData,
ATTWorkMode_t workMode, // Work Modes
long reasonCode); // single digit 1-9

typedef struct ATTPrivateData_t
{

char vendor[32];
ushort length;
char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

typedef enum ATTWorkMode_t
{

WM_AUX_WORK = 1, // Same As C_AUX_WORK
WM_AFTCAL_WK = 2, // Same as C_AFTCAL_WK
WM_AUTO_IN = 3, // Same as C_AUTO_IN
WM_MANUAL_IN = 4 // Same as C_MANUAL_IN

} ATTWorkMode_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 V15-16

Set Agent State Service
Private Data Versions 2-4 Syntax

#include <acs.h>
#include <csta.h>
#include <attpriv.h>

// attSetAgentState() - Service Request Private Data Setup Function

RetCode_t attSetAgentState(
ATTPrivateData_t*attPrivateData,
ATTWorkMode_t workMode); // Work Modes

typedef struct ATTPrivateData_t
{

char vendor[32];
ushort length;
char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

typedef enum ATTWorkMode_t
{

WM_AUX_WORK = 1, // Same As C_AUX_WORK
WM_AFTCAL_WK = 2, // Same as C_AFTCAL_WK
WM_AUTO_IN = 3, // Same as C_AUTO_IN
WM_MANUAL_IN = 4 // Same as C_MANUAL_IN

} ATTWorkMode_t;
Issue 1 — December 2001

5-17DEFPROG.PDF R10.1 V1

Set Feature Service Group
Set Billing Rate Service (Private Data
Version 5 and Later)

Direction: Client to Switch
Function: cstaEscapeService()
Confirmation Event: CSTAEscapeConfEvent
Private Data Function: attSetBillingRate()
Service Parameters: noData
Private Parameters: call, billType, billRate
Ack Parameters: noData
Nak Parameter: universalFailure

Functional Description:

This service supports the AT&T MultiQuest 900 Vari-A-Bill Service to change the
rate for an incoming 900-type call. The client application can request this service
at any time after the call has been answered and before the call is cleared.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V15-18

Set Billing Rate Service (Private Data Version 5 and
Later)
Service Parameters:

Private Parameters:

Ack Parameters:

Nak Parameter:

noData None for this service.

call [mandatory] Specifies the call to which the billing rate is to
be applied. This is a connection identifier, but only the callID
is used. The deviceID of call is ignored.

billType [mandatory] Specifies the rate treatment for the call and can
be one of the following:

■ BT_NEW_RATE

■ BT_FLAT_RATE (i.e., time independent)

■ BT_PREMIUM_CHARGE (i.e., a flat charge in addition
to the existing rate)

■ BT_PREMIUM_CREDIT (i.e., a flat negative charge in
addition to the existing rate)

■ BT_FREE_CALL

billRate [mandatory] Specifies the rate according to the treatment
indicated by billType. If FREE_CALL is specified, billRate is
ignored. This is a floating point number. The rate should not
be less than $0 and a maximum is set for each 900-number
as part of the provisioning process (in the 4E switch)

noData None for this service.

universalFailure If the request is not successful, the application will receive a
CSTAUniversalFailureConfEvent. The error parameter in
this event may contain the following error values, or one of
the error values described in the
‘‘CSTAUniversalFailureConfEvent’’ section in Chapter 3:

■ INVALID_CSTA_DEVICE_IDENTIFIER (12) An invalid
device identifier has been specified in device.

■ INVALID_CSTA_CONNECTION_IDENTIFIER (13) An
invalid connection identifier has been specified in call.

■ VALUE_OUT_OF_RANGE (3) (CS0/96) Invalid value is
specified in the request.
Issue 1 — December 2001

5-19DEFPROG.PDF R10.1 V1

Set Feature Service Group
Detailed Information:

None

■ INVALID_OBJECT_STATE (22) (CS0/98) The request is
attempted before the call is answered.

■ RESOURCE_BUSY (33) (CS0/47) The switch limit for
unconfirmed requests has been reached.

■ GENERIC_SUBSCRIBED_RESOURCE_AVAILABILITY
(41) (CS0/29) The user has not subscribed to the Set
Billing Rate Service (Private Data V5 and later) feature.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V15-20

Set Billing Rate Service (Private Data Version 5 and
Later)
Syntax

#include <acs.h>
#include <csta.h>

// cstaEscapeService() - Service Request

RetCode_t cstaEscapeService (
ACSHandle_t acsHandle,
InvokeID_t invokeID,
PrivateData_t *privateData);

// CSTAEscapeServiceConfEvent - Service Response

typedef struct
{

ACSHandle_t acsHandle;
EventClass_teventClass; // CSTACONFIRMATION
EventType_t eventType; // CSTA_ESCAPE_SERVICE_CONF

} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_teventHeader;
union
{
struct

{
InvokeID_t invokeID;
} cstaConfirmation;

} event;
char heap[CSTA_MAX_HEAP];

} CSTAEvent_t;
Issue 1 — December 2001

5-21DEFPROG.PDF R10.1 V1

Set Feature Service Group
Private Parameter Syntax

#include <acs.h>
#include <csta.h>
#include <attpriv.h>

// attSetBillingRate() - Service Request Private Data Setup Function

RetCode_t attSetBillingRate(
ATTPrivateData *privateData,
ConnectionID_t *call,
ATTBillType_t billType,
float billRate);

typedef struct ATTPrivateData_t {
char vendor[32];
ushort length;
char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

typedef enum ATTBillType_t {
BT_NEW_RATE = 16,
BT_FLAT_RATE = 17,
BT_PREMIUM_CHARGE = 18,
BT_PREMIUM_CREDIT = 19,
BT_FREE_CALL = 24

} ATTBillType_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 V15-22

Set Do Not Disturb Feature Service
Set Do Not Disturb Feature Service

Direction: Client to Switch
Function: cstaSetDoNotDisturb()
Confirmation Event: CSTASetDndConfEvent
Service Parameters: device, doNotDisturb
Ack Parameters: noData
Nak Parameter: universalFailure

Functional Description:

This service turns on or off the G3 Send All Calls (SAC) feature for a user station.

Service Parameters:

Ack Parameters:

Nak Parameter:

Detailed Information:

■ DCS — SAC feature may not be requested by this service for an off-PBX
DCS extension.

■ Logical Agents — SAC may not be requested by this service for logical
agent login IDs. If a login ID is specified, the request will be denied
(INVALID_CSTA_DEVICE_IDENTIFIER). SAC may be requested by this
service on behalf of a logical agent’s station extension.

device [mandatory] Must be a valid on-PBX station extension that
supports the SAC feature.

doNotDisturb [mandatory] Specifies either “On“ (TRUE) or “Off“ (FALSE).

noData None for this service.

universalFailure If the request is not successful, the application will receive a
CSTAUniversalFailureConfEvent. The error parameter in
this event may contain the following error values, or one of
the error values described in the
‘‘CSTAUniversalFailureConfEvent’’ section in Chapter 3:

■ INVALID_CSTA_DEVICE_IDENTIFIER (12) An invalid
device identifier has been specified in device.

■ GENERIC_SUBSCRIBED_RESOURCE_AVAILABILITY
(41) The user has not subscribed to the SAC feature.
Issue 1 — December 2001

5-23DEFPROG.PDF R10.1 V1

Set Feature Service Group
In an Expert Agent Selection (EAS) environment, if the call is made to a
logical agent ID, the call coverage follows the path administered for the
logical agent ID, and not the coverage path of the physical set from which
the agent is logged in. SAC cannot be activated by a CSTA request for the
logical agent ID.

■ Send All Calls (SAC) — This G3 feature allows users to temporarily direct
all incoming calls to coverage regardless of the assigned Call Coverage
redirection criteria. Send All Calls also allows covering users to temporarily
remove their voice terminals from the coverage path. SAC is used only in
conjunction with the Call Coverage feature. Details of how SAC is used in
conjunction with the Call Coverage are documented in the DEFINITY
Communications System Generic 3 Feature Description, 555-230-201.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V15-24

Set Do Not Disturb Feature Service
Syntax

#include <acs.h>
#include <csta.h>

// cstaSetDoNotDisturb() - Service Request

RetCode_t cstaSetDoNotDisturb (
ACSHandle_t acsHandle,
InvokeID_t invokeID,
DeviceID_t *device,
Boolean doNotDisturb,// TRUE = On or FALSE = Off
PrivateData_t*privateData);

typedef char DeviceID_t[64];
typedef char Boolean;

// CSTASetDndConfEvent - Service Response

typedef struct
{

ACSHandle_t acsHandle;
EventClass_teventClass; // CSTACONFIRMATION
EventType_t eventType; // CSTA_SET_DND_CONF

} ACSEventHeader_t;

typedef struct CSTASetDndConfEvent_t {
Nulltype null;

} CSTASetDndConfEvent_t;

typedef struct
{

ACSEventHeader_teventHeader;
union
{
struct

{
InvokeID_t invokeID;
union
{
CSTASetDndConfEvent_tsetDnd;
} u;
} cstaConfirmation;

} event;
char heap[CSTA_MAX_HEAP];

} CSTAEvent_t;
Issue 1 — December 2001

5-25DEFPROG.PDF R10.1 V1

Set Feature Service Group
Set Forwarding Feature Service

Direction: Client to Switch
Function: cstaSetForwarding()
Confirmation Event: CSTASetFwdConfEvent
Service Parameters: device, forwardingType, forwardingOn, forwardingDN
Ack Parameters: noData
Nak Parameter: universalFailure

Functional Description:

The Set Forwarding Service sets the G3 Call Forwarding feature on or off for a
user station. G3 CSTA supports the Immediate type of forwarding only.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V15-26

Set Forwarding Feature Service
Service Parameters:

Ack Parameters:

Nak Parameter:

Detailed Information:

■ DCS — The Call Forwarding feature may not be activated by this service
for an off-PBX DCS extension.

■ Logical Agents — Call Forwarding may not be requested by this service for
logical agent login IDs. If a login ID is specified as the forwardingDN, the
request will be denied (INVALID_CSTA_DEVICE_IDENTIFIER). Call
Forwarding may be requested on behalf of a logical agent’s station
extension.

■ G3 Call Forwarding All Calls — This feature allows all calls to an extension
number to be forwarded to a selected internal extension number, external
(off-premises) number, the attendant group, or a specific attendant. It
supports only the CSTA forwarding type “Immediate.”

device [mandatory] Specifies the station on which the Call
Forwarding feature is to be set. It must be a valid on-PBX
station extension that supports the Call Forwarding
feature.

forwardingType [mandatory — partial] Specifies the type of forwarding to set
or clear. Only FWD_IMMEDIATE is supported. Any other
types will be denied.

forwardingOn [mandatory] Specifies "On" (TRUE) or "Off" (FALSE).

forwardingDN [mandatory] Specifies the station extension to which the
calls are to be forwarded. It is mandatory if forwardingOn is
set to on. It is ignored by the G3 switch if the forwardingOn
is set to off.

noData None for this service.

universalFailure If the request is not successful, the application will receive a
CSTAUniversalFailureConfEvent. The error parameter in
this event may contain the following error values, or one of
the error values described in the
‘‘CSTAUniversalFailureConfEvent’’ section in Chapter 3:

■ INVALID_CSTA_DEVICE_IDENTIFIER (12) An invalid
device identifier has been specified in device or
forwardingDN.

■ GENERIC_SUBSCRIBED_RESOURCE_AVAILABILITY
(41) The user has not subscribed to the Call Forwarding
feature.
Issue 1 — December 2001

5-27DEFPROG.PDF R10.1 V1

Set Feature Service Group
■ Activation and Deactivation — Activation and deactivation from the station
and a client application may be intermixed.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V15-28

Set Forwarding Feature Service
Syntax

#include <acs.h>
#include <csta.h>

// cstaSetForwarding() - Service Request

RetCode_t cstaSetForwarding (
ACSHandle_t acsHandle,
InvokeID_t invokeID,
DeviceID_t *device,
ForwardingType_tforwardingType,// must be FWD_IMMEDIATE
Boolean forwardingOn,// TRUE (on) or FALSE (off)
DeviceID_t *forwardingDestination,
PrivateData_t*privateData);

typedef char DeviceID_t[64];

typedef enum ForwardingType_t {
FWD_IMMEDIATE = 0, // Only option supported
FWD_BUSY = 1, // Not supported
FWD_NO_ANS = 2, // Not supported
FWD_BUSY_INT = 3, // Not supported
FWD_BUSY_EXT = 4, // Not supported
FWD_NO_ANS_INT = 5, // Not supported
FWD_NO_ANS_EXT = 6 // Not supported

} ForwardingType_t;

typedef char Boolean;

// CSTASetFwdConfEvent - Service Response

typedef struct
{

ACSHandle_t acsHandle;
EventClass_t eventClass; // CSTACONFIRMATION
EventType_t eventType; // CSTA_SET_FWD_CONF

} ACSEventHeader_t;

typedef struct CSTASetFwdConfEvent_t {
Nulltype null;

} CSTASetFwdConfEvent_t;
Issue 1 — December 2001

5-29DEFPROG.PDF R10.1 V1

Set Feature Service Group
Syntax (Continued)

typedef struct
{

ACSEventHeader_teventHeader;
union
{
struct
{

InvokeID_t invokeID;
union
{
CSTASetFwdConfEvent_tsetFwd;
} u;

} cstaConfirmation;
} event;
char heap[CSTA_MAX_HEAP];

} CSTAEvent_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 V15-30

Set Message Waiting Indicator (MWI) Feature Service
Set Message Waiting Indicator (MWI)
Feature Service

Direction: Client to Switch
Function: cstaSetMsgWaitingInd()
Confirmation Event: CSTASetMwiConfEvent
Service Parameters: device, messages
Ack Parameters: noData
Nak Parameter: universalFailure

Functional Description:

This service sets the G3 Message Waiting Indicator (MWI) on or off for a user
station.

Service Parameters:

Ack Parameter:

Nak Parameter:

Detailed Information:

■ Adjunct Messages — When a client application has turned on a station’s
MWI and the station user retrieves message using the station display, then
the station display will show “You have adjunct messages.”

■ MWI Status Sync — To keep the MWI synchronized with other applications,
a client application must use this service to update the MWI whenever the
link between the switch and the PBX Driver comes up from a cold start. An
application can query the MWI status through the
CSTAQueryMsgWaitingInd Service.

device [mandatory] Must be a valid on-PBX station extension that
supports the MWI feature.

messages [mandatory] Specifies either “On“ (TRUE) or “Off“ (FALSE).

noData None for this service.

universalFailure If the request is not successful, the application will receive a
CSTAUniversalFailureConfEvent. The error parameter in
this event may contain the following error value, or one of
the error values described in the
‘‘CSTAUniversalFailureConfEvent’’ section in Chapter 3:

■ INVALID_CSTA_DEVICE_IDENTIFIER (12) An invalid
device identifier has been specified in device.
Issue 1 — December 2001

5-31DEFPROG.PDF R10.1 V1

Set Feature Service Group
■ System Starts — System cold starts will cause the switch to lose the MWI
status. Hot starts (PE interchange) and warm starts will not affect the MWI
status.

■ Voice (Synthesized) Message Retrieval — A recording, “Please call
message center for more messages,” will be used for the case when the
MWI has been activated by the application through this service.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V15-32

Set Message Waiting Indicator (MWI) Feature Service
Syntax

#include <acs.h>
#include <csta.h>

// cstaSetMsgWaitingInd() - Service Request

RetCode_t cstaSetMsgWaitingInd (
ACSHandle_t acsHandle,
InvokeID_t invokeID,
DeviceID_t *device,
Boolean messages, // TRUE (on) or FALSE (off)
PrivateData_t*privateData);

typedef char DeviceID_t[64];
typedef char Boolean;

// CSTASetMwiConfEvent - Service Response

typedef struct
{

ACSHandle_t acsHandle;
EventClass_teventClass; // CSTACONFIRMATION
EventType_t eventType; // CSTA_SET_MWI_CONF

} ACSEventHeader_t;

typedef struct CSTASetMwiConfEvent_t {
Nulltype null;

} CSTASetMwiConfEvent_t;

typedef struct
{

ACSEventHeader_teventHeader;
union
{
struct
{

InvokeID_t invokeID;
union
{
CSTASetMwiConfEvent_tsetMwi;
} u;
} cstaConfirmation;

} event;
char heap[CSTA_MAX_HEAP];

} CSTAEvent_t;
Issue 1 — December 2001

5-33DEFPROG.PDF R10.1 V1

Set Feature Service Group
Issue 1 — December 2001

DEFPROG.PDF R10.1 V15-34

Issue 1 — December 2001

DEFPROG.PDF R10.1 5 V1
6

Query Service Group
Overview

These services allow a client application to query the switch to provide the state of
device features and static attributes of a device.

The following CSTA Services are supported:

■ Query ACD Split Service

■ Query Agent Login Service

■ Query Agent State Service

■ Query Call Classifier Service

■ Query Device Info

■ Query Device Name Service

■ Query Do Not Disturb Service

■ Query Forwarding Service

■ Query Message Waiting Service

■ Query Station Status Service

■ Query Time of Day Service

■ Query Trunk Group Service

■ Query Universal Call ID
6-1

Query Service Group
Query ACD Split Service

Direction: Client to Switch Function: cstaEscapeService() Confirmation
Event: CSTAEscapeServiceConfEvent
Private Data Function: attQueryACDSplit()
Private Data Confirmation Event: ATTQueryACDSplitConfEvent
Service Parameters: noData
Private Parameters: device
Ack Parameters: noData
Ack Private Parameters: availableAgents, callsInQueue, agentsLoggedIn
Nak Parameter: universalFailure

Functional Description:

The Query ACD Split service provides the number of ACD agents available to
receive calls through the split, the number of calls in queue, and the number of
agents logged in. The number of calls in queue does not include direct-agent
calls.
Issue 1 — December 2001

DEFPROG.PDF R10.1 5 V16-2

Query ACD Split Service
Service Parameters:

Private Parameters:

Ack Parameters:

Ack Private Parameters:

Nak Parameter:

Detailed Information:

None

noData None for this service.

device [mandatory] Must be a valid ACD split extension.

noData None for this service.

availableAgents [mandatory] Specifies the number of ACD agents available
to receive calls through the specified split.

callsInQueue [mandatory] Specifies the number of calls in queue (not
including direct-agent calls).

agentsLoggedIn [mandatory] Specifies the number of ACD agents logged in.

universalFailure If the request is not successful, the application will receive a
CSTAUniversalFailureConfEvent. The error parameter in
this event may contain the following error values, or one of
the error values described in the
‘‘CSTAUniversalFailureConfEvent’’ section in Chapter 3:

■ INVALID_CSTA_DEVICE_IDENTIFIER (12) An invalid
device identifier has been specified in device.
Issue 1 — December 2001

6-3DEFPROG.PDF R10.1 5 V1

Query Service Group
Syntax

#include <acs.h>
#include <csta.h>

// cstaEscapeService() - Service Request

RetCode_t cstaEscapeService (
ACSHandle_tacsHandle,
InvokeID_tinvokeID,
PrivateData_t*privateData);

// CSTAEscapeServiceConfEvent - Service Response

typedef struct
{

ACSHandle_t acsHandle;
EventClass_teventClass;// CSTACONFIRMATION
EventType_teventType;// CSTA_ESCAPE_SERVICE_CONF

} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_teventHeader;
union
{

struct
{

InvokeID_tinvokeID;
union
{

CSTAEscapeSvcConfEventescapeService;
}u;

} cstaConfirmation;
} event;
char heap[CSTA_MAX_HEAP];

} CSTAEvent_t;

typedef struct CSTAEscapeSvcConfEvent_t {
Nulltypenull

} CSTAEscapeSvcConfEvent_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 5 V16-4

Query ACD Split Service
Private Parameter Syntax

#include <acs.h>
#include <csta.h>
#include <attpriv.h>

// attQueryACDSplit() - Service Request Private Data Setup
Function

RetCode_t*attQueryACDSplit (// returns NULL if no
// parameter specified

ATTPrivateData_t*privateData,
DeviceID_t*device);

typedef struct ATTPrivateData_t {
char vendor[32];
unsigned shortlength;
char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

// ATTQueryACDSplitConfEvent - Service Response Private Data

typedef struct
{

ATTEventTypeeventType;// ATT_QUERY_ACD_SPLIT_CONF
union
{

ATTQueryACDSplitConfEvent_tqueryACDSplit;
}u;

char heap[ATTPRIV_MAX_HEAP];
} ATTEvent_t;

typedef struct ATTQueryACDSplitConfEvent_t
{

shortavailableAgents;// number of available agents
// to receive call

shortcallsInQueue;// number of calls in queue
shortagentsLoggedIn;// number of agents logged in

} ATTQueryACDSplitConfEvent_t;
Issue 1 — December 2001

6-5DEFPROG.PDF R10.1 5 V1

Query Service Group
Query Agent Login Service

Direction: Client to Switch Function: cstaEscapeService()
Confirmation Event: CSTAPrivateEvent, CSTAEscapeServiceConfEvent
Private Data Function: attQueryAgentLogin(), ATTQueryAgentLoginResp()
Private Data Confirmation Event: ATTQueryAgentLoginConfEvent
Service Parameters: noData
Private Parameters: device
Ack Parameters: noData
Ack Private Parameters: privEventCrossRefID
Private Event Parameters: privEventCrossRefID, list
Nak Parameter: universalFailure

Functional Description:

The Query Agent Login Service provides the extension of each ACD agent logged
into the specified ACD split. This service is unlike most other services because
the confirmation event provides a unique private event cross reference ID that
associates a subsequent CSTAPrivateEvent (containing the actual ACD agent
login data) with the original request. The private event cross reference ID is the
only data returned in the confirmation event. After returning the confirmation
event, the service returns a sequence of CSTAPrivateEvents. Each
CSTAPrivateEvent contains the private event cross reference ID, and a list. The
list contains the number of extensions in the message, and up to 10 extensions of
ACD agents logged into the ACD split.

The entire sequence of CSTAPrivateEvents may contain a large volume of
information (up to the maximum number of logged-in agents allowed in an ACD
Split). The service provides the private event cross reference ID in case an
application has issued multiple Query Agent Login requests. The final
CSTAPrivateEvent specifies that it contains zero extensions and serves to inform
the application that no more messages will be sent in response to this query.
Issue 1 — December 2001

DEFPROG.PDF R10.1 5 V16-6

Query Agent Login Service
Service Parameters:

Private Parameters:

Ack Parameters:

Ack Private Parameters:

Private Event Parameters:

Nak Parameter:

Detailed Information:

■ A single Query Agent Login Request may result in multiple
CSTAPrivateEvents returned to the client after the return of the
confirmation event. All messages are contained in private data of
the CSTAPrivateEvents.

■ This service uses a private event cross reference ID to provide a
way for clients to correlate incoming CSTAPrivateEvents with an
original Query Agent Login request.

■ Each separate CSTAPrivateEvent may contain up to 10 extensions.

noData None for this service.

device [mandatory] Must be a valid ACD split extension.

noData None for this service.

privEventCrossRefID Contains a unique handle to identify subsequent
CSTAPrivateEvents with this request.

privEventCross
RefID

[mandatory] The handle to the query agent login request for
which this CSTAPrivateEvent is reported.

list [mandatory] A list structure with the following information:
the count (0 - 10) of how many extensions are in the
message and an array of up to 10 extensions. A count
value of 0 is like an "end of file" - i.e., there are no additional
CSTAPrivateEvents for the query.

universalFailure If the request is not successful, the application will receive a
CSTAUniversalFailureConfEvent. The error parameter in
this event may contain the following error value, or one of
the error values described in the
‘‘CSTAUniversalFailureConfEvent’’ section in Chapter 3:

■ INVALID_CSTA_DEVICE_IDENTIFIER (12) An invalid
device identifier has been specified in device.
Issue 1 — December 2001

6-7DEFPROG.PDF R10.1 5 V1

Query Service Group
■ Each separate CSTAPrivateEvent contains a number indicating how many
extensions are in the message. The last CSTAPrivateEvent has the
number set to zero.

■ The service receives each response message from the switch and passes
it to the application in a CSTAPrivateEvent. The application must be
prepared to receive and deal with a potentially large number of extensions
received in multiple CSTAPrivateEvents after it receives the confirmation
event.
Issue 1 — December 2001

DEFPROG.PDF R10.1 5 V16-8

Query Agent Login Service
Syntax

#include <acs.h>
#include <csta.h>

// cstaEscapeService() - Service Request

RetCode_t cstaEscapeService (
ACSHandle_tacsHandle,
InvokeID_tinvokeID,
PrivateData_t*privateData);

// CSTAEscapeServiceConfEvent - Service Response

typedef struct
{

ACSHandle_t acsHandle;
EventClass_teventClass;// CSTACONFIRMATION
EventType_teventType;// CSTA_ESCAPE_SERVICE_CONF

} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_teventHeader;
union
{

struct
{

InvokeID_tinvokeID;
union
{

CSTAEscapeSvcConfEvent_tescapeService;
}u;

} cstaConfirmationEvent;
} event;
charheap[CSTA_MAX_HEAP];

} CSTAEvent_t;

typedef struct CSTAEscapeSvcConfEvent_t {
Nulltypenull

} CSTAEscapeSvcConfEvent_t;
Issue 1 — December 2001

6-9DEFPROG.PDF R10.1 5 V1

Query Service Group
Syntax (Continued)

// CSTAPrivateEvent - Private event for reporting data

typedef struct
{

ACSEventHeader_teventHeader;
union
{

struct
{

union
{

CSTAPrivateEvent_tprivateData;
}u;

} cstaEventReport;
} event;
charheap[CSTA_MAX_HEAP];

} CSTAEvent_t;

typedef struct CSTAPrivateEvent_t {
Nulltypenull

} CSTAPrivateEvent_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 5 V16-10

Query Agent Login Service
Private Parameter Syntax

#include <acs.h>
#include <csta.h>
#include <attpriv.h>

// attQueryAgentLogin() - Service Request Private Data
Setup Function

RetCode_tattQueryAgentLogin (// returns NULL if no
// parameter specified

ATTPrivateData_t*privateData,
DeviceID_t*device);

typedef struct ATTPrivateData_t {
char vendor[32];
unsigned shortlength;
char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

// ATTQueryAgentLoginConfEvent - Confirmation Event
Private Data

typedef struct
{

ATTEventTypeeventType;// ATT_QUERY_AGENT_LOGIN_CONF
union
{

ATTQueryAgentLoginConfEvent_tqueryAgentLogin;

}u;
char heap[ATTPRIV_MAX_HEAP];
} ATTEvent_t;

typedef struct ATTQueryAgentLoginConfEvent_t {
ATTPrivEventCrossRefID_tprivEventCrossRefID;

} ATTQueryAgentLoginConfEvent_t;

// ATTQueryAgentLoginEvent - Private Event Private Data
typedef struct
{

ATTEventTypeeventType;// ATT_QUERY_AGENT_LOGIN_RESP
union
{

ATTQueryAgentLoginResp_tqueryAgentLoginResp;
}u;

char heap[ATTPRIV_MAX_HEAP];
} ATTEvent_t;
Issue 1 — December 2001

6-11DEFPROG.PDF R10.1 5 V1

Query Service Group
Private Parameter Syntax (Continued)

typedef struct ATTQueryAgentLoginResp_t
{

ATTPrivEventCrossRefID_tprivEventCrossRefID;
// cross reference ID

struct {
shortcount;// number of extensions in

// device[]
DeviceID_tdevice[10];// up to 10 extensions

} list;
} ATTQueryAgentLoginResp_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 5 V16-12

Query Agent State Service
Query Agent State Service

Direction: Client to Switch Function: cstaQueryAgentState()
Confirmation Event: CSTAQueryAgentStateConfEvent
Private Data Function: attQueryAgentState()
Private Data Confirmation Event: ATTQueryAgentStateConfEvent (private
data version 6), ATTV5QueryAgentStateConfEvent (private data version 5),
ATTV4QueryAgentStateConfEvent (private data versions 2-4)
Service Parameters: device
Private Parameters: split
Ack Parameters: agentState
Ack Private Parameters: workMode, talkState, reasonCode,
pendingWorkMode, pendingReasonCode
Nak Parameter: universalFailure

Functional Description:

This service provides the agent state of an ACD agent. The agent’s state is
returned in the CSTA AgentState parameter. The private talkState parameter
indicates if the agent is idle or busy. The private workMode parameter has the
agent’s work mode as defined by the DEFINITY PBX. The private reasonCode
has the agent’s reasonCode if one is set. The private pendingWorkMode and
pendingReasonCode have the work mode and reason code that will take effect as
soon as the agent’s current call is terminated.
Issue 1 — December 2001

6-13DEFPROG.PDF R10.1 5 V1

Query Service Group
Service Parameters:

Private Parameters:

Ack Parameters:

Ack Private Parameters:

device [mandatory] Must be a valid agent extension or a logical
agent ID.

split [optional] If specified, it must be a valid ACD split extension.
This parameter is optional in an EAS environment, but it is
mandatory for a non-EAS environment.

agentState [mandatory - partially supported] The ACD agent state.
Agent state will be one of the following values:

■ AG_NULL - The agent is logged out of the device/ACD
split.

■ AG_NOT_READY - The agent is occupied with some
task other than that of serving a call.

■ AG_WORK_NOT_READY - The agent is occupied with
after call work. The agent should not receive additional
ACD calls in this state.

■ AG_READY - The agent is available to accept calls or is
currently busy with an ACD call.

The DEFINITY PBX does not support the AG_WORK_
READY state.

workMode [optional] This parameter provides the agent work mode as
defined by the DEFINITY PBX. Valid values include:

■ WM_AUTO_IN Indicates that the agent is allowed to
receive a new call immediately after disconnecting from
the previous call. The talkState parameter indicates
whether the agent is busy or idle.

■ WM_MANUAL_IN Indicates that the agent is
automatically changed to the WM_AFTCAL_WK state
immediately after disconnecting from the previous call.

■ WM_ AFTCAL_WK Indicates that the agent is in the
WM_AFTCAL_WK mode. (A query agent state on an
agent in the WM_AFTCAL_WK state returns an
agentState parameter value of AG_WORK_NOT_
READY.)
Issue 1 — December 2001

DEFPROG.PDF R10.1 5 V16-14

Query Agent State Service
Nak Parameter:

Detailed Information:

■ G3 PBX does not support the AG_WORK_READY state for agentState.

■ Except agentState of AG_NULL, all confirmation includes private
parameters of agent workMode and talkState. The actual readiness of the
agent depends on values for these private parameters. In particular, the
value for talkState determines if the agent is busy on a call or ready to
accept calls.

■ The G3 PBX Agent Work Mode to CSTA Agent State Mapping is shown in
Table 6-1.

■ WM_AUX_WORK Indicates that the agent is in the
WM_ AUX_WORK mode. (A query agent state on an
agent in the WM_ AUX_WORK state returns an
agentState parameter value of AG_ NOT_READY.)

talkState [optional] The talkState parameter provides the actual
readiness of the agent. Valid values are:

■ TS_ON_CALL Indicates that the agent is occupied with
serving a call

■ TS_IDLE Indicates that the agent is ready to accept
calls.

reasonCode [optional] Specifies the reason code for the appropriate
agent state. Valid reason codes are a single digit 1- 9. A
value of 0 indicates that the reason code is not available.
The meaning of the code (1-9) is defined by the application.
This parameter is supported by private data version 5 and
later only.

pendingWorkMode [optional] Specifies the work mode which will take effect
when the agent gets off the call. If no work mode is pending
then pendingWorkMode will be set to WM_NONE (-1).

pendingReasonCo
de

[optional] Specifies the pending reason code which will take
effect when the agent gets off the call. A value of 0 indicates
that the pending reason code is not available.

universalFailure If the request is not successful, the application will receive a
CSTAUniversalFailureConfEvent. The error parameter in
this event may contain the following error value, or one of
the error values described in the
‘‘CSTAUniversalFailureConfEvent’’ section in Chapter 3:

■ INVALID_CSTA_DEVICE_IDENTIFIER (12) An invalid
device identifier has been specified in device.
Issue 1 — December 2001

6-15DEFPROG.PDF R10.1 5 V1

Query Service Group
■ If the agent workMode is WM_AUTO_IN, the Query Agent State service
always returns AG_READY. The agent is immediately made available to
receive a new call after disconnecting from the previous call.

Table 6-1. G3 PBX Agent Work Mode Mapped to CSTA Agent State

G3 PBX Agent Work Mode CSTA Agent State (workMode)

Agent not logged in NULL

WM_AUX_WORK AG_NOT_READY

WM_AFTCAL_WORK AG_WORK_NOT_READY

WM_AUTO_IN AG_READY (workMode=WM_AUTO_IN)

WM_MANUAL_IN AG_READY (workMode=WM_MANUAL_IN)

Table 6-2. Agent Activity Mapped to CSTA Agent State and Talk State

Agent Activity agentState talkState

Ready to accept calls AG_READY TS_IDLE

Occupied with a call AG_READY TS_ON_CALL

Disconnected from call AG_READY TS_IDLE
Issue 1 — December 2001

DEFPROG.PDF R10.1 5 V16-16

Query Agent State Service
Syntax

#include <acs.h>
#include <csta.h>

// cstaQueryAgentState() - Service Request

RetCode_t cstaQueryAgentState (
ACSHandle_tacsHandle,
InvokeID_tinvokeID,
DeviceID_t*device,
PrivateData_t*privateData);

// CSTAQueryAgentStateConfEvent - Service Response

typedef struct
{

ACSHandle_t acsHandle;
EventClass_teventClass;// CSTACONFIRMATION
EventType_teventType;// CSTA_QUERY_AGENT_STATE_CONF

} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_teventHeader;
union
{

struct
{

InvokeID_tinvokeID;
union
{

CSTAQueryAgentStateConfEvent_t
queryAgentState;

}u;
} cstaConfirmation;

} event;
char heap[CSTA_MAX_HEAP];
} CSTAEvent_t;

typedef struct CSTAQueryAgentStateConfEvent_t {
AgentState_tagentState;

} CSTAQueryAgentStateConfEvent_t;

typedef enum AgentState_t {
AG_NOT_READY = 0,
AG_NULL = 1,
AG_READY = 2,
AG_WORK_NOT_READY = 3,
AG_WORK_READY = 4// not used in G3 CSTA

} AgentState_t;
Issue 1 — December 2001

6-17DEFPROG.PDF R10.1 5 V1

Query Service Group
Private Data Version 6 Syntax

#include <acs.h>
#include <csta.h>
#include <attpriv.h>

// attQueryAgentState() - Service Request Private Data
Setup Function

RetCode_tattQueryAgentState (
ATTPrivateData_t*privateData,
DeviceID_t*split);

typedef struct ATTPrivateData_t
{

char vendor[32];
unsigned shortlength;
char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

// ATTQueryAgentStateConfEvent - Service Response Private
Data

typedef struct ATTEvent_t
{

ATTEventType_teventType;// ATT_QUERY_AGENT_STATE_
CONF

union
{

ATTQueryAgentStateConfEvent_tqueryAgentState;
} u;

char heap[ATTPRIV_MAX_HEAP];
} ATTEvent_t;

typedef struct ATTQueryAgentStateConfEvent_t
{

ATTWorkMode_tworkMode;// agent work mode
ATTTalkState_ttalkState;// agent talk state
long reasonCode;// single digit 1-9
ATTWorkMode_tpendingWorkMode;// pending agent work

mode
long pendingReasonCode;// single digit 1-9

} ATTQueryAgentStateConfEvent_t;

typedef enum ATTWorkMode_t
{

WM_NONE = -1, // No workmode is pending
WM_AUX_WORK = 1,
WM_AFTCAL_WK = 2,
Issue 1 — December 2001

DEFPROG.PDF R10.1 5 V16-18

Query Agent State Service
Private Data Version 6 (Continued)

WM_AUTO_IN = 3,
WM_MANUAL_IN = 4

} ATTWorkMode_t;

typedef enum ATTTalkState_t
{

TS_ON_CALL = 0,
TS_IDLE = 1

} ATTTalkState_t;
Issue 1 — December 2001

6-19DEFPROG.PDF R10.1 5 V1

Query Service Group
Private Data Version 5 Syntax

#include <acs.h>
#include <csta.h>
#include <attpriv.h>

// attQueryAgentState() - Service Request Private Data Setup
Function

RetCode_tattQueryAgentState (
ATTPrivateData_t*privateData,
DeviceID_t*split);

typedef struct ATTPrivateData_t
{

char vendor[32];
unsigned shortlength;
char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

// ATTV5QueryAgentStateConfEvent - Service Response Private Data

typedef struct ATTEvent_t
{

ATTEventType_teventType;// ATTV5_QUERY_AGENT_STATE_CONF
union
{

ATTV5QueryAgentStateConfEvent_tv5queryAgentState;
} u;

char heap[ATTPRIV_MAX_HEAP];
} ATTEvent_t;

typedef struct ATTV5QueryAgentStateConfEvent_t
{

ATTWorkMode_tworkMode;// agent work mode
ATTTalkState_ttalkState;// agent talk state
long reasonCode;// single digit 1-9

} ATTV5QueryAgentStateConfEvent_t;

typedef enum ATTWorkMode_t
{

WM_AUX_WORK = 1,
WM_AFTCAL_WK = 2,
WM_AUTO_IN = 3,
WM_MANUAL_IN = 4

} ATTWorkMode_t;

typedef enum ATTTalkState_t
{

TS_ON_CALL = 0,
TS_IDLE = 1

} ATTTalkState_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 5 V16-20

Query Agent State Service
Private Data Versions 2-4 Syntax

#include <acs.h>
#include <csta.h>
#include <attpriv.h>

// attQueryAgentState() - Service Request Private Data Setup
Function

RetCode_tattQueryAgentState (
ATTPrivateData_t*privateData,
DeviceID_t*split);

typedef struct ATTPrivateData_t
{

char vendor[32];
unsigned shortlength;
char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

// ATTV4QueryAgentStateConfEvent - Service Response Private Data

typedef struct ATTEvent_t
{

ATTEventType_teventType;// ATTV4_QUERY_AGENT_STATE_CONF
union
{

ATTV4QueryAgentStateConfEvent_tv4queryAgentState;
} u;

char heap[ATTPRIV_MAX_HEAP];
} ATTEvent_t;

typedef struct ATTV4QueryAgentStateConfEvent_t
{

ATTWorkMode_tworkMode;// agent work mode
ATTTalkState_ttalkState;// agent talk state

} ATTV4QueryAgentStateConfEvent_t;

typedef enum ATTWorkMode_t
{

WM_AUX_WORK = 1,
WM_AFTCAL_WK = 2,
WM_AUTO_IN = 3,
WM_MANUAL_IN = 4

} ATTWorkMode_t;

typedef enum ATTTalkState_t
{

TS_ON_CALL = 0,
TS_IDLE = 1

} ATTTalkState_t;
Issue 1 — December 2001

6-21DEFPROG.PDF R10.1 5 V1

Query Service Group
Query Call Classifier Service

Direction: Client to Switch Function: cstaEscapeService()
Confirmation Event: CSTAEscapeServiceConfEvent
Private Data Function: attQueryCallClassifier()
Private Data Confirmation Event: ATTQueryCallClassifierConfEvent
Service Parameters: noData
Private Parameters: noData
Ack Parameters: noData
Ack Private Parameters: numAvailPorts, numInUsePorts
Nak Parameter: universalFailure

Functional Description:

This service provides the number of "idle" and "in-use" ports (e.g., TN744). The
"in use" number is a snapshot of the call classifier port usage.

Service Parameters:

Private Parameters:

Ack Parameters:

Ack Private Parameters:

Nak Parameter:

Detailed Information:

None

noData None for this service.

noData None for this service.

noData None for this service.

numAvailPorts [mandatory] The number of available ports.

numInUsePorts [mandatory] The number of "in use" ports.

universalFailure If the request is not successful, the application will receive a
CSTAUniversalFailureConfEvent. The error parameter in
this event may one of the error values described in the
‘‘CSTAUniversalFailureConfEvent’’ section in Chapter 3:
Issue 1 — December 2001

DEFPROG.PDF R10.1 5 V16-22

Query Call Classifier Service
Syntax

#include <acs.h>
#include <csta.h>

// cstaEscapeService() - Service Request

RetCode_t cstaEscapeService (
ACSHandle_tacsHandle,
InvokeID_tinvokeID,
PrivateData_t*privateData);

// CSTAEscapeServiceConfEvent - Service Response

typedef struct
{

ACSHandle_t acsHandle;
EventClass_teventClass;// CSTACONFIRMATION
EventType_teventType;// CSTA_ESCAPE_SERVICE_CONF

} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_teventHeader;
union
{

struct
{

InvokeID_tinvokeID;
union
{

CSTAEscapeSvcConfEvent_tescapeService;
}u;

} cstaConfirmation;
} event;

char heap[CSTA_MAX_HEAP];
} CSTAEvent_t;

typedef struct CSTAEscapeSvcConfEvent_t {
Nulltypenull

} CSTAEscapeSvcConfEvent_t;
Issue 1 — December 2001

6-23DEFPROG.PDF R10.1 5 V1

Query Service Group
Private Parameter Syntax

#include <acs.h>
#include <csta.h>
#include <attpriv.h>

// attQueryCallClassifier() - Service Request Private Data
Setup Function

RetCode_tattQueryCallClassifier (// no private parameter,
// but must be called

ATTPrivateData_t*privateData);

typedef struct ATTPrivateData_t {
char vendor[32];
ushortlength;
char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

// ATTQueryCallClassifierConfEvent - Service Response
Private Data

typedef struct
{

ATTEventType_teventType;// ATT_QUERY_CALL_
CLASSIFIER_CONF

union
{

ATTQueryCallClassifierConfEvent_t
queryCallClassifier;

}u;
char heap[ATTPRIV_MAX_HEAP];
} ATTEvent_t;

typedef struct ATTQueryCallClassifierConfEvent_t
{

shortnumAvailPorts;// number of available ports
shortnumInUsePorts;// number of in use ports

} ATTQueryCallClassifierConfEvent_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 5 V16-24

Query Device Info
Query Device Info

Direction: Client to Switch Function: cstaQueryDeviceInfo()
Confirmation Event: CSTAQueryDeviceInfoConfEvent
Private Data Confirmation Event: ATTQueryDeviceInfoConfEvent (private
data version 5), ATTV4QueryDeviceInfoConfEvent (private data versions
2-4)
Service Parameters: device
Ack Parameters: device, deviceType, deviceClass
Ack Private Parameters: extensionClass, associatedDevice,
associatedClass
Nak Parameter: universalFailure

Functional Description:

This service provides the class and type of a device. The class is one of the
following attributes: voice, data, image, or other. The type is one of the following
attributes: station, ACD, ACD Group, or other. The G3 Extension class is
provided in the CSTA private data.
Issue 1 — December 2001

6-25DEFPROG.PDF R10.1 5 V1

Query Service Group
Service Parameters:

Ack Parameters:

Ack Private Parameters:

Nak Parameter:

Detailed Information:

The deviceType and deviceClass parameters are mapped from the G3 extension
class as shown in Table 6-3.

device [mandatory] Must be a valid on-PBX station extension.

device [optional - supported] Normally this is the same ID specified
in the device parameter in the request. See
associatedDevice and associatedClass below.

deviceType [mandatory] The device type (mapped from G3 extension
class).

deviceClass [mandatory] The device class (mapped from G3 extension
class).

extensionClass [mandatory] The G3 Extension Class for the device.

associatedDevice [optional] If the device specified in the request is a physical
device of a logical agent who is logged in, the logical ID of
that agent is returned in this parameter. Vice versa, if the
device specified in the request is the logical ID of a
logged-in agent, the physical device ID of that agent is
returned in this parameter. Otherwise, a null string is
returned. This parameter is supported by private data
version 5 and later only.

associatedClass [optional] The G3 Extension Class for the
associatedDevice. It is EC_LOGICAL_AGENT, If the
associatedDevice is a device ID of a logical agent;
otherwise it has the value of EC_OTHER. This parameter is
supported by private data version 5 and later only.

universalFailure If the request is not successful, the application will receive a
CSTAUniversalFailureConfEvent. The error parameter in
this event may contain the following error value, or one of
the error values described in the
‘‘CSTAUniversalFailureConfEvent’’ section in Chapter 3:

■ INVALID_CSTA_DEVICE_IDENTIFIER (12) An invalid
device identifier has been specified in device.
Issue 1 — December 2001

DEFPROG.PDF R10.1 5 V16-26

Query Device Info
Table 6-3. G3 Extension Class Mapping to Device Class and Type

G3 Extension Class
CSTA Device
Class

CSTA Device
Type

VDN Voice1

1. There is an additional private data qualifier that indicates if it is a VDN.

ACD Group

Hunt Group (ACD Split) Voice ACD Group

Announcement Voice Other

Data extension Data Station

Voice extension — Analog Voice Station

Voice extension — Proprietary Voice Station

Voice extension — BRI Voice Station

Logical Agent Voice Other

CTI Data Other

Other (modem pool, etc.) Other Other
Issue 1 — December 2001

6-27DEFPROG.PDF R10.1 5 V1

Query Service Group
Syntax

#include <acs.h>
#include <csta.h>

// cstaQueryDeviceInfo() - Service Request

RetCode_t cstaQueryDeviceInfo (
ACSHandle_tacsHandle,
InvokeID_tinvokeID,
DeviceID_t*device,
PrivateData_t*privateData);

// CSTAQueryDeviceInfoConfEvent - Service Response

typedef struct
{

ACSHandle_t acsHandle;
EventClass_teventClass;// CSTACONFIRMATION
EventType_teventType;// CSTA_QUERY_DEVICE_INFO_CONF

} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_teventHeader;
union
{

struct
{

InvokeID_tinvokeID;
union
{

CSTAQueryDeviceInfoConfEvent_t
queryDeviceInfo;

}u;
} cstaConfirmation;

} event;
char heap[CSTA_MAX_HEAP];
} CSTAEvent_t;

typedef struct CSTAQueryDeviceInfoConfEvent_t {
DeviceID_tdevice;
DeviceType_tdeviceType;
DeviceClass_tdeviceClass;

} CSTAQueryDeviceInfoConfEvent_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 5 V16-28

Query Device Info
Syntax (Continued)

// Device Types
typedef enum DeviceType_t {

DT_STATION = 0,
DT_LINE = 1,// not an expected G3 response
DT_BUTTON = 2, // not an expected G3 response
DT_ACD = 3,
DT_TRUNK = 4, // not an expected G3 response
DT_OPERATOR = 5, // not an expected G3 response
DT_STATION_GROUP = 16, // not an expected G3

response
DT_LINE_GROUP = 17, // not an expected G3 response
DT_BUTTON_GROUP = 18, // not an expected G3 response
DT_ACD_GROUP = 19,
DT_TRUNK_GROUP = 20, // not an expected G3 response
DT_OPERATOR_GROUP = 21,// not an expected G3

response
DT_OTHER = 255

} DeviceType_t;

typedef unsigned charDeviceClass_t;

// Device Classes
#define DC_VOICE0x80
#define DC_DATA0x40
#define DC_IMAGE0x20// not an expected G3
// response
#define DC_OTHER0x10
Issue 1 — December 2001

6-29DEFPROG.PDF R10.1 5 V1

Query Service Group
Private Data Version 5 Syntax

#include <acs.h>
#include <csta.h>
#include <attpriv.h>

// ATTQueryDeviceInfoConfEvent - Service Response Private
Data

typedef struct ATTEvent_t
{

ATTEventType_teventType;// ATT_QUERY_DEVICE_INFO_
CONF

union
{

ATTQueryDeviceInfoConfEvent_tqueryDeviceInfo;
} u;

char heap[ATTPRIV_MAX_HEAP];
} ATTEvent_t;

typedef struct ATTQueryDeviceInfoConfEvent_t
{

ATTExtensionClass_textensionClass;
ATTExtensionClass_tassociatedClass;
DeviceID_t associatedDevice;

} ATTQueryDeviceInfoConfEvent_t;

typedef enum ATTExtensionClass_t
{

EC_VDN = 0,
EC_ACD_SPLIT = 1,
EC_ANNOUNCEMENT = 2,
EC_DATA = 4,
EC_ANALOG = 5,
EC_PROPRIETARY = 6,
EC_BRI = 7,
EC_CTI = 8,
EC_LOGICAL_AGENT= 9,
EC_OTHER = 10

} ATTExtensionClass_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 5 V16-30

Query Device Info
Private Data Versions 2-4 Syntax

#include <acs.h>
#include <csta.h>
#include <attpriv.h>

// ATTV4QueryDeviceInfoConfEvent - Service Response
Private Data

typedef struct ATTEvent_t
{

ATTEventType_teventType;// ATTV4_QUERY_DEVICE_INFO_
CONF

union
{

ATTV4QueryDeviceInfoConfEvent_t
v4queryDeviceInfo;

} u;
char heap[ATTPRIV_MAX_HEAP];
} ATTEvent_t;

typedef struct ATTV4QueryDeviceInfoConfEvent_t
{

ATTExtensionClass_textensionClass;
} ATTV4QueryDeviceInfoConfEvent_t;

typedef enum ATTExtensionClass_t
{

EC_VDN = 0,
EC_ACD_SPLIT = 1,
EC_ANNOUNCEMENT = 2,
EC_DATA = 4,
EC_ANALOG = 5,
EC_PROPRIETARY = 6,
EC_BRI = 7,
EC_CTI = 8,
EC_LOGICAL_AGENT= 9,
EC_OTHER = 10

} ATTExtensionClass_t;
Issue 1 — December 2001

6-31DEFPROG.PDF R10.1 5 V1

Query Service Group
Query Device Name Service

Direction: Client to Switch Function: cstaEscapeService()
Confirmation Event: CSTAEscapeSvcConfEvent
Private Data Function: attQueryDeviceName()
Private Data Confirmation Event: ATTQueryDeviceNameConfEvent (private
data version 5), ATTV4QueryDeviceNameConfEvent (private data versions
2-4)
Service Parameters: noData
Private Parameters: device
Ack Parameters: noData
Ack Private Parameters: deviceType, device, name, uname
Nak Parameter: universalFailure

Functional Description:

The Query Device Name service allows an application to query the switch with an
extension of a device and receive the associated name of the device. The name
is retrieved from the G3 PBX Integrated Directory Database.

This service will allow an application to identify the names administered in the G3
switch with device extension numbers without maintaining its own database.
Issue 1 — December 2001

DEFPROG.PDF R10.1 5 V16-32

Query Device Name Service
Service Parameters:

Private Parameters:

Ack Parameters:

Ack Private Parameters:

noData None for this service.

device [mandatory] Must be a valid device extension.

noData None for this service.

deviceType [mandatory] Specifies the device type of the device:

■ DT_ACD_SPLIT — ACD Split (Hunt Group)

■ DT_ANNOUNCEMENT — announcement

■ DT_DATA — data extension

■ DT_LOGICAL_AGENT — logical agent

■ DT_STATION — station extension

■ DT_TRUNK_ACCESS_CODE — Trunk Access Code

■ DT_VDN — VDN

NOTE:
If no name is administered in the G3 switch for the
device, the deviceType and the name parameters will
not contain meaningful information. Also the
deviceType is set to 0 (0 is not defined in the list
above).

device [mandatory] Specifies the extension number of the device.

name [mandatory] Specifies the associated name of the device.
This is a string of 1-15 ASCII characters for private data
version 3 and 4. This is a string of 1-27 ASCII characters for
private data version 5 and later only.
Issue 1 — December 2001

6-33DEFPROG.PDF R10.1 5 V1

Query Service Group
NOTE:
The name of a device is administered in the G3 PBX.
Non-standard 8-bit OPTREX characters supported on
the displays of the 84xx series terminals may be
reported in name parameter. The 84xx terminal
displays supports a limited number of non-standard
characters (in addition to the standard 7-bit ASCII
display characters), including Katakana, graphical
characters, and Eurofont (European-type) characters.
The tilde,~, character is not defined in the OPTREX
set and is used as the toggle character (turn on/off
8-bit character set) to indicate subsequent characters
are to have the high-bit set (turned off by a following ~
character, if any). If non-standard 8-bit OPTREX
characters are administered in the switch for the
device, then the tilde,~, character will be reported in its
name. An application needs to map the non-standard
8-bit OPTREX characters to its proper printable
characters.

For additional information, see Appendix A, "Enhanced
Voice Terminal Display."

uname [mandatory] Specifies the associated name of the device in
Unicode . This parameter is supported by private data
version 5 and later only.
Issue 1 — December 2001

DEFPROG.PDF R10.1 5 V16-34

Query Device Name Service
Nak Parameter:

Detailed Information:

■ Incomplete Names — The names returned by this service may not be the
full names since they are limited to 15 characters in the Integrated
Directory database.

■ Security — G3 Switch does not provide security mechanisms for this
service.

■ Traffic Control — The application is responsible for controlling the message
traffic on the CTI link. An application should minimize traffic by requesting
device names only when needed. This service is not intended for use by
an application to create its own copy of the Integrated Directory database.
If the number of outstanding requests reaches the switch limit, the
response time may be as long as 30 seconds.

universalFailure If the request is not successful, the application will receive a
CSTAUniversalFailureConfEvent. The error parameter in
this event may contain the following error values, or one of
the error values described in the
‘‘CSTAUniversalFailureConfEvent’’ section in Chapter 3:

■ VALUE_OUT_OF_RANGE (3) (CS0/100) Invalid
parameter value specified.

■ OBJECT_NOT_KNOWN (4) (CS0/96) Mandatory
parameter is missing.

■ INVALID_CSTA_DEVICE_IDENTIFIER (12) (CS0/28)
An invalid device identifier has been specified in device.

■ GENERIC_SUBSCRIBED_RESOURCE_AVAILABILITY
(41) (CS0/50) This service is requested on a G3 PBX
administered as a release earlier then G3V4.
Issue 1 — December 2001

6-35DEFPROG.PDF R10.1 5 V1

Query Service Group
Syntax

#include <acs.h>
#include <csta.h>

// cstaEscapeService() - Service Request

RetCode_t cstaEscapeService (
ACSHandle_tacsHandle,
InvokeID_tinvokeID,
PrivateData_t*privateData);

// CSTAEscapeSvcConfEvent - Service Response

typedef struct
{

ACSHandle_t acsHandle;
EventClass_teventClass;// CSTACONFIRMATION
EventType_teventType;// CSTA_ESCAPE_SVC_CONF

} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_teventHeader;
union
{

struct
{

InvokeID_tinvokeID;
union
{

CSTAEscapeSvcConfEventescapeService;
}u;

} cstaConfirmation;
} event;

char heap[CSTA_MAX_HEAP];
} CSTAEvent_t;

typedef struct CSTAEscapeSvcConfEvent_t {
Nulltypenull

} CSTAEscapeSvcConfEvent_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 5 V16-36

Query Device Name Service
Private Data Version 5 Syntax

#include <acs.h>
#include <csta.h>
#include <attpriv.h>

// attQueryDeviceName() - Service Request Private Data
Setup Function

RetCode_tattQueryDeviceName (
ATTPrivateData_t*privateData,
DeviceID_t*device);

typedef struct ATTPrivateData_t
{

char vendor[32];
ushortlength;
char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

// ATTQueryDeviceNameConfEvent - Service Response Private
Data

typedef struct ATTEvent_t
{

ATTEventType_teventType;// ATT_QUERY_DEVICE_NAME_
CONF

union
{

ATTQueryDeviceNameConfEvent_tqueryDeviceName;
} u;

char heap[ATTPRIV_MAX_HEAP];
} ATTEvent_t;

typedef struct ATTQueryDeviceNameConfEvent_t
{

ATTDeviceType_tdeviceType;
DeviceID_t device;
DeviceID_t name; // 1–27 ASCII character string
ATTUnicodeDeviceID_tuname; // name in Unicode

} ATTQueryDeviceNameConfEvent_t;

typedef enum ATTDeviceType_t
{

ATT_DT_ACD_SPLIT= 1,
ATT_DT_ANNOUNCEMENT= 2,
ATT_DT_DATA = 3,
ATT_DT_LOGICAL_AGENT= 4,
ATT_DT_STATION= 5,
Issue 1 — December 2001

6-37DEFPROG.PDF R10.1 5 V1

Query Service Group
ATT_DT_TRUNK_ACCESS_CODE= 6,
ATT_DT_VDN = 7

}ATTDeviceType_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 5 V16-38

Query Device Name Service
Private Data Versions 2-4 Syntax

#include <acs.h>
#include <csta.h>
#include <attpriv.h>

// attQueryDeviceName() - Service Request Private Data
Setup Function

RetCode_tattQueryDeviceName (
ATTPrivateData_t*privateData,
DeviceID_t*device);

typedef struct ATTPrivateData_t
{

char vendor[32];
ushortlength;
char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

// ATTV4QueryDeviceNameConfEvent - Service Response
Private Data

typedef struct ATTEvent_t
{

ATTEventType_teventType;// ATTV4_QUERY_DEVICE_NAME_
CONF

union
{

ATTV4QueryDeviceNameConfEvent_t
v4queryDeviceName;

} u;
char heap[ATTPRIV_MAX_HEAP];
} ATTEvent_t;

typedef struct ATTV4QueryDeviceNameConfEvent_t
{

ATTDeviceType_tdeviceType;
DeviceID_tdevice;
char name[16]; // 1–15 ASCII character string

} ATTV4QueryDeviceNameConfEvent_t;

typedef enum ATTDeviceType_t
{

ATT_DT_ACD_SPLIT= 1,
ATT_DT_ANNOUNCEMENT= 2,
ATT_DT_DATA = 3,
ATT_DT_LOGICAL_AGENT= 4,
ATT_DT_STATION= 5,
Issue 1 — December 2001

6-39DEFPROG.PDF R10.1 5 V1

Query Service Group
ATT_DT_TRUNK_ACCESS_CODE= 6,
ATT_DT_VDN = 7

} ATTDeviceType_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 5 V16-40

Query Do Not Disturb Service
Query Do Not Disturb Service

Direction: Client to Switch Function: cstaQueryDoNotDisturb()
Confirmation Event: CSTAQueryDoNotDisturbConfEvent
Service Parameters: device
Ack Parameters: doNotDisturb
Nak Parameter: universalFailure

Functional Description:

This service provides the status of the send all calls feature expressed as on or off
at a device. The status will always be reported as off when the extension does not
have a coverage path.

Service Parameters:

Ack Parameters:

Nak Parameter:

Detailed Information:

None

device [mandatory] Must be a valid on-PBX station extension that
supports the send all calls (SAC) feature..

doNotDisturb [mandatory] Status of the send all calls feature expressed
as on (TRUE) or off (FALSE).

universalFailure If the request is not successful, the application will receive a
CSTAUniversalFailureConfEvent. The error parameter in
this event may contain the following error value, or one of
the error values described in the
‘‘CSTAUniversalFailureConfEvent’’ section in Chapter 3:

■ INVALID_CSTA_DEVICE_IDENTIFIER (12) An invalid
device identifier has been specified in device.
Issue 1 — December 2001

6-41DEFPROG.PDF R10.1 5 V1

Query Service Group
Syntax

#include <acs.h>
#include <csta.h>

// cstaQueryDoNotDisturb() - Service Request

RetCode_t cstaQueryDoNotDisturb (
ACSHandle_tacsHandle,
InvokeID_tinvokeID,
DeviceID_t*device,
PrivateData_t*privateData);

// CSTAQueryDoNotDisturbConfEvent - Service Response

typedef struct
{

ACSHandle_t acsHandle;
EventClass_teventClass;
EventType_teventType;

} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_teventHeader;
union
{

struct
{

InvokeID_tinvokeID;
union
{

CSTAQueryDndConfEvent_tqueryDnd;
}u;

} cstaConfirmation;
} event;

char heap[CSTA_MAX_HEAP];
} CSTAEvent_t;

typedef struct CSTAQueryDndConfEvent_t {
Boolean_tdoNotDisturb;// TRUE = on, FALSE = off

} CSTAQueryDndConfEvent_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 5 V16-42

Query Forwarding Service
Query Forwarding Service

Direction: Client to Switch Function: cstaQueryForwarding()
Confirmation Event: CSTAQueryForwardingConfEvent
Service Parameters: device
Ack Parameters: forward
Nak Parameter: universalFailure

Functional Description:

This service provides the status and forward-to-number of the Call Forwarding
feature for a device. The status is expressed as on or off. The G3 PBX only
supports one Forwarding Type (Immediate). Thus, the on/off indicator is only
specified for the Immediate type. The Call Forwarding feature may by turned on
for many types (G3 redirection Criteria), and the actual forward type is dependent
on how the feature is administered in the G3 PBX.

Service Parameters:

Ack Parameters:

Nak Parameter:

Detailed Information:

The G3 PBX supports only one CSTA Forwarding Type: Immediate. Thus, each
response contains information for the Immediate type.

device [mandatory] Must be a valid on-PBX station extension that
supports the Call Forwarding feature.

forward [mandatory] This is a list of forwarding parameters. The list
contains a count of how many items are in the list. Since the
G3 PBX only stores one forwarding address, the count is
one. Each element in the list contains the following:
forwardingType, forwardingOn, and forwardDN. For G3
PBX, forwardingType will always be FWD_IMMEDIATE;
forwardingOn will indicate (on/off(status (TRUE indicates
on, FALSE indicates off); and forwardDN will contain the
forward-to-number.

universalFailure If the request is not successful, the application will receive a
CSTAUniversalFailureConfEvent. The error parameter in
this event may contain the following error value, or one of
the error values described in the
‘‘CSTAUniversalFailureConfEvent’’ section in Chapter 3:

■ INVALID_CSTA_DEVICE_IDENTIFIER (12) An invalid
device identifier has been specified in device.
Issue 1 — December 2001

6-43DEFPROG.PDF R10.1 5 V1

Query Service Group
Syntax

#include <acs.h>
#include <csta.h>

// cstaQueryForwarding() - Service Request

RetCode_t cstaQueryForwarding (
ACSHandle_tacsHandle,
InvokeID_tinvokeID,
DeviceID_t*deviceID,
PrivateData_t*privateData);

// CSTAQueryForwardingConfEvent - Service Response

typedef struct
{

ACSHandle_t acsHandle;
EventClass_teventClass;// CSTACONFIRMATION
EventType_teventType;// CSTA_QUERY_FWD_CONF

} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_teventHeader;
union
{

struct
{

InvokeID_tinvokeID;
union
{

CSTAQueryFwdConfEvent_tqueryFwd;
}u;

} cstaConfirmation;
} event;

char heap[CSTA_MAX_HEAP];
} CSTAEvent_t;

typedef struct CSTAQueryFwdConfEvent_t {
ListForwardParameters_tforward;

} CSTAQueryFwdConfEvent_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 5 V16-44

Query Forwarding Service
Syntax (Continued)

typedef struct ListForwardParameters_t {
shortcount; // only 1 is provided in list
ForwardingInfo_tparam[7];

} ListForwardParameters_t;

typedef struct ForwardingInfo_t {
ForwardingType_tforwardingType; // FWD_IMMEDIATE
Boolean forwardingOn;// TRUE = on, FALSE = off
DeviceID_tforwardDN;

} ForwardingInfo_t;

typedef enum ForwardingType_t {
FWD_IMMEDIATE = 0,// only type supported
FWD_BUSY = 1,// not supported
FWD_NO_ANS = 2,// not supported
FWD_BUSY_INT = 3,// not supported
FWD_BUSY_EXT = 4,// not supported
FWD_NO_ANS_INT = 5,// not supported
FWD_NO_ANS_EXT = 6// not supported

} ForwardingType_t;
Issue 1 — December 2001

6-45DEFPROG.PDF R10.1 5 V1

Query Service Group
Query Message Waiting Service

Direction: Client to Switch Function: cstaQueryMsgWaitingInd()
Confirmation Event: CSTAQueryMwiConfEvent
Private Data Confirmation Event: ATTQueryMwiConfEvent
Service Parameters: device
Ack Parameters: messages
Ack Private Parameters: applicationType
Nak Parameter: universalFailure

Functional Description:

The Query Message Waiting Service provides status of the message waiting
indicator expressed as on or off for a device. The applications that turn the
indicator on (that is, ASAI, Property Management, Message Center, Voice
Processing, Leave Word Calling) are reported in the private data.

Service Parameters:

Ack Parameters:

Ack Private Parameters:

Nak Parameter:

device [mandatory] Must be a valid on-PBX station extension that
supports the Message Waiting Indicator (MWI) feature.

messages [mandatory] Indicates the on/off status (TRUE indicates on,
FALSE indicates off) of the MWI for this device.

applicationType [mandatory] Indicates the applications that turned on the
MWI for the device

universalFailure If the request is not successful, the application will receive a
CSTAUniversalFailureConfEvent. The error parameter in
this event may contain the following error value, or one of
the error values described in the
‘‘CSTAUniversalFailureConfEvent’’ section in Chapter 3:

■ INVALID_CSTA_DEVICE_IDENTIFIER (12) An invalid
device identifier has been specified in device.
Issue 1 — December 2001

DEFPROG.PDF R10.1 5 V16-46

Query Message Waiting Service
Detailed Information:

■ Application Type — The private data member applicationType is a bit map
where one bit is set for each application that turned on the indicator.
Multiple applications may turn on the indicator. The applications
represented are: CTI/ASAI, Property Management (PMS), Message
Center (MCS), Voice Messaging, and Leave Word Calling (LWC).

To find out which applications turned on the indicator, the application must
use a bit mask as shown in Table 6-4:

■ Setting MWI Status — An application can set the MWI status through the
CSTASetMsgWaitingInd Service.

■ System Starts — System cold starts cause the switch to lose the MWI
status. Other types of restart do not affect the MWI status.

Table 6-4. Application Types Mapped to Bit Maps

bit: 8 7 6 5 4 3 2 1

Application N/A N/A N/A CTI/ASAI LWC PMS Voice MCS
Issue 1 — December 2001

6-47DEFPROG.PDF R10.1 5 V1

Query Service Group
Syntax

#include <acs.h>
#include <csta.h>

// cstaQueryMsgWaitingInd() - Service Request

RetCode_t cstaQueryMsgWaitingInd (
ACSHandle_tacsHandle,
InvokeID_tinvokeID,
DeviceID_t*device,
PrivateData_t*privateData);

// CSTAQueryMsgWaitingIndConfEvent - Service Response

typedef struct
{

ACSHandle_t acsHandle;
EventClass_teventClass;// CSTACONFIRMATION
EventType_teventType;// CSTA_QUERY_MWI_CONF

} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_teventHeader;
union
{

struct
{

InvokeID_tinvokeID;
union
{

CSTAQueryMwiConfEvent_tqueryMwi;
}u;

} cstaConfirmation;
} event;

char heap[CSTA_MAX_HEAP];
} CSTAEvent_t;

typedef struct CSTAQueryMwiConfEvent_t {
Booleanmessages;// TRUE = on, FALSE = off

} CSTAQueryMwiConfEvent_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 5 V16-48

Query Message Waiting Service
Private Parameter Syntax

#include <acs.h>
#include <csta.h>
#include <attpriv.h>

// ATTQueryMwiConfEvent - Service Response Private Data

typedef struct
{

ATTEventTypeeventType;// ATT_QUERY_MWI_CONF
union
{

ATTQueryMwiConfEvent_tqueryMwi;
}u;

char heap[ATTPRIV_MAX_HEAP];
} ATTEvent_t;

typedef struct ATTQueryMwiConfEvent_t
{

ATTMwiApplication_tapplicationType;// application
type
} ATTQueryMwiConfEvent_t;

typedefunsigned charATTMwiApplication_t;
#define AT_MCS 0x01// bit 1
#define AT_VOICE0x02// bit 2
#define AT_PROPMGT0x04 // bit 3
#define AT_LWC 0x08// bit 4
#define AT_CTI 0x10// bit 5
Issue 1 — December 2001

6-49DEFPROG.PDF R10.1 5 V1

Query Service Group
Query Station Status Service

Direction: Client to Switch Function: cstaEscapeService()
Confirmation Event: CSTAEscapeServiceConfEvent
Private Data Function: attQueryStationStatus()
Private Data Confirmation Event: ATTQueryStationStatusConfEvent
Service Parameters: noData
Private Parameters: device
Ack Parameters: noData
Ack Private Parameters: stationStatus
Nak Parameter: universalFailure

Functional Description:

The Query Station Status service provides the idle and/or busy state of a station.
The "busy" state is returned if the station is active with a call. The "idle" state is
returned if the station is not active with any call.

Service Parameters:

Private Parameters:

Ack Parameters:

Ack Private Parameters:

Nak Parameter:

Detailed Information:

None

noData None for this service.

device [mandatory] Must be a valid station device.

noData None for this service.

stationStatus [mandatory] Specifies the busy/idle state (TRUE indicates
busy, FALSE indicates idle) of the station.

universalFailure If the request is not successful, the application will receive a
CSTAUniversalFailureConfEvent. The error parameter in
this event may contain the following error value, or one of
the error values described in the
‘‘CSTAUniversalFailureConfEvent’’ section in Chapter 3:

■ INVALID_CSTA_DEVICE_IDENTIFIER (12) An invalid
device identifier has been specified in device.
Issue 1 — December 2001

DEFPROG.PDF R10.1 5 V16-50

Query Station Status Service
Syntax

#include <acs.h>
#include <csta.h>

// cstaEscapeService() - Service Request

RetCode_t cstaEscapeService (
ACSHandle_tacsHandle,
InvokeID_tinvokeID,
PrivateData_t*privateData);

// CSTAEscapeServiceConfEvent - Service Response

typedef struct
{

ACSHandle_t acsHandle;
EventClass_teventClass;// CSTACONFIRMATION
EventType_teventType;// CSTA_ESCAPE_SERVICE_CONF

} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_teventHeader;
union
{

struct
{

InvokeID_tinvokeID;
union
{

CSTAEscapeSvcConfEvent_tescapeService;
}u;

} cstaConfirmation;
} event;

char heap[CSTA_MAX_HEAP];
} CSTAEvent_t;

typedef struct CSTAEscapeSvcConfEvent_t {
Nulltypenull

} CSTAEscapeSvcConfEvent_t;
Issue 1 — December 2001

6-51DEFPROG.PDF R10.1 5 V1

Query Service Group
Private Parameter Syntax

#include <acs.h>
#include <csta.h>
#include <attpriv.h>

// attQueryStationStatus() - Service Request Private Data
Setup Function

RetCode_tattQueryStationStatus (// returns NULL if no
// parameter specified

ATTPrivateData_t*privateData,
DeviceID_t*device);

typedef struct ATTPrivateData_t {
char vendor[32];
unsigned shortlength;
char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

// ATTQueryStationStatusConfEvent - Service Response
Private Data

typedef struct
{

ATTEventTypeeventType;// ATT_QUERY_STATION_STATUS_
CONF

union
{

ATTQueryStationStatusConfEvent_t
queryStationStatus;

}u;
charheap[ATTPRIV_MAX_HEAP];

} ATTEvent_t;

typedef struct ATTQueryStationStatusConfEvent_t
{

BooleanstationStatus;// TRUE = busy, FALSE = idle
} ATTQueryStationStatusConfEvent_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 5 V16-52

Query Time Of Day Service
Query Time Of Day Service

Direction: Client to Switch Function: cstaEscapeService()
Confirmation Event: CSTAEscapeServiceConfEvent
Private Data Function: attQueryTimeOfDay()
Private Data Confirmation Event: ATTQueryTimeofDayConfEvent
Service Parameters: noData
Private Parameters: noData
Ack Parameters: noData
Ack Private Parameters: time
Nak Parameter: universalFailure

Functional Description:

The Query Time of Day Service provides the switch information for the year,
month, day, hour, minute, and second.

Service Parameters:

Ack Parameters:

Ack Private Parameters:

Nak Parameter:

Detailed Information:

None

noData None for this service.

noData None for this service.

time [mandatory] Specifies the year, month, day, hour, minute,
and second.

■ The year 1999 is specified by two digits — 99.

■ The year 2000 is specified by one digit — 0.

■ The year 2001 is specified by one digit — 1.

■ The year 2002 is specified by one digit — 2, and so
forth.

universalFailure If the request is not successful, the application will receive a
CSTAUniversalFailureConfEvent. The error parameter in
this event may contain one of the error values described in
the ‘‘CSTAUniversalFailureConfEvent’’ section in Chapter
3:
Issue 1 — December 2001

6-53DEFPROG.PDF R10.1 5 V1

Query Service Group
Syntax

#include <acs.h>
#include <csta.h>

// cstaEscapeService() - Service Request

RetCode_t cstaEscapeService (
ACSHandle_tacsHandle,
InvokeID_tinvokeID,
PrivateData_t*privateData);

// CSTAEscapeServiceConfEvent - Service Response

typedef struct
{

ACSHandle_t acsHandle;
EventClass_teventClass;// CSTACONFIRMATION
EventType_teventType;// CSTA_ESCAPE_SERVICE_CONF

} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_teventHeader;
union
{

struct
{

InvokeID_tinvokeID;
union
{

CSTAEscapeSvcConfEvent_tescapeService;
}u;

} cstaConfirmation;
} event;

char heap[CSTA_MAX_HEAP];
} CSTAEvent_t;

typedef struct CSTAEscapeSvcConfEvent_t {
Nulltypenull

} CSTAEscapeSvcConfEvent_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 5 V16-54

Query Time Of Day Service
Private Parameter Syntax

#include <acs.h>
#include <csta.h>
#include <attpriv.h>

// attQueryTimeOfDay() - Service Request Private Data
Setup Function

RetCode_tattQueryTimeOfDay (// no private parameter,
// but must be called

ATTPrivateData_t*privateData);

typedef struct ATTPrivateData_t {
char vendor[32];
unsigned shortlength;
char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

// ATTQueryTimeofDayConfEvent - Service Response Private
Data

typedef struct
{

ATTEventTypeeventType;// ATT_QUERY_TOD_CONF
union
{

ATTQueryTODConfEvent_tqueryTOD;
}u;

char heap[ATTPRIV_MAX_HEAP];
} ATTEvent_t;

typedef struct ATTQueryTODConfEvent_t
{

shortyear;
shortmonth;
shortday;
shorthour;
shortminute;
shortsecond;

} ATTQueryTODConfEvent_t;
Issue 1 — December 2001

6-55DEFPROG.PDF R10.1 5 V1

Query Service Group
Query Trunk Group Service

Direction: Client to Switch Function: cstaEscapeService()
Confirmation Event: CSTAEscapeServiceConfEvent
Private Data Function: attQueryTrunkGroup()
Private Data Confirmation Event: ATTQueryTrunkGroupConfEvent
Service Parameters: noData
Private Data Parameters: device
Ack Parameters: noData
Ack Private Parameters: idleTrunks, usedTrunks
Nak Parameter: universalFailure

Functional Description:

The Query Trunk Group Service provides the number of idle trunks and the
number of in-use trunks. The sum of the idle and in-use trunks provides the
number of trunks in service.
Issue 1 — December 2001

DEFPROG.PDF R10.1 5 V16-56

Query Trunk Group Service
Service Parameters:

Private Data Parameters:

Ack Parameters:

Ack Private Parameters:

Nak Parameter:

Detailed Information:

None

noData None for this service.

device [mandatory] Specifies a valid trunk group access code.

noData None for this service.

idleTrunks [mandatory] The number of "idle" trunks in the group.

usedTrunks [mandatory] The number of "in use" trunks in the group

universalFailure If the request is not successful, the application will receive a
CSTAUniversalFailureConfEvent. The error parameter in
this event may contain the following error value, or one of
the error values described in the
‘‘CSTAUniversalFailureConfEvent’’ section in Chapter 3:

■ INVALID_CSTA_DEVICE_IDENTIFIER (12) An invalid
device identifier has been specified in device.
Issue 1 — December 2001

6-57DEFPROG.PDF R10.1 5 V1

Query Service Group
Syntax

#include <acs.h>
#include <csta.h>

// cstaEscapeService() - Service Request

RetCode_t cstaEscapeService (
ACSHandle_tacsHandle,
InvokeID_tinvokeID,
PrivateData_t*privateData);

// CSTAEscapeServiceConfEvent - Service Response

typedef struct
{

ACSHandle_t acsHandle;
EventClass_teventClass;// CSTACONFIRMATION
EventType_teventType;// CSTA_ESCAPE_SERVICE_CONF

} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_teventHeader;
union
{

struct
{

InvokeID_tinvokeID;
union
{

CSTAEscapeSvcConfEvent_tescapeService;
}u;

} cstaConfirmation;
} event;

char heap[CSTA_MAX_HEAP];
} CSTAEvent_t;

typedef struct CSTAEscapeSvcConfEvent_t {
Nulltypenull

} CSTAEscapeSvcConfEvent_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 5 V16-58

Query Trunk Group Service
Private Parameter Syntax

#include <acs.h>
#include <csta.h>
#include <attpriv.h>

// attQueryTrunkGroup() - Service Request Private Data
Setup Function

RetCode_tattQueryTrunkGroup (// returns NULL if no
// parameter specified

ATTPrivateData_t*privateData,
DeviceID_t *device);

typedef struct ATTPrivateData_t {
char vendor[32];
unsigned shortlength;
char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

// ATTQueryTrunkGroupConfEvent - Service Response Private
Data

typedef struct
{

ATTEventTypeeventType;// ATT_QUERY_TG_CONF
union
{

ATTQueryTGConfEvent_tqueryTg;
}u;

char heap[ATTPRIV_MAX_HEAP];
} ATTEvent_t;

typedef struct ATTQueryTGConfEvent_t
{

short idleTrunks;// number of “idle” trunks
// in the group

short usedTrunks;// number of “in use” trunks
// in the group
} ATTQueryTGConfEvent_t;
Issue 1 — December 2001

6-59DEFPROG.PDF R10.1 5 V1

Query Service Group
Query Universal Call ID Service
(Private)

Direction: Client to Switch Function: cstaEscapeService()
Confirmation Event: CSTAEscapeServiceConfEvent
Private Data Function: attQueryUCID()
Private Data Confirmation Event: ATTQueryUCIDConfEvent
Service Parameters: noData
Private Parameters: call
Ack Parameters: noData
Ack Private Parameters: ucid
Nak Parameter: universalFailure

Functional Description:

The Query Universal Call ID Service responds with the Universal Call ID (UCID)
for a normal callID. This query may be requested to switch at anytime during the
life of a call.
Issue 1 — December 2001

DEFPROG.PDF R10.1 5 V16-60

Query Universal Call ID Service (Private)
Service Parameters:

Private Parameters:

Ack Parameters:

Ack Private Parameters:

Nak Parameter:

Detailed Information:

None

noData None for this service.

call [mandatory] Specifies the normal callID of a call. This is a
Connection Identifier. The deviceID is ignored.

noData None for this service.

ucid [mandatory] Specifies the Universal Call ID (UCID) of the
requested call. The UCID is a unique call identifier across
switches and the network. A valid UCID is a null-terminated
ASCII character string. If there is no UCID associated with
this call, the ucid contains the ATT_NULL_UCID (a
20-character string of all zeros).

universalFailure If the request is not successful, the application will receive a
CSTAUniversalFailureConfEvent. The error parameter in
this event may contain the following error values, or one of
the error values described in the
‘‘CSTAUniversalFailureConfEvent’’ section in Chapter 3:

■ INVALID_CSTA_CALL_IDENTIFIER (11) (CS0/100,
CS3/63) An invalid call identifier has been specified in
call

■ INVALID_FEATURE(15) (CS0/111) The switch software
does not support this feature. The switch software
release may be earlier than R6.
Issue 1 — December 2001

6-61DEFPROG.PDF R10.1 5 V1

Query Service Group
Syntax

#include <acs.h>
#include <csta.h>

// cstaEscapeService() - Service Request

RetCode_t cstaEscapeService (
ACSHandle_tacsHandle,
InvokeID_tinvokeID,
PrivateData_t*privateData);

// CSTAEscapeServiceConfEvent - Service Response

typedef struct
{

ACSHandle_t acsHandle;
EventClass_teventClass;// CSTACONFIRMATION
EventType_teventType;// CSTA_ESCAPE_SERVICE_CONF

} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_teventHeader;
union
{

struct
{

InvokeID_tinvokeID;
union
{

CSTAEscapeSvcConfEvent_tescapeService;
}u;

} cstaConfirmation;
} event;

char heap[CSTA_MAX_HEAP];
} CSTAEvent_t;

typedef struct CSTAEscapeSvcConfEvent_t {
Nulltypenull

} CSTAEscapeSvcConfEvent_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 5 V16-62

Query Universal Call ID Service (Private)
Private Parameter Syntax

#include <acs.h>
#include <csta.h>
#include <attpriv.h>

// attQueryUCID() - Service Request Private Data Setup
Function

RetCode_tattQueryUCID (
ATTPrivateData_t*privateData,
ConnectionID_t *call);

typedef struct ATTPrivateData_t {
char vendor[32];
unsigned shortlength;
char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

// ATTQueryUCIDConfEvent - Service Response Private Data

typedef struct
{

ATTEventTypeeventType;// ATT_QUERY_UCID_CONF
union
{

ATTQueryUCIDConfEvent_tqueryUCID;
}u;

char heap[ATTPRIV_MAX_HEAP];
} ATTEvent_t;

typedef struct ATTQueryUCIDConfEvent_t
{

ATTUCID_tucid;
} ATTQueryUCIDConfEvent_t
Issue 1 — December 2001

6-63DEFPROG.PDF R10.1 5 V1

Query Service Group
Issue 1 — December 2001

DEFPROG.PDF R10.1 5 V16-64

Issue 1 — December 2001

DEFPROG.PDF R10.1 V1
7

Snapshot Service Group
Overview

This service group enables the client to “take a snapshot” of 1) information
concerning a particular call and 2) information concerning calls associated with a
particular device.

Centre Vu Computer Telephony (CVCT) supports the following CSTA Services:

■ Snapshot Call Service

■ Snapshot Device Service
7-1

Snapshot Service Group
Snapshot Call Service

Direction: Client to Switch
Function: cstaSnapshotCallReq()
Confirmation Event: CSTASnapshotCallConfEvent
Service Parameters: snapshotObj
Ack Parameters: snapshotData
Nak Parameter: universalFailure

Functional Description:

The Snapshot Call Service provides the following information for each endpoint
on the specified call:

■ Device ID

■ Connection ID

■ CSTA Local Connection State

The CSTA Connection state may be one of the following: Unknown, Null,
Initiated, Alerting, Queued, Connected, Held, or Failed.

The Device ID may be an on-PBX extension, an alerting extension, or a split hunt
group extension (when the call is queued). When a call is queued on more than
one split hunt group, only one split hunt group extension is provided in the
response to such a query. For calls alerting at various groups (for example, hunt
group, TEG, etc.), the group extension is reported to the client application. For
calls connected to a member of a group, the group member’s extension is
reported to the client.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V17-2

Snapshot Call Service
Service Parameters:

Ack Parameters:

Nak Parameter:

snapshotObj [mandatory]Identifies the call object for which snapshot
information is requested. The structure includes the call
identifier, the device identifier, and the device type (static or
dynamic).

The G3 PBX ignores the device identifier and device type,
so they may have null values.

snapshotData [mandatory] Contains all the snapshot information for the
call for which the request was made. The structure includes
a count of how many device endpoints are on the call as
well as the following detailed information for each endpoint:
Device ID, Call ID, and Local Connection State of the call at
the device.

universalFailure If the request is not successful, the application will receive a
CSTAUniversalFailureConfEvent. The error parameter in
this event may contain the following error values, or one of
the error values described in the
‘‘CSTAUniversalFailureConfEvent’’ section in Chapter 3:

■ INVALID_CSTA_CALL_IDENTIFIER (11) An invalid call
identifier has been specified in snapshotObj.

■ INVALID_CSTA_DEVICE_IDENTIFIER (12) An invalid
device identifier has been specified in snapshotObj.

■

Issue 1 — December 2001

7-3DEFPROG.PDF R10.1 V1

Snapshot Service Group
Syntax

#include <acs.h>
#include <csta.h>

// cstaSnapshotCallReq() - Service Request

RetCode_t cstaSnapshotCallReq
ACSHandle_t acsHandle,
InvokeID_t invokeID,
ConnectionID_t *snapshotObj;
PrivateData_t *privateData);

// CSTASnapshotCallConfEvent - Service Response

typedef struct
{

ACSHandle_t acsHandle;
EventClass_t eventClass; // CSTACONFIRMATION
EventType_t eventType; // CSTA_SNAPSHOT_CALL_CONF

} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{

struct
{

InvokeID_t invokeID;
union
{

CSTASnapshotCallConfEvent_t snapshotCall;

}u;

} cstaConfirmation;
} event;
char heap[CSTA_MAX_HEAP];

} CSTAEvent_t;

typedef struct CSTASnapshotCallConfEvent_t {
CSTASnapshotCallData_t snapshotCall;

} CSTASnapshotCallConfEvent_t;

typedef struct CSTASnapshotCallData_t {
int count; // count of calls
struct CSTASnapshotCallResponseInfo_t *info;

} CSTASnapshotCallData_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 V17-4

Snapshot Call Service
Syntax (Continued)

typedef struct CSTASnapshotCallResponseInfo_t {
SubjectDeviceID_t deviceOnCall;
ConnectionID_t callIdentifier;
LocalConnectionState_t localConnectionState;

} CSTASnapshotCallResponseInfo_t;
Issue 1 — December 2001

7-5DEFPROG.PDF R10.1 V1

Snapshot Service Group
Snapshot Device Service

Direction: Client to Switch
Function: cstaSnapshotDeviceReq()
Confirmation Event: CSTASnapshotDeviceConfEvent
Private Data Confirmation Event: ATTSnapshotDeviceConfEvent (private
data version 5), ATTV4SnapshotDeviceConfEvent (private data versions 2-4)
Service Parameters: snapshotObj
Ack Parameters: snapshotDevice
Ack Private Parameters: attSnapshotDevice
Nak Parameter: universalFailure

Functional Description:

The Snapshot Device Service provides information about calls associated with a
given CSTA device. The information identifies each call and indicates the CSTA
local connection state for all devices on each call.

NOTE:
In the Release 2.0 product, the list of connection states for each call may not
be a complete list.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V17-6

Snapshot Device Service
Service Parameters::

Ack Parameters:

Ack Private Parameters:

Nak Parameter:

Detailed Information:

■ The ECMA-180 definition for the ack response does not distinguish
between the call states for each individual connection making up a call.
This is a deficiency because there is no way to correlate the local
connection state to a particular connection ID within a call. To overcome
this deficiency, the G3 PBX always returns the local connection state for
the queried device first in the list for each of the calls. The response
contains lists of connection states for each call at the snapshot device.

■ Information for a maximum of 10 calls is provided for the snapshot device.
This is a G3 PBX limit.

■ Table 7-1 illustrates the mapping from the G3 PBX call state to the CSTA
local call state (provided in the CSTA response):

snapshotObj [mandatory] Must be a valid device.

snapshotDevice [mandatory] Contains a sequence of information about
each call on the device. Information for each call includes
the connectionID and a sequence of local connection states
for each connection in the call.

attsnapshotDevice [mandatory] Contains a sequence of information about
each call on the device. Information for each call includes
the connectionID and the G3 call state for each call at the
snapshot device.

universalFailure If the request is not successful, the application will receive a
CSTAUniversalFailureConfEvent. The error parameter in
this event may contain the following error value, or one of
the error values described in the
‘‘CSTAUniversalFailureConfEvent’’ section in Chapter 3:

■ INVALID_CSTA_DEVICE_IDENTIFIER (12) An invalid
device identifier has been specified in device or
forwardingDN.
Issue 1 — December 2001

7-7DEFPROG.PDF R10.1 V1

Snapshot Service Group
■ The bridged state is a G3 PBX private local connection state that is not
defined in the CSTA. This state indicates that a call is present at a bridged,
simulated bridged, button TEG, or PCOL appearance, and the call is
neither ringing nor connected at the station. The bridged connection state
is reported in the private data of a Snapshot Device Confirmation Event
and it has a CSTA null (CS_NULL) state. Thus a device with the null state
in the Snapshot Device Confirmation Event is bridged.

■ A device with the bridged state can join the call by manually answering the
call (press the line appearance) or through the cstaAnswerCall service.
Once a bridged device is connected to a call, its state becomes connected.
After a bridged device becomes connected, it can drop from the call and
become bridged again, if the call is not cleared.

Table 7-1. Mapping of G3 and CSTA Local Call States

G3 Local Call State CSTA Local Call State

Initiate Initiated

Alerting Alerting

Connected Connected

Held Hold

Bridged Null

Other None (CS_NONE)
Issue 1 — December 2001

DEFPROG.PDF R10.1 V17-8

Snapshot Device Service
Syntax

#include <acs.h>
#include <csta.h>

// cstaSnapshotDeviceReq() - Service Request

RetCode_t cstaSnapshotDeviceReq
ACSHandle_t acsHandle,
InvokeID_t invokeID,
DeviceID_t *snapshotObj;

// CSTASnapshotDeviceReqConfEvent - Service Response

typedef struct
{

ACSHandle_t acsHandle;
EventClass_t eventClass; // CSTACONFIRMATION
EventType_t eventType; // CSTA_SNAPSHOT_DEVICE_CONF

} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{

struct
{

InvokeID_t invokeID;
union
{

CSTASnapshotDeviceConfEvent_t snapshotDevice;

}u;

} cstaConfirmation;
} event;
char heap[CSTA_MAX_HEAP];

} CSTAEvent_t;

typedef struct CSTASnapshotDeviceConfEvent_t {
CSTASnapshotDeviceData_t snapshotData;

} CSTASnapshotDeviceConfEvent_t;

typedef struct CSTASnapshotDeviceData_t {
int count; // count of calls on device
struct CSTASnapshotDeviceResponseInfo_t *info;

// info for each call

} CSTASnapshotDeviceData_t;
Issue 1 — December 2001

7-9DEFPROG.PDF R10.1 V1

Snapshot Service Group
Syntax (Continued)

typedef struct CSTASnapshotDeviceResponseInfo_t {
ConnectionID_t callIdentifier;

// local connection ID
CSTACallState_t callstate;

// list of connection states
} CSTASnapshotDeviceResponseInfo_t;

typedef struct CSTACallState_t {
int count; // count of connections on call
LocalConnectionState_t *state;

// list of connection states
} CSTACallState_t;

typedef enum LocalConnectionState_t {
CS_NONE = -1, // not an expected snapshot device

// response
CS_NULL = 0, // indicates a bridged state
CS_INITIATE = 1,
CS_ALERTING = 2,
CS_CONNECT = 3,
CS_HOLD = 4,
CS_QUEUED = 5,
CS_FAIL = 6,
} LocalConnectionState_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 V17-10

Snapshot Device Service
Private Data Version 5 Syntax

#include <acs.h>
#include <csta.h>
#include <attpriv.h>

// ATTSnapshotDeviceConfEvent - Service Response Private
Data

typedef struct ATTEvent_t
{

ATTEventType_t eventType; // ATT_SNAPSHOT_DEVICE_CONF
union
{

ATTSnapshotDeviceConfEvent_t snapshotDevice;
} u;

} ATTEvent_t;

typedef struct ATTSnapshotDeviceConfEvent_t
{

int count;
ATTSnapshotDevice_t *pSnapshotDevice;

} ATTSnapshotDeviceConfEvent_t;

typedef struct ATTSnapshotDevice_t
{

ConnectionID_t call;
ATTLocalCallState_t state;

} ATTSnapshotDevice_t;

typedef enum ATTLocalCallState_t
{

ATT_CS_INITIATED = 1,
ATT_CS_ALERTING = 2,
ATT_CS_CONNECTED = 3,
ATT_CS_HELD = 4,
ATT_CS_BRIDGED = 5,
ATT_CS_OTHER = 6

} ATTLocalCallState_t;
Issue 1 — December 2001

7-11DEFPROG.PDF R10.1 V1

Snapshot Service Group
Private Data Versions 2-4 Syntax

#include <acs.h>
#include <csta.h>
#include <attpriv.h>

// ATTV4SnapshotDeviceConfEvent - Service Response Private
Data

typedef struct ATTEvent_t
{

ATTEventType_t eventType; // ATTV4_SNAPSHOT_DEVICE_CONF
union
{

ATTV4SnapshotDeviceConfEvent_t v4snapshotDevice;
} u;

} ATTEvent_t;

typedef struct ATTV4SnapshotDeviceConfEvent_t
{

int count;
ATTSnapshotDevice_t *pSnapshotDevice;

} ATTV4SnapshotDeviceConfEvent_t;

typedef struct ATTSnapshotDevice_t
{

ConnectionID_t call;
ATTLocalCallState_t state;

} ATTSnapshotDevice_t;

typedef enum ATTLocalCallState_t
{

ATT_CS_INITIATED = 1,
ATT_CS_ALERTING = 2,
ATT_CS_CONNECTED = 3,
ATT_CS_HELD = 4,
ATT_CS_BRIDGED = 5,
ATT_CS_OTHER = 6

} ATTLocalCallState_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 V17-12

Issue 1 — December 2001

DEFPROG.PDF R10.1 V1
8

Monitor Service Group
Overview

There are three types of monitor services for the G3 PBX in Telephony Services.
They all have the same confirmation event. The Change Monitor Filter Service is
used by an application to change the filter options. The Monitor Stop Service is
used to cancel a monitor service of any type. The Monitor Ended Event from the
switch applies to any type of monitor services.

Change Monitor Filter Service —
cstaChangeMonitorFilter()

This service is used by a client application to change the filter options in a
previously requested monitor association.

Monitor Call Service — cstaMonitorCall()

This service provides call event reports passed by the call filter for a single call to
an application, but does not provide any agent, feature, or maintenance event
reports.
8-1

Monitor Service Group
Monitor Calls Via Device Service —
cstaMonitorCallsViaDevice

This service1 provides call event reports passed by the call filter for all devices on
all calls that involve a VDN or an ACD Split device. Event reports are provided for
calls that arrive at the device after the monitor request is acknowledged. Events
that occurred prior to the monitor request are not reported. If a call is diverted,
forwarded, conferenced, or transferred to non-monitored ACD or VDN device,
subsequent events of that call are reported. Special rules apply to the event
reports when the call is diverted, forwarded, conferenced, or transferred. Details
are provided in later sections.

This service does not provide any agent, feature, or maintenance event reports.

Monitor Device Service — cstaMonitorDevice()

This service2 provides call event reports passed by the call filter for all devices on
all calls at a station device. Event reports are provided for calls that occurred prior
to the monitor request and arrive at the device after the monitor request is
acknowledged. If a call is dropped, no further events of the call are reported,
forwarded, or transferred from the device, and the device has ceased to
participate in the call.

The service also provides feature event reports passed by the filter for a
monitored station device as well as agent event reports passed by the filter for a
monitored ACD Split device.

The service does not provide maintenance event reports.

Monitor Ended Event —
CSTAMonitorEndedEvent

The switch uses this event report to notify a client application that a previously
requested Monitor Service has been canceled.

Monitor Stop On Call Service (Private) —
attMonitorStopOnCall()

An application uses this service to stop call event reports of a specific call on a
monitored device.

1. The Monitor Calls Via Device Service is the call-type Monitor Start Service on a static
device identifier in ECMA-179.

2. The Monitor Device Service is the device-type Monitor Start Service on a static device
identifier in ECMA-179.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V18-2

Overview
Monitor Stop Service — cstaMonitorStop()

An application uses this service to cancel a previously requested Monitor Service.

Event Filters and Monitor Services

Table 8-1 shows the relation of event filters and monitor services. An “On” means
that this filter is always turned on in the service request confirmation event or the
change filter service request confirmation event. This monitor request will never
receive this event.

An “On/Off” means that this filter can be turned on or off in the service request or
in the change filter service request and the active filters will be specified in the
confirmation event. If a filter is set to on, this monitor request will not receive that
event.

If the Private Filter is set to On, all ATT private event filters (Entered Digits) will be
automatically set to On, meaning that there will be no ATT private events for the
monitor request.

Table 8-1. Event Filters and Monitor Services

Event Filters
Monitor
Call

Monitor
Device
(Station)

Monitor
Device
(ACD
Split)

Monitor
Device
(Trunk
or All
Trunks)

Monitor
Calls
Via Device
(VDN or ACD
Split)

Call Event Filters

Advice of Charge
(private data 5)

On/Off On/Off On/Off On/Off On/Off

Call Cleared On/Off On On On On/Off

Conferenced On/Off On/Off On On On/Off

Connection
Cleared

On/Off On/Off On On On/Off

Delivered On/Off On/Off On On On/Off

Diverted On On/Off On On On/Off

Entered Digits
(private)

On/Off On On On On/Off

Established On/Off On/Off On On On/Off

Failed On/Off On/Off On On On/Off

Held On/Off On/Off On On On/Off
Issue 1 — December 2001

8-3DEFPROG.PDF R10.1 V1

Monitor Service Group
Network Reached On/Off On/Off On On On/Off

Originated On On/Off1 On/Off1 On On

Queued On/Off On/Off On On On/Off

Retrieved On/Off On/Off On On On/Off

Service Initiated On On/Off On On On

Transferred On/Off On/Off On On On/Off

Agent Event Filters

Logged On On On/Off1 On/Off1 On On

Logged Off On On/Off On/Off On On

Not Ready On On On On On

Ready On On On On On

Work Not Ready On On On On On

Work Ready On On On On On

Feature Event Filters

Call Information On On On On On

Do Not Disturb On On On On On

Forwarding On On On On On

Message Waiting On On On On On

Maintenance Event Filters

Back in Service On On On On On

Out of Service On On On On On

Private Filter On/Off On/Off On/Off On/Off On/Off

1. For PBX Version G3V3 and earlier, Originated and Agent Logged On are always filtered
(On).

Table 8-1. Event Filters and Monitor Services

Event Filters
Monitor
Call

Monitor
Device
(Station)

Monitor
Device
(ACD
Split)

Monitor
Device
(Trunk
or All
Trunks)

Monitor
Calls
Via Device
(VDN or ACD
Split)
Issue 1 — December 2001

DEFPROG.PDF R10.1 V18-4

Overview
Local Connection Info and Monitor Services

Table 8-2 shows the availability of the localConnectionInfo parameter for the
monitor services. These definitions follow the CSTA specification.

Table 8-2. Local Connection Information and Monitor Services

Parameter
Monitor
Call

Monitor
Device
(Station)

Monitor
Device
(ACD
Split)

Monitor
Device
(Trunk
or All
Trunks)

Monitor
Calls
Via Device
(VDN or ACD
Split)

localConnectionInfo not
supported

supported not
supported

not
supported

not
supported
Issue 1 — December 2001

8-5DEFPROG.PDF R10.1 V1

Monitor Service Group
Change Monitor Filter Service

Direction: Client to Switch
Function: cstaChangeMonitorFilter()
Confirmation Event: CSTAChangeMonitorFilterConfEvent
Private Data Function: attMonitorFilterExt() (private data version 5),
attMonitorFilter() (private data versions 2-4)
Private Data Confirmation Event: ATTMonitorConfEvent (private data
version 5), ATTV4MontorConfEvent (private data versions 2-4)
Service Parameters: monitorCrossRefID, filterList
Private Parameters: privateFilter
Ack Parameters: filterList
Ack Private Parameters: usedFilter
Nak Parameter: universalFailure

Functional Description:

The Change Monitor Filter Service is used by a client application to change the
filter options in a previously requested monitor association.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V18-6

Change Monitor Filter Service
Service Parameters:

Private Parameters:

Ack Parameters:

monitorCrossRefID [mandatory] Must be a valid Cross Reference ID that was
returned in a previous CSTAMonitorConfEvent of this
acsOpenStream session.

filterList [mandatory — partially supported] Specifies the filters to be
changed. Call Filter, Agent Filter, and Private Filter are
supported.

Setting a filter of an event (for example, CF_CALL_
CLEARED=0x8000 is turned on) in the monitorFilter means
that the event will be filtered out and no such event reports
will be sent to the application.

A zero Private Filter means that the application wants to
receive the private events. If Private Filter is non-zero,
private events will be filtered out. The Feature Filter and
Maintenance Filter are not supported. If either is present, it
will be ignored.

privateFilter [optional] Specifies the G3 PBX private filters to be
changed. The following G3 Private Call Filter and Call
Event Reports are supported:

■ Private data version 5:

— ATT_ENTERED_DIGITS_FILTER

— ATT_CHARGE_ADVICE_FILTER

■ Private data versions 2-4:

— ATT_V4_ENTERED_DIGITS_FILTER

See Table 8-1 to determine which filters are under the
control of the application, that is, can be turned on and off.

filterList [optional — partially supported] Specifies the event reports
that are to be filtered out on the object being monitored by
the application. This may not be the filterList specified in the
service request, because filters for events that are not
supported by the G3 PBX and filters for events that do not
apply to the monitored object are always turned on in
filterList. All event reports in Maintenance Filter are set to
ON, meaning that there are no reports supported for these
events.
Issue 1 — December 2001

8-7DEFPROG.PDF R10.1 V1

Monitor Service Group
Ack Private Parameters:

Nak Parameter:

Detailed Information:

See the ‘‘Event Report Detailed Information’’ section in Chapter 9, Event Report
Service Group.

usedFilter [optional] Specifies the G3 Private Event Reports thatare to
be filtered out on the object being monitored by the
application.

universalFailure If the request is not successful, the application will receive a
CSTAUniversalFailureConfEvent. The error parameter in
this event may contain the following error values, or one of
the error values described in the
‘‘CSTAUniversalFailureConfEvent’’ section in Chapter 3:

■ INVALID_CROSS_REF_ID (17) The service request
specified a Cross Reference ID that is not in use at this
time.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V18-8

Change Monitor Filter Service
Syntax

#include <acs.h>
#include <csta.h>

// cstaChangeMonitorFilter() - Service Request

RetCode_t cstaChangeMonitorFilter (
ACSHandle_t acsHandle,
InvokeID_t invokeID,
CSTAMonitorCrossRefID_t monitorCrossRefID,
CSTAMonitorFilter_t *filterList,
PrivateData_t *privateData);

// CSTAChangeMonitorFilterConfEvent - Service Response

typedef struct
{ ACSHandle_t acsHandle;

EventClass_t eventClass;
// CSTACONFIRMATION

EventType_t eventType;
// CSTA_CHANGE_MONITOR_FILTER_CONF

} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{

struct
{

InvokeID_t invokeID;
union
{

CSTAChangeMonitorFilterConfEvent_t
changeMonitorFilter;

} u;
} cstaConfirmation;

} event;

} CSTAEvent_t;

typedef struct CSTAChangeMonitorFilterConfEvent_t
{

CSTAMonitorFilter_t monitorFilter;
} CSTAChangeMonitorFilterConfEvent_t;
Issue 1 — December 2001

8-9DEFPROG.PDF R10.1 V1

Monitor Service Group
Syntax (Continued)

typedef unsigned short CSTACallFilter_t;
#define CF_CALL_CLEARED 0x8000
#define CF_CONFERENCED 0x4000
#define CF_CONNECTION_CLEARED 0x2000
#define CF_DELIVERED 0x1000
#define CF_DIVERTED 0x0800
#define CF_ESTABLISHED 0x0400
#define CF_FAILED 0x0200
#define CF_HELD 0x0100
#define CF_NETWORK_REACHED 0x0080
#define CF_ORIGINATED 0x0040
#define CF_QUEUED 0x0020
#define CF_RETRIEVED 0x0010
#define CF_SERVICE_INITIATED0x0008
#define CF_TRANSFERRED 0x0004

typedef unsigned char CSTAFeatureFilter_t;
#define FF_CALL_INFORMATION 0x80
#define FF_DO_NOT_DISTURB 0x40
#define FF_FORWARDING 0x20
#define FF_MESSAGE_WAITING 0x10

typedef unsigned char CSTAAgentFilter_t;

#define AF_LOGGED_ON 0x80
#define AF_LOGGED_OFF 0x40
#define AF_NOT_READY 0x20
#define AF_READY 0x10
#define AF_WORK_NOT_READY 0x08

// not supported
#define AF_WORK_READY 0x04

typedef unsigned char CSTAMaintenanceFilter_t
// not supported

#define MF_BACK_IN_SERVICE 0x80
#define MF_OUT_OF_SERVICE 0x40

typedef struct CSTAMonitorFilter_t {
CSTACallFilter_t call;
CSTAFeatureFilter_t feature;
CSTAAgentFilter_t agent;
CSTAMaintenanceFilter_t maintenance; // not supported
long privateFilter;

// 0 = private events
// non-zero = no private events

} CSTAMonitorFilter_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 V18-10

Change Monitor Filter Service
Private Data Version 5 Syntax

#include <acs.h>
#include <csta.h>
#include <attpriv.h>

// attMonitorFilterExt() - Service Request Private Data
// Setup Function

RetCode_t attMonitorFilterExt(
ATTPrivateData_t *privateData,
ATTPrivateFilter_t privateFilter);

typedef struct ATTPrivateData_t
{

char vendor[32];
ushort length;
char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

typedef unsigned char ATTPrivateFilter_t;
#define ATT_ENTERED_DIGITS_FILTER 0x80
#define ATT_CHARGE_ADVICE_FILTER 0x40

// ATTMonitorConfEvent - Service Response Private Data

typedef struct ATTEvent_t
{

ATTEventType_t eventType; // ATT_MONITOR_CONF
union
{

ATTMonitorConfEvent_t monitorStart;
} u;

} ATTEvent_t;

typedef struct ATTMonitorConfEvent_t
{

ATTPrivateFilter_t usedFilter;
} ATTMonitorConfEvent_t;
Issue 1 — December 2001

8-11DEFPROG.PDF R10.1 V1

Monitor Service Group
Private Data Versions 2-4 Syntax

#include <acs.h>
#include <csta.h>
#include <attpriv.h>

// attMonitorFilter() - Service Request Private Data
// Setup Function

RetCode_t attMonitorFilterExt(
ATTPrivateData_t *privateData,
ATTV4PrivateFilter_t privateFilter);

typedef struct ATTPrivateData_t
{

char vendor[32];
ushort length;
char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

typedef unsigned char ATTV4PrivateFilter_t;
#define ATTV4_ENTERED_DIGITS_FILTER 0x80

// ATTV4MonitorConfEvent - Service Response Private Data

typedef struct ATTEvent_t
{

ATTEventType_t eventType; // ATTV4_MONITOR_CONF
union
{

ATTV4MonitorConfEvent_t v4monitorStart;
} u;

} ATTEvent_t;

typedef struct ATTV4MonitorConfEvent_t
{

ATTV4PrivateFilter_tusedFilter;
} ATTV4MonitorConfEvent_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 V18-12

Monitor Call Service
Monitor Call Service

Direction: Client to Switch
Function: cstaMonitorCall()
Confirmation Event: CSTAMonitorConfEvent
Private Data Function: attMonitorFilterExt() (private data version 5),
attMonitorFilter() (private data versions 2-4)
Private Data Confirmation Event: ATTMonitorCallConfEvent (private data
version 5), ATTV4MonitorCallConfEvent (private data versions 2-4)
Service Parameters: call, monitorFilter
Private Parameters: privateFilter
Ack Parameters: monitorCrossRefID, monitorFilter
Ack Private Parameters: usedFilter, snapshotCall
Nak Parameter: universalFailure

Functional Description:

This service provides call event reports passed by the call filter for a call (call)
already in progress. Event reports are provided after the monitor request is
acknowledged. Events that occurred prior to the monitor request are not reported.
A call that is being monitored may have a new call identifier assigned to it after a
conference or transfer. In this case, event reports continue for that call with the
new call identifier.

The event reports are provided for all endpoints directly connected to the G3 PBX
and, in some cases, for endpoints not directly connected to the G3 PBX that are
involved in a monitored call.

A snapshot of the call is provided in the CSTAMonitorConfEvent. The information
provided is equivalent to the information provided in a
CSTASnapshotCallConfEvent of the monitored call.

Only Call Filter/Call Event Reports and Private Filter are supported. Agent Event
Reports, Feature Event Reports and Maintenance Event Reports are not
provided.
Issue 1 — December 2001

8-13DEFPROG.PDF R10.1 V1

Monitor Service Group
Service Parameters:

Private Parameters:

call [mandatory] ConnectionID of the call to be monitored.

monitorFilter [optional — partially supported] Specifies the filters to be
used with call. Only Call Filter/Call Event Reports and
Private Filter are supported. If a Call Filter is not present, it
defaults to no filter, meaning that all G3 PBX CSTA call
events will be reported.

Setting a filter of an event (for example, CF_CALL_
CLEARED=0x8000 is turned on) in the monitorFilter means
that the event will be filtered out and no such event reports
will be sent to the application.

A zero Private Filter means that the application wants to
receive the private call events. If Private Filter is non-zero,
private call events will be filtered out. The Agent Filter,
Feature Filter, and Maintenance Filter are not supported. If
one of these is present, it will be ignored.

privateFilter [optional] Specifies the G3 PBX private filters to be
changed. The following G3 Private Call Filter and Call
Event Reports are supported:

■ Private data version 5:

— ATT_ENTERED_DIGITS_FILTER

— ATT_CHARGE_ADVICE_FILTER

■ Private data versions 2-4:

— ATT_V4_ENTERED_DIGITS_FILTER

See Table 8-1 to determine which filters are under the
control of the application, that is, can be turned on and off.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V18-14

Monitor Call Service
Ack Parameters:

Ack Private Parameters:

monitorCrossRefID [mandatory] Contains the handle chosen by the G3 PBX
Driver. This handle is a unique value within an
acsOpenStream session for the duration of the monitor and
is used by the application to correlate subsequent event
reports to the monitor request that initiated them. It also
allows the correlation of the Monitor Stop to the original
cstaMonitorCall request.

monitorFilter [optional — partially supported] Specifies the event reports
that are to be filtered out on the object being monitored by
the application. This may not be the monitorFilter specified
in the service request, because filters for events that are not
supported by the G3 PBX and filters for events that do not
apply to the monitored object are always turned on in
monitorFilter. Only Call Filter and Call Event Reports are
supported.

All event reports in Agent Filter, Feature Filter, Maintenance
Filter, and Private Filter are set to ON, meaning that there
are no reports supported for these events.

usedFilter [optional] Specifies the G3 Private Filter and Event Reports
that are to be filtered out on the object being monitored by
the application.

snapshotCall [optional] Provides information about the device identifier,
connection, and the CSTA Connection state for up to six (6)
endpoints on the call. The Connection state may be one of
the following: Unknown, Null, Initiated, Alerting, Queued,
Connected, Held, or Failed. The information provided is
equivalent to the information provided in a
CSTASnapshotCallConfEvent of the monitored call.
Issue 1 — December 2001

8-15DEFPROG.PDF R10.1 V1

Monitor Service Group
Nak Parameters:

Detailed Information:

See also the section titled ‘‘Event Report Detailed Information’’ in Chapter 9,
Event Report Service Group.

■ Monitor Ended Event Report — When the monitored call is ended before a
cstaMonitorStop is received to stop the cstaMonitorCall association, a
CSTAMonitorEndedEvent will be sent to the application to terminate the
cstaMonitorCall association.

■ Monitor Stop On Call Service — When the cstaMonitorCall association is
stopped by an attMonitorStopOnCall request before a cstaMonitorStop
request is received, a CSTAMonitorEndedEvent will be sent to the
application to terminate the cstaMonitorCall association.

■ Maximum Requests from Multiple G3PDs — See the section titled “G3
CSTA System Capacity” in Chapter 3, G3 CSTA Services Overview.

universalFailure If the request is not successful, the application will receive a
CSTAUniversalFailureConfEvent. The error parameter in
this event may contain the following error values, or one of
the error values described in the
‘‘CSTAUniversalFailureConfEvent’’ section in Chapter 3:

■ INVALID_CONNECTION_ID_FOR_ACTIVE_CALL (23)
(CS0/100) The call identifier is outside the range of the
maximum call identifier value.

■ NO_ACTIVE_CALL (24) (CS3/86) The application has
sent an invalid call identifier. Call does not exist or has
been cleared.

■ RESOURCE_BUSY (33) G3PD is busy processing a
cstaMonitorCall service request on the same call. Try
again.

■ GENERIC_SUBSCRIBED_RESOURCE_AVAILABILITY
(41) (CS0/50) The user has not subscribed for the
requested service.

■ OBJECT_MONITOR_LIMIT_EXCEEDED (42) (CS3/40)
The maximum number of calls being monitored on the
G3 PBX was exceeded.

■ OUTSTANDING_REQUEST_LIMIT_EXCEEDED (44)
(CS3/63) The same call may be monitored by another
G3PD. The request cannot be executed because the
system limit is exceeded for the maximum number of
monitors on a call by G3PDs.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V18-16

Monitor Call Service
■ Multiple Application Requests — Multiple applications can have multiple
cstaMonitorCall requests on one object through one G3PD. An application
can have more than one cstaMonitorCall request on one object through
one G3PD. However, this is not recommended.

■ Advice of Charge Event Report (private data v5) — The
ATTChargeAdviceEvent is provided, by an outside service, to streams
which have enabled Advice of Charge using attSetAdviceOfCharge() and
cstaEscapeService(). Typically, an ATTChargeAdviceEvent will arrive from
the provider as a call ends, providing the final charge amount. Generally,
the final CSTAMonitorEndedEvent (sent for call monitors at the end of a
call) is delayed until that final ATTChargeAdviceEvent arrives. When there
is a long delay in the arrival of the final ATTChargeAdviceEvent, the
CSTAMonitorEndedEvent will be sent to the application and a final
ATTChargeAdviceEvent will not be provided.
Issue 1 — December 2001

8-17DEFPROG.PDF R10.1 V1

Monitor Service Group
Syntax

#include <acs.h>
#include <csta.h>

// cstaMonitorCall() - Service Request

RetCode_t cstaMonitorCall (
ACSHandle_t acsHandle,
InvokeID_t invokeID,
ConnectionID_t *call,
CSTAMonitorFilter_t *monitorFilter, // supports

// call filter only
PrivateData_t *privateData);

// CSTAMonitorConfEvent - Service Response

typedef struct
{

ACSHandle_t acsHandle;
EventClass_t eventClass;

// CSTACONFIRMATION
EventType_t eventType;

// CSTA_MONITOR_CONF
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{

struct
{

InvokeID_t invokeID;
union
{

CSTAMonitorConfEvent_t monitorStart;
} u;

} cstaConfirmation;
} event;

} CSTAEvent_t;

typedef struct CSTAMonitorConfEvent_t
{

CSTAMonitorCrossRefID_t monitorCrossRefID;
CSTAMonitorFilter_t monitorFilter;

} CSTAMonitorConfEvent_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 V18-18

Monitor Call Service
Syntax (Continued)

typedef long CSTAMonitorCrossRefID_t;

typedef unsigned short CSTACallFilter_t;
#define CF_CALL_CLEARED 0x8000
#define CF_CONFERENCED 0x4000
#define CF_CONNECTION_CLEARED 0x2000
#define CF_DELIVERED 0x1000
#define CF_DIVERTED 0x0800
#define CF_ESTABLISHED 0x0400
#define CF_FAILED 0x0200
#define CF_HELD 0x0100
#define CF_NETWORK_REACHED 0x0080
#define CF_ORIGINATED 0x0040
#define CF_QUEUED 0x0020
#define CF_RETRIEVED 0x0010
#define CF_SERVICE_INITIATED 0x0008
#define CF_TRANSFERRED 0x0004

typedef unsigned char CSTAFeatureFilter_t;
// not supported

#define FF_CALL_INFORMATION 0x80
#define FF_DO_NOT_DISTURB 0x40
#define FF_FORWARDING 0x20
#define FF_MESSAGE_WAITING 0x10

typedef unsigned char CSTAAgentFilter_t;
#define AF_LOGGED_ON 0x80
#define AF_LOGGED_OFF 0x40
#define AF_NOT_READY 0x20
#define AF_READY 0x10
#define AF_WORK_NOT_READY 0x08
#define AF_WORK_READY 0x04

typedef unsigned char CSTAMaintenanceFilter_t;
// not supported

#define MF_BACK_IN_SERVICE 0x80
#define MF_OUT_OF_SERVICE 0x40

typedef struct CSTAMonitorFilter_t {
CSTACallFilter_t call;

CSTAFeatureFilter_t feature; // not supported
CSTAMaintenanceFilter_t maintenance; // not supported

long privateFilter;
// 0 = report private events
// non-zero = no private events

} CSTAAgentFilter_t agent;
CSTAMonitorFilter_t;
Issue 1 — December 2001

8-19DEFPROG.PDF R10.1 V1

Monitor Service Group
Private Data Version 5 Syntax

#include <acs.h>
#include <csta.h>
#include <attpriv.h>

// attMonitorFilterExt() - Service Request Private Data
// Setup Function

RetCode_t attMonitorFilterExt(
ATTPrivateData_t *privateData,
ATTPrivateFilter_t privateFilter);

typedef struct ATTPrivateData_t
{

char vendor[32];
ushort length;
char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

typedef unsigned char ATTPrivateFilter_t;
#define ATT_ENTERED_DIGITS_FILTER 0x80
#define ATT_CHARGE_ADVICE_FILTER 0x40

// ATTMonitorCallConfEvent - Service Response Private Data

typedef struct ATTEvent_t
{

ATTEventType_t eventType; // ATT_MONITOR_CALL_CONF
union
{

ATTMonitorCallConfEvent_t monitorCallStart;
} u;

} ATTEvent_t;

typedef struct ATTMonitorCallConfEvent_t
{

ATTPrivateFilter_t usedFilter;
ATTSnapshotCall_t snapshotCall;

} ATTMonitorCallConfEvent_t;

typedef struct ATTSnapshotCall_t
{

int count;
CSTASnapshotCallResponseInfo_t *pInfo;
} ATTSnapshotCall_t;

typedef struct CSTASnapshotCallResponseInfo_t
{

SubjectDeviceID_t deviceOnCall;
ConnectionID_t callIdentifier;
LocalConnectionState_t localConnectionState;

} CSTASnapshotCallResponseInfoEvent_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 V18-20

Monitor Call Service
Private Data Versions 2-4 Syntax

#include <acs.h>
#include <csta.h>
#include <attpriv.h>

// attMonitorFilter() - Service Request Private Data
// Setup Function

RetCode_t attMonitorFilter(
ATTPrivateData_t *privateData,
ATTV4PrivateFilter_t privateFilter);

typedef struct ATTPrivateData_t
{

char vendor[32];
ushort length;
char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

typedef unsigned char ATTV4PrivateFilter_t;
#define ATT_V4_ENTERED_DIGITS_FILTER 0x80

// ATTV4MonitorCallConfEvent - Service Response Private Data

typedef struct ATTEvent_t
{

ATTEventType_t eventType; // ATTV4_MONITOR_CALL_CONF

union
{

ATTV4MonitorCallConfEvent_t v4monitorCallStart;
} u;

} ATTEvent_t;

typedef struct ATTV4MonitorCallConfEvent_t
{

ATTV4PrivateFilter_t usedFilter;
ATTV4SnapshotCall_t snapshotCall;

} ATTV4MonitorCallConfEvent_t;

typedef struct ATTV4SnapshotCall_t
{

short count;
CSTASnapshotCallResponseInfo_t info[ATT_MAX_PARTIES_ON_CALL];

} ATTV4SnapshotCall_t;

typedef struct CSTASnapshotCallResponseInfo_t
{

SubjectDeviceID_t deviceOnCall;
ConnectionID_t callIdentifier;
LocalConnectionState_t localConnectionState;

} CSTASnapshotCallResponseInfoEvent_t;
Issue 1 — December 2001

8-21DEFPROG.PDF R10.1 V1

Monitor Service Group
Monitor Calls Via Device Service

Direction: Client to Switch
Function: cstaMonitorCallsViaDevice()
Confirmation Event: CSTAMonitorConfEvent
Private Data Function: attMonitorFilterExt() (private data version 5),
attMonitorFilter() (private data versions 2-4)
Private Data Confirmation Event: ATTMonitorConfEvent (private data
version 5), ATTV4MonitorConfEvent (private data versions 2-4)
Service Parameters: deviceID, monitorFilter
Private Parameters: privateFilter
Ack Parameters: monitorCrossRefID, monitorFilter
Ack Private Parameters: usedFilter
Nak Parameter: universalFailure

Functional Description:

This service provides call event reports passed by the call filter for all devices on
all calls that involve the device (deviceID). Event reports are provided for calls
that arrive at the device after the monitor request is acknowledged. Events for
calls that occurred prior to the monitor request are not reported. There are feature
interactions between two cstaMonitorCallsViaDevice requests on different
monitored ACD or VDN devices.3 If a call is diverted, forwarded, conferenced, or
transferred to ACD or VDN device that is not monitored by another
cstaMonitorCallsViaDevice request, subsequent call events are reported. If a call
is diverted, forwarded, conferenced, or transferred to another device that is
monitored by another cstaMonitorCallsViaDevice request, special rules apply to
the call event reports. These rules are described in the ‘‘Detailed Information:’’
section.

The event reports are provided for all endpoints directly connected to the G3 PBX
and may be present for certain types of endpoints not directly connected to the G3
PBX that are involved in the monitored device.

This service supports only VDN and ACD Split devices, but not station devices.
Use cstaMonitorDevice service to monitor stations.

Only Call Filter/Call Event Reports and Private Filter are supported. Agent Event
Reports, Feature Event Reports, and Maintenance Event Reports are not
supported.

3. There are no feature interactions between a cstaMonitorCallsViaDevice request and a
cstaMonitorDevice request. There are no feature interactions between a
cstaMonitorDevice request and another cstaMonitorDevice request.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V18-22

Monitor Calls Via Device Service
Service Parameters:

Private Parameters:

deviceID [mandatory] A valid on-PBX VDN or ACD Split extension to
be monitored. A station extension is invalid..

monitorFilter [optional — partially supported] Specifies the filters to be
used with deviceID. Only Call Filter/Call Event Reports and
Private Filter are supported. If a Call Filter is not present, it
defaults to no filter, meaning that all G3 PBX CSTA call
events will be reported.

Setting a filter of an event (for example, CF_CALL_
CLEARED=0x8000 is turned on) in the monitorFilter means
that the event will be filtered out and no such event reports
will be sent to the application.

A zero Private Filter means that the application wants to
receive the private call events. If Private Filter is non-zero,
private call events will be filtered out.

The Agent Filter, Feature Filter, and Maintenance Filter are
not supported. If one of these is present, it will be ignored.

privateFilter [optional] Specifies the G3 PBX private filters to be
changed. The following G3 Private Call Filter and Call
Event Reports are supported:

■ Private data version 5:

— ATT_ENTERED_DIGITS_FILTER

— ATT_CHARGE_ADVICE_FILTER

■ Private data versions 2-4:

— ATT_V4_ENTERED_DIGITS_FILTER

See Table 8-1 to determine which filters are under the
control of the application, that is, can be turned on and off.
Issue 1 — December 2001

8-23DEFPROG.PDF R10.1 V1

Monitor Service Group
Ack Parameters:

Ack Private Parameter:

monitorCrossRefID [mandatory] Contains the handle chosen by the G3 PBX
Driver. This handle is a unique value within an
acsOpenStream session for the duration of the monitor and
is used by the application to correlate subsequent event
reports to the monitor request that initiated them. It also
allows the correlation of the Monitor Stop to the original
cstaMonitorCallsViaDevice request.

monitorFilter [optional — partially supported] Specifies the event reports
that are to be filtered out for the object being monitored by
the application. This may not be the monitorFilter specified
in the service request because filters for events that are not
supported by the G3 PBX and filters for events that do not
apply to the monitored device are always turned on in
monitorFilter. Only Call Filter and Call Event Reports are
supported.

All event reports in Agent Filter, Feature Filter, Maintenance
Filter are set to “ON“, meaning that there are no reports
supported for these events.

usedFilter [optional] Specifies the G3 private event reports that are to
be filtered out on the object being monitored by the
application.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V18-24

Monitor Calls Via Device Service
Nak Parameters:

Detailed Information:

See also the section titled ‘‘Event Report Detailed Information’’ in Chapter 9,
Event Report Service Group.

■ ACD split — An ACD split can be monitored by this service only for Call
Event Reports.

■ Adjunct-Controlled Splits — A cstaMonitorCallsViaDevice request will be
denied (REQUEST_INCOMPATIBLE_WITH_OBJECT) if the monitored
object is an adjunct- controlled split.

■ Maximum Number of Objects that can be Monitored — See “G3 CSTA
System Capacity“ section in Chapter 3. G3 CSTA Services Overview.

■ Multiple Requests — Multiple applications can have multiple
cstaMonitorCallsViaDevice requests on one object. An application can
have more than one cstaMonitorCallsViaDevice request on one object;
however, the latter is not recommended.

■ Personal Central Office Line (PCOL) — Members of a PCOL may be
monitored. PCOL behaves like bridging for the purpose of event reporting.

universalFailure If the request is not successful, the application will receive a
CSTAUniversalFailureConfEvent. The error parameter in
this event may contain the following error values, or one of
the error values described in the
‘‘CSTAUniversalFailureConfEvent’’ section in Chapter 3:

■ REQUEST_INCOMPATIBLE_WITH_OBJECT (2)
Monitored object is not administered correctly in the
switch. The monitored object is an adjunct-controlled
split or a vector-controlled split.

■ INVALID_CSTA_DEVICE_IDENTIFIER (12) An invalid
device identifier or extension is specified in deviceID.

■ RESOURCE_BUSY (33) G3PD is busy processing a
cstaMonitorCallsViaDevice service request on the same
device. Try again.

■ GENERIC_SUBSCRIBED_RESOURCE_AVAILABILITY
(41) The user has not subscribed to the requested
service.

■ OBJECT_MONITOR_LIMIT_EXCEEDED (42) The
request cannot be executed because the system limit
would be exceeded for the maximum number of
monitors.
Issue 1 — December 2001

8-25DEFPROG.PDF R10.1 V1

Monitor Service Group
■ Skill Hunt Groups — A skill hunt group (split) cannot be monitored directly
by an application. The VDN providing access to the vector(s) controlling
the hunt group can be monitored instead, if event reports for calls delivered
to the hunt group are desired.

■ Special Rules — The following rules apply when a monitored call is
diverted, forwarded, conferenced, or transferred.

1. If a call monitored by a cstaMonitorCallsViaDevice request is
diverted to a device that is not monitored by a
cstaMonitorCallsViaDevice request, then there is no Diverted Event
Report generated. Subsequent event reports of the call continue.

2. If a call monitored by a cstaMonitorCallsViaDevice at an ACD or
VDN device (A) and is diverted to an ACD or VDN device (B)
monitored by a cstaMonitorCallsViaDevice request, then a Diverted
Event Report is sent on the monitor for the device (A) that the call
left, and no subsequent event reports will be sent for this call on the
monitor for device (A). A Delivered Event Report is sent to the
monitor for device (B) and subsequent call event reports are sent on
the monitor for device (B). The rule is that call event reports of a call
are sent to only one cstaMonitorCallsViaDevice request.

3. If a call monitored by a cstaMonitorCallsViaDevice request is
merged by a conference/transfer operation with a call that is
monitored by a cstaMonitorCallsViaDevice request, a Call Ended
Event Report is sent to the monitor request that the call left and no
subsequent event reports are sent to this monitor request. A
Conferenced/Transferred Event Report is sent to the monitor
request with which the call stays and subsequent event reports of
the call continue to be sent to this monitor request.

4. If a call that is monitored by a cstaMonitorCallsViaDevice request is
merged by a conference/transfer operation with a call that is not
monitored by a cstaMonitorCallsViaDevice request and the resulting
call is the one being monitored, a Conferenced/Transferred Event
Report is sent to the monitor request and subsequent event reports
of the call continue to the same monitor request. If the resulting call
is the one not being monitored, a Conferenced/Transferred Event
Report with a new callID is sent to the monitor request, a Call Ended
Event Report is sent to the monitor request for the abandoned call,
and subsequent event reports of the new call continue to be sent to
the same request. In this case, the callID for the abandoned call is
no longer valid.

■ Station — A station cannot be monitored by this service.

■ Terminating Extension Group (TEG) — Members of a TEG may be
monitored. PCOL behaves like bridging for the purpose of event reporting.

■ Vector-Controlled Split — A vector-controlled split cannot be monitored.
The VDN providing access to the vector(s) controlling the split should be
monitored instead.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V18-26

Monitor Calls Via Device Service
Syntax

#include <acs.h>
#include <csta.h>

// cstaMonitorCallsViaDevice() - Service Request

RetCode_t cstaMonitorCallsViaDevice (
ACSHandle_t acsHandle,
InvokeID_t invokeID,
DeviceID_t *deviceID,

// must be VDN or ACD split
CSTAMonitorFilter_t *monitorFilter, // supports

// call filter only
PrivateData_t *privateData);

// CSTAMonitorConfEvent - Service Response

typedef struct
{

ACSHandle_t acsHandle;
EventClass_t eventClass;

// CSTACONFIRMATION
EventType_t eventType;

// CSTA_MONITOR_CONF
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{

struct
{

InvokeID_t invokeID;
union
{

CSTAMonitorConfEvent_t monitorStart;
} u;

} cstaConfirmation;
} event;

} CSTAEvent_t;

typedef struct CSTAMonitorConfEvent_t
{

CSTAMonitorCrossRefID_t monitorCrossRefID;
CSTAMonitorFilter_t monitorFilter;

} CSTAMonitorConfEvent_t;
Issue 1 — December 2001

8-27DEFPROG.PDF R10.1 V1

Monitor Service Group
Syntax (Continued)

typedef long CSTAMonitorCrossRefID_t;

typedef unsigned short CSTACallFilter_t;
##define CF_CONFERENCED 0x4000
#define CF_CONNECTION_CLEARED 0x2000
#define CF_DELIVERED 0x1000
#define CF_DIVERTED 0x0800
#define CF_ESTABLISHED 0x0400
#define CF_FAILED 0x0200
#define CF_HELD 0x0100
#define CF_NETWORK_REACHED 0x0080
#define CF_ORIGINATED 0x0040
#define CF_QUEUED 0x0020
#define CF_RETRIEVED 0x0010
#define CF_SERVICE_INITIATED 0x0008
#define CF_TRANSFERRED 0x0004

typedef unsigned char CSTAFeatureFilter_t;
// not supported

#define FF_CALL_INFORMATION 0x80
#define FF_DO_NOT_DISTURB 0x40
#define FF_FORWARDING 0x20
#define FF_MESSAGE_WAITING 0x10

typedef unsigned char CSTAAgentFilter_t;
// not supported

#define AF_LOGGED_ON 0x80
#define AF_LOGGED_OFF 0x40
#define AF_NOT_READY 0x20
#define AF_READY 0x10
#define AF_WORK_NOT_READY 0x08
#define AF_WORK_READY 0x04

typedef unsigned char CSTAMaintenanceFilter_t;
// not supported

#define MF_BACK_IN_SERVICE 0x80
#define MF_OUT_OF_SERVICE 0x40

typedef struct CSTAMonitorFilter_t {
CSTACallFilter_t call;

CSTAFeatureFilter_t feature; // not supported
CSTAMaintenanceFilter_t maintenance; // not supported

long privateFilter;
// 0 = report private events
// non-zero = no private events

} CSTAMonitorFilter_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 V18-28

Monitor Calls Via Device Service
Private Data Version 5 Syntax

#include <acs.h>
#include <csta.h>
#include <attpriv.h>

// attMonitorFilterExt() - Service Request Private Data
// Setup Function

RetCode_t attMonitorFilterExt(
ATTPrivateData_t *privateData,
ATTPrivateFilter_t privateFilter);

typedef struct ATTPrivateData_t
{

char vendor[32];
ushort length;
char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

typedef unsigned char ATTPrivateFilter_t;
#define ATT_ENTERED_DIGITS_FILTER 0x80
#define ATT_CHARGE_ADVICE_FILTER 0x40

// ATTMonitorConfEvent - Service Response Private Data

typedef struct ATTEvent_t
{

ATTEventType_t eventType; // ATT_MONITOR_CONF
union
{

ATTMonitorConfEvent_t monitorStart;
} u;

} ATTEvent_t;

typedef struct ATTMonitorConfEvent_t
{

ATTPrivateFilter_t usedFilter;
} ATTMonitorConfEvent_t;
Issue 1 — December 2001

8-29DEFPROG.PDF R10.1 V1

Monitor Service Group
Private Data Versions 2-4 Syntax

#include <acs.h>
#include <csta.h>
#include <attpriv.h>

// attMonitorFilterExt() - Service Request Private Data
// Setup Function

RetCode_t attMonitorFilterExt(
ATTPrivateData_t *privateData,
ATTV4PrivateFilter_t privateFilter);

typedef struct ATTPrivateData_t
{

char vendor[32];
ushort length;
char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

typedef unsigned char ATTV4PrivateFilter_t;
#define ATT_V4_ENTERED_DIGITS_FILTER 0x80

// ATTV4MonitorConfEvent - Service Response Private Data

typedef struct ATTEvent_t
{

ATTEventType_t eventType; // ATTV4_MONITOR_CONF
union
{

ATTV4MonitorConfEvent_t monitorStart;
} u;

} ATTEvent_t;

typedef struct ATTV4MonitorConfEvent_t
{

ATTV4PrivateFilter_t usedFilter;
} ATTV4MonitorConfEvent_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 V18-30

Monitor Device Service
Monitor Device Service

Direction: Client to Switch
Function: cstaMonitorDevice()
Confirmation Event: CSTAMonitorConfEvent
Private Data Function: attMonitorFilterExt() (private data version 5),
attMonitorFilter() (private data versions 2-4)
Private Data Confirmation Event: ATTMonitorConfEvent (private data
version 5), ATTV4MonitorConfEvent (private data versions 2-4)
Service Parameters: deviceID, monitorFilter
Private Parameters: privateFilter
Ack Parameters: monitorCrossRefID, monitorFilter
Ack Private Parameters: usedFilter
Nak Parameter: universalFailure

Functional Description:

This service provides call event reports passed by the call filter for all devices on
all calls at a device. Event reports are provided for calls that occurred previous to
the monitor request and arrive at the device after the monitor request is
acknowledged. Call events are also provided for calls already present at the
device. No further events for a call are reported when that call is dropped,
forwarded, or transferred, conferenced, or the device ceases to participate in the
call.

The Call Cleared Event is never provided for this service. There are no
subsequent event reports for a call after a Connection Cleared or a Diverted
Event Report has been received for that call on this service. Reporting of the
subsequent call event reports after a Transferred Event Report is dependent on
whether the call is merged-in or merged-out from the monitored device.

The event reports are provided for all endpoints directly connected to the G3 PBX
and may in certain cases be provided for endpoints not directly connected to the
G3 PBX that are involved in the calls with the monitored device.

This service supports Call Event Reports for station devices as well as Agent
Event Reports for ACD Split devices.

Maintenance Event Reports are not supported.

NOTE:
DEFINITY ECS Release 5 and later software supports the Charge Advice Event
feature. To receive Charge Advice Events, an application must first turn the Charge
Advice Event feature on using the Set Advice of Charge Service. (For details, see
‘‘Set Advice of Charge Service (Private Data Version 5 and Later)’’ in Chapter 5.) If
the Charge Advice Event feature is turned on, a trunk group monitored by a
cstaMonitorDevice, a station monitored by a cstaMonitorDevice, or a call monitored
by a cstaMonitorCall will receive Charge Advice Events. However, this will not occur
if the Charge Advice Event is filtered out by the privateFilter in the monitor request
and its confirmation event.
Issue 1 — December 2001

8-31DEFPROG.PDF R10.1 V1

Monitor Service Group
Service Parameters:

deviceID [mandatory] A valid on-PBX extension, trunk group, or ACD
extension to be monitored. A VDN extension is invalid.

A trunk group number has the format of a ‘T’ followed by the
trunk group number (e.g., T123), or a ‘T’ followed by a ‘#’ to
indicate all trunk groups (i.e., “T#”).

■ If a single trunk group number is specified, the monitor
session will receive the Charge Advice Event for that
trunk group only.

■ If “T#” is specified, the monitor session will receive
Charge Advice Events from all trunk groups.

A trunk group monitoring will receive the Charge Advice
Event only. It will not receive any other call events.

monitorFilter [optional — partially supported] Specifies the filters to be
used with deviceID. Call Filter/Event Reports are supported
for station device. If a Call Filter is not present, it defaults to
no filter, meaning that all G3 CSTA Call Event Reports will
be reported.

The Agent Filter is supported for ACD Split devices.

Setting a filter of an event (for example, CF_CALL_
CLEARED=0x8000 is turned on) in the monitorFilter means
that the event will be filtered out and no such event reports
will be sent to the application.

A zero Private Filter means that the application wants to
receive the private events. If Private Filter is non-zero,
private events will be filtered out.

The Feature Filter and Maintenance Filter are not
supported. If a filter that does not apply to the monitored
device is present, it will be ignored.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V18-32

Monitor Device Service
Private Parameters:

Ack Parameters:

Ack Private Parameter:

privateFilter [optional] Specifies the G3 PBX private filters to be
changed. The following G3 Private Call Filter and Call
Event Reports are supported:

■ Private data version 5:

— ATT_ENTERED_DIGITS_FILTER

— ATT_CHARGE_ADVICE_FILTER

■ Private data versions 2-4:

— ATT_V4_ENTERED_DIGITS_FILTER

See Table 8-1 to determine which filters are under the
control of the application, that is, can be turned on and off.

monitorCrossRefID [mandatory] Contains the handle chosen by the G3 PBX
Driver. This handle is a unique value within an
acsOpenStream session for the duration of the monitor and
is used by the application to correlate subsequent event
reports to the monitor request that initiated them. It also
allows the correlation of the Monitor Stop to the original
Monitor Service request.

monitorFilter [optional — partially supported] Specifies the event reports
that are to be filtered out for the object being monitored by
the application. This may not be the monitorFilter specified
in the service request because filters for events that are not
supported by the G3 PBX and filters for events that do not
apply to the monitored device are always turned on in
monitorFilter. Maintenance Filters are set to “ON“, meaning
that there are no reports supported for these events.

usedFilter [optional] Specifies the G3 private event reports that are to
be filtered out on the object being monitored by the
application.
Issue 1 — December 2001

8-33DEFPROG.PDF R10.1 V1

Monitor Service Group
Nak Parameters:

Detailed Information:

See also the section titled ‘‘Event Report Detailed Information’’ in Chapter 9,
Event Report Service Group.

■ ACD split — An ACD split can be monitored by this service only for Agent
Event Reports.

■ Administration Without Hardware (AWOH) — A station administered
without hardware may be monitored. However, no event reports will be
provided to the application for this station since there will be no activity at
such an extension.

■ Analog ports — Analog ports equipped with modems can be monitored by
the cstaMonitorDevice Service.

■ Attendants and Attendant Groups — An attendant group extension or an
individual attendant extension number cannot have a Monitor Device
Service.

■ Feature Access Monitoring — A station will not prohibit users from access
to any enabled switch features. A monitored station can access any
enabled switch feature.

■ Logical Agents — A logical agent’s station extension can be monitored.
Login IDs are not valid monitor objects.

■ Multiple Requests — Multiple applications can have multiple
cstaMonitorDevice requests on one object. An application can have more
than one cstaMonitorDevice request on one object. However, this is not
recommended.

universalFailure If the request is not successful, the application will receive a
CSTAUniversalFailureConfEvent. The error parameter in
this event may contain the following error values, or one of
the error values described in the
‘‘CSTAUniversalFailureConfEvent’’ section in Chapter 3:

■ INVALID_CSTA_DEVICE_IDENTIFIER (12) An invalid
device identifier or extension is specified in deviceID.

■ RESOURCE_BUSY (33) G3PD is busy processing a
cstaMonitorDevice service request on the same device.
Try again.

■ GENERIC_SUBSCRIBED_RESOURCE_AVAILABILITY
(41) The user has not subscribed to the requested
service. The Domain (Station) Control feature may not
be turned on in the G3 PBX.

■ OBJECT_MONITOR_LIMIT_EXCEEDED (42) The
request cannot be executed because the system limit
would be exceeded for the maximum number of monitor.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V18-34

Monitor Device Service
■ Personal Central Office Line (PCOL) — Members of a PCOL may be
monitored. PCOL behaves like bridging for the purpose of event reporting.

■ Skill Hunt Groups — A skill hunt group (split) cannot be monitored directly
by an application. The VDN providing access to the vector(s) controlling
the hunt group can be monitored instead if event reports for calls delivered
to the hunt group are desired.

■ Terminating Extension Group (TEG) — Members of a TEG may be
monitored. PCOL behaves like bridging for the purpose of event reporting.

■ VDN — A VDN cannot be monitored by this service.

■ Vector-Controlled Split — A vector-controlled split cannot be monitored.
The VDN providing access to the vector(s) controlling the split should be
monitored instead.
Issue 1 — December 2001

8-35DEFPROG.PDF R10.1 V1

Monitor Service Group
Syntax

#include <acs.h>
#include <csta.h>

// cstaMonitorDevice() - Service Request

RetCode_t cstaMonitorDevice (
ACSHandle_t acsHandle,
InvokeID_t invokeID,
DeviceID_t *deviceID,
CSTAMonitorFilter_t *monitorFilter,
PrivateData_t *privateData);

typedef struct
{

ACSHandle_t acsHandle;
EventClass_t eventClass;

// CSTACONFIRMATION
EventType_t eventType;

// CSTA_MONITOR_CONF
} ACSEventHeader_t;

// CSTAMonitorConf - Event

typedef struct
{

ACSEventHeader_t eventHeader;
union
{

struct
{

InvokeID_t invokeID;
union
{

CSTAMonitorConfEvent_t monitorStart;
} u;

} cstaConfirmation;
} event;
char heap[CSTA_MAX_HEAP];
} CSTAEvent_t;

typedef struct CSTAMonitorConfEvent_t
{

CSTAMonitorCrossRefID_t monitorCrossRefID;
CSTAMonitorFilter_t monitorFilter;

} CSTAMonitorConfEvent_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 V18-36

Monitor Device Service
Syntax (Continued)

typedef long CSTAMonitorCrossRefID_t;

typedef unsigned short CSTACallFilter_t;
#define CF_CALL_CLEARED 0x8000
#define CF_CONFERENCED 0x4000
#define CF_CONNECTION_CLEARED 0x2000
#define CF_DELIVERED 0x1000
#define CF_DIVERTED 0x0800
#define CF_ESTABLISHED 0x0400
#define CF_FAILED 0x0200
#define CF_HELD 0x0100
#define CF_NETWORK_REACHED 0x0080
#define CF_ORIGINATED 0x0040
#define CF_QUEUED 0x0020
#define CF_RETRIEVED 0x0010
#define CF_SERVICE_INITIATED 0x0008
#define CF_TRANSFERRED 0x0004

typedef unsigned char CSTAFeatureFilter_t;
#define FF_CALL_INFORMATION 0x80
#define FF_DO_NOT_DISTURB 0x40
#define FF_FORWARDING 0x20
#define FF_MESSAGE_WAITING 0x10

typedef unsigned char CSTAAgentFilter_t;
#define AF_LOGGED_ON 0x80
#define AF_LOGGED_OFF 0x40
#define AF_NOT_READY 0x20
#define AF_READY 0x08
#define AF_WORK_READY 0x04

typedef unsigned char CSTAMaintenanceFilter_t;
#define MF_BACK_IN_SERVICE 0x80
#define MF_OUT_OF_SERVICE 0x40

typedef struct CSTAMonitorFilter_t {
CSTACallFilter_t call;

CSTAFeatureFilter_t feature;
CSTAMaintenanceFilter_t maintenance;

long privateFilter;
// 0 = report private events
// non-zero = no private events

} CSTAMonitorFilter_t;
Issue 1 — December 2001

8-37DEFPROG.PDF R10.1 V1

Monitor Service Group
Private Data Version 5 Syntax

#include <acs.h>
#include <csta.h>
#include <attpriv.h>

// attMonitorFilterExt() - Service Request Private Data
// Setup Function

RetCode_t attMonitorFilterExt(
ATTPrivateData_t *privateData,
ATTPrivateFilter_t privateFilter);

typedef struct ATTPrivateData_t
{

char vendor[32];
ushort length;
char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

typedef unsigned char ATTPrivateFilter_t;
#define ATT_ENTERED_DIGITS_FILTER 0x80
#define ATT_CHARGE_ADVICE_FILTER 0x40

// ATTMonitorConfEvent - Service Response Private Data

typedef struct ATTEvent_t
{

ATTEventType_t eventType; // ATT_MONITOR_CONF
union
{

ATTMonitorConfEvent_t monitorStart;
} u;

} ATTEvent_t;

typedef struct ATTMonitorConfEvent_t
{

ATTPrivateFilter_t usedFilter;
} ATTMonitorConfEvent_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 V18-38

Monitor Device Service
Private Data Versions 2-4 Syntax

#include <acs.h>
#include <csta.h>
#include <attpriv.h>

// attMonitorFilter() - Service Request Private Data
// Setup Function

RetCode_t attMonitorFilter(
ATTPrivateData_t *privateData,
ATTV4PrivateFilter_t privateFilter);

typedef struct ATTPrivateData_t
{

char vendor[32];
ushort length;
char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

typedef unsigned char ATTV4PrivateFilter_t;
#define ATT_V4_ENTERED_DIGITS_FILTER 0x80

// ATTV4MonitorConfEvent - Service Response Private Data

typedef struct ATTEvent_t
{

ATTEventType_t eventType; // ATTV4_MONITOR_CONF
union
{

ATTV4MonitorConfEvent_t v4monitorStart;
} u;

} ATTEvent_t;

typedef struct ATTV4MonitorConfEvent_t
{

ATTV4PrivateFilter_t usedFilter;
} ATTV4MonitorConfEvent_t;
Issue 1 — December 2001

8-39DEFPROG.PDF R10.1 V1

Monitor Service Group
Monitor Ended Event Report

Direction: Switch to Client
Event: CSTAMonitorEndedEvent
Service Parameters: monitorCrossRefID

Functional Description:

The G3 PBX uses the Monitor Ended Event Report to cancel a subscription to a
previously requested cstaMonitorCall, cstaMonitorDevice or
cstaMonitorCallsViaDevice Service when a monitor object is removed or changed
to become an invalid object by switch administration or when the switch can no
longer provide the information. Once a Monitor Ended Event Report is generated,
event reports cease to be sent to the client application by the switch and the
Cross Reference Association that was established by the original service request
is terminated.

Service Parameters:

Detailed Information:

See the section titled ‘‘Event Report Detailed Information’’ in Chapter 9, Event
Report Services Group.

monitorCrossRefID [mandatory] Must be a valid Cross Reference ID of this
acsOpenStream session.

cause [optional — supported] Specifies the reason for this event.

The following Event Causes are explicitly sent from the
switch:

■ EC_NETWORK_NOT_OBTAINABLE The previously
monitored object is no longer available due to a CTI link
failure.

■ EC_RESOURCES_NOT_AVAILABLE The previously
monitored object is no longer available or valid due to
switch administration changes or communication
protocol error.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V18-40

Monitor Ended Event Report
Syntax

#include <acs.h>
#include <csta.h>

typedef struct
{

ACSHandle_t acsHandle;
EventClass_t eventClass;

// CSTAUNSOLICITED
EventType_t eventType;

// CSTA_MONITOR_ENDED
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{

struct
{

CSTAMonitorCrossRefID_t monitorCrossRefID;
union
{

CSTAMonitorEndedEvent_t monitorEnded;
} u;

} cstaUnsolicited;
} event;
char heap[CSTA_MAX_HEAP];
} CSTAEvent_t;

typedef struct CSTAMonitorEndedEvent_t
{

CSTAEventCause_t cause;
} CSTAMonitorEndedEvent_t;
Issue 1 — December 2001

8-41DEFPROG.PDF R10.1 V1

Monitor Service Group
Monitor Stop On Call Service
(Private)

Direction: Client to Switch
Function: cstaEscapeService()
Confirmation Event: CSTAEscapeServiceConfEvent
Private Data Function: attMonitorStopOnCall()
Private Data Confirmation Event: ATTMonitorStopOnCallConfEvent
Private Parameters: monitorCrossRefID, callID
Ack Parameters: noData
Ack Private Parameters: noData
Nak Parameter: universalFailure

Functional Description:

An application uses the Monitor Stop On Call Service to stop Call Event Reports
of a specific call reported by a cstaMonitorCall, cstaMonitorDevice or
cstaMonitorCallsViaDevice Service when it no longer has an interest in that call.
Once a Monitor Stop On Call request has been acknowledged, event reports of
that call cease to be sent to the client application. The Monitor Cross Reference
Association that was established by the original cstaMonitorDevice or
cstaMonitorCallsViaDevice Service request continues.

If this service applies to a cstaMonitorCall association, the association will be
terminated by a Monitor Ended Event Report.

NOTE:
The current release provides this capability for monitors initiated with the
cstaMonitorCall service only. It does not work for the other types of
monitors.

Private Parameters:

Ack Parameters:

Ack Private Parameters:

monitorCrossRefID [mandatory] Must be a valid Cross Reference ID that was
returned in a previous CSTAMonitorConfEvent of this
acsOpenStream session.

callID [mandatory] This is the callID of the call whose event
reports are to be stopped.

noData None for this service.

noData None for this service.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V18-42

Monitor Stop On Call Service (Private)
Nak Parameters:

Detailed Information:

See also the section titled ‘‘Event Report Detailed Information’’ in Chapter 9,
Event Report Services Group.

■ This service will take effect immediately. Event reports to the application for
the specified call will cease after this monitor request. The switch
continues to process the call at the monitored object. Call processing is not
affected by this service.

■ This service will not affect Call Event Reports of the specified call on other
monitoring associations.

universalFailure If the request is not successful, the application will receive a
CSTAUniversalFailureConfEvent. The error parameter in
this event may contain the following error values, or one of
the error values described in the
‘‘CSTAUniversalFailureConfEvent’’ section in Chapter 3:

■ INVALID_CROSS_REF_ID (17) The service request
specified a Cross Reference ID that is not in use at this
time.

■ NO_ACTIVE_CALL (24) The application has sent an
invalid call identifier. The call does not exist, the call has
been cleared, or the call is not being monitored by the
monitoring device.
Issue 1 — December 2001

8-43DEFPROG.PDF R10.1 V1

Monitor Service Group
Syntax

#include <acs.h>
#include <csta.h>

// cstaEscapeService() - Service Request

RetCode_t cstaEscapeService (
ACSHandle_t acsHandle,
InvokeID_t invokeID,
PrivateData_t *privateData);

// CSTAEscapeServiceConfEvent - Service Response

typedef struct
{

ACSHandle_t acsHandle;
EventClass_t eventClass;

// CSTACONFIRMATION
EventType_t eventType;

// CSTA_ESCAPE_SERVICE_CONF
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{

struct
{

InvokeID_t invokeID;
union
{

CSTAEscapeSvcConfEvent_t escapeService;
} u;

} cstaConfirmation;
} event;

} CSTAEvent_t;

typedef struct CSTAEscapeSvcConfEvent_t
{

Nulltype null;
} CSTAEscapeSvcConfEvent_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 V18-44

Monitor Stop On Call Service (Private)
Private Parameter Syntax

#include <acs.h>
#include <csta.h>
#include <attpriv.h>

// attMonitorStopOnCall() - Service Request Private Data
// Setup Function

RetCode_t attMonitorStopOnCall(
ATTPrivateData_t *privateData,
CSTAMonitorCrossRefID_t monitorCrossRefID,
ConnectionID_t *call);

// ATTMonitorStopOnCallEvent - Service Response Private Data

NOTE:
If private data accompanies CSTAMonitorStopOnCallConfEvent, then the
private data would be stored in the location that the application specified as
the privateDate parameter in the acsGetEventBlock() or acsGetEventPoll()
request. If the privateData pointer is set to NULL in these requests, then
CSTAMonitorStopOnCallConfEvent does not deliver private data to the
application. If the acsGetEventBlock() or acsGetEventPoll() returns Private
Data length of 0, then no private data is provided with this event.

#include <acs.h>
#include <csta.h>
#include <attpriv.h>

// ATT private data event structure:

typedef struct
{

ATTEventType eventType;
// ATT_MONITOR_STOP_ON_CALL_CONF

union
{

ATTMonitorStopOnCallConfEvent_t monitorStop;

}u;
} ATTEvent_t;

typedef struct ATTMonitorStopOnCallConfEvent_t {
Nulltype null;

} ATTMonitorStopOnCallConfEvent_t;
Issue 1 — December 2001

8-45DEFPROG.PDF R10.1 V1

Monitor Service Group
Monitor Stop Service

Direction: Client to Switch
Function: cstaMonitorStop()
Confirmation Event: CSTAMonitorStopConfEvent
Service Parameters: monitorCrossRefID
Ack Parameters: noData
Nak Parameter: universalFailure

Functional Description:

An application uses the Monitor Stop Service to cancel a subscription to a
previously requested cstaMonitorCall, cstaMonitorDevice, or
cstaMonitorCallsViaDevice Service when it no longer has an interest in continuing
a monitor. Once a Monitor Stop request has been acknowledged, event reports
cease to be sent to the client application by the switch and the Cross Reference
Association that was established by the original service request is terminated.

Private Parameter:

Ack Parameter:

Nak Parameter:

Detailed Information:

See also the ‘‘Event Report Detailed Information’’ section in Chapter 9, Event
Report Services Group.

■ Switch Operation — This service will take effect immediately. Event
reports to the application for calls in progress will stop for this monitor
request. The switch continues to process calls at the monitored object.
Calls present at the monitored object are not affected by this service.

monitorCrossRefID [mandatory] Must be a valid Cross Reference ID that was
returned in a previous CSTAMonitorConfEvent of this
acsOpenStream session.

noData None for this service.

universalFailure If the request is not successful, the application will receive a
CSTAUniversalFailureConfEvent. The error parameter in
this event may contain the following error values, or one of
the error values described in the
‘‘CSTAUniversalFailureConfEvent’’ section in Chapter 3:

■ INVALID_CROSS_REF_ID (17) The service request
specified a Cross Reference ID that is not in use at this
time.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V18-46

Monitor Stop Service
Syntax

#include <acs.h>
#include <csta.h>

RetCode_t cstaMonitorStop (
ACSHandle_t acsHandle,
InvokeID_t invokeID,
CSTAMonitorCrossRefID_t monitorCrossRefID,
PrivateData_t *privateData);

typedef struct
{

ACSHandle_t acsHandle;
EventClass_t eventClass;

// CSTACONFIRMATION
EventType_t eventType;

// CSTA_MONITOR_STOP_CONF
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{

struct
{

InvokeID_t invokeID;
union
{

CSTAMonitorStopConfEvent_t monitorStop;
} u;

} cstaConfirmation;
} event;
char heap[CSTA_MAX_HEAP];
} CSTAEvent_t;

typedef struct CSTAMonitorStopConfEvent_t
{

Nulltype null;
} CSTAMonitorStopConfEvent_t;
Issue 1 — December 2001

8-47DEFPROG.PDF R10.1 V1

Monitor Service Group
Issue 1 — December 2001

DEFPROG.PDF R10.1 V18-48

Issue 1 — December 2001

DEFPROG.PDF R10.1 V1
9

Event Report Service Group
CSTAEventCause and
LocalConnectionState

Following are the definitions of the enumerated types CSTAEventCause and
LocalConnectionState. These data structures are used extensively by the Event
Report Service Group members described in this chapter.

typedef enum CSTAEventCause_t {
EC_NONE = -1, // no cause value is specified
EC_ACTIVE_MONITOR = 1,
EC_ALTERNATE = 2,
EC_BUSY = 3,
EC_CALL_BACK = 4,
EC_CALL_CANCELLED = 5,
EC_CALL_FORWARD_ALWAYS = 6,
EC_CALL_FORWARD_BUSY = 7,
EC_CALL_FORWARD_NO_ANSWER = 8,
EC_CALL_FORWARD = 9,
EC_CALL_NOT_ANSWERED = 10,
EC_CALL_PICKUP = 11,
EC_CAMP_ON = 12,
EC_DEST_NOT_OBTAINABLE = 13,
EC_DO_NOT_DISTURB = 14,
EC_INCOMPATIBLE_DESTINATION = 15,
EC_INVALID_ACCOUNT_CODE = 16,
EC_KEY_CONFERENCE = 17,
EC_LOCKOUT = 18,
EC_MAINTENANCE = 19,
EC_NETWORK_CONGESTION = 20,
EC_NETWORK_NOT_OBTAINABLE = 21,
9-1

Event Report Service Group
EC_NEW_CALL = 22,
EC_NO_AVAILABLE_AGENTS = 23,
EC_OVERRIDE = 24,
EC_PARK = 25,
EC_OVERFLOW = 26,
EC_RECALL = 27,
EC_REDIRECTED = 28,
EC_REORDER_TONE = 29,
EC_RESOURCES_NOT_AVAILABLE = 30,
EC_SILENT_MONITOR = 31,
EC_TRANSFER = 32,
EC_TRUNKS_BUSY = 33,
EC_VOICE_UNIT_INITIATOR = 34

} CSTAEventCause_t;

typedef enum LocalConnectionState_t {
CS_NONE = -1, // state not known
CS_NULL = 0,
CS_INITIATE = 1,
CS_ALERTING = 2,
CS_CONNECT = 3,
CS_HOLD = 4,
CS_QUEUED = 5,
CS_FAIL = 6

} LocalConnectionState_t;

Event Minimization Feature on G3 PBX

If Event Minimization is set to “y” for the CTI link connected to the G3PD, then only
one set of events for a call is sent to the G3PD whether one or more devices are
monitored. For example, if a VDN and an agent station are both monitored, only
the VDN monitoring will received the Delivered Event.

NOTE:
The Event Minimization feature must be set to “n” on the switch for the CTI
link connected to the G3PD.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V19-2

Call Cleared Event
Call Cleared Event

Direction: Switch to Client
Event: CSTACallClearedEvent
Private Data Event: ATTCallClearedEvent
Service Parameters: monitorCrossRefID, clearedCall, localConnectionInfo,
cause
Private Parameters: reason

Functional Description:

The Call Cleared Event Report indicates that a call is ended. Normally this occurs
when the last remaining device or party disconnects from the call. It can also
occur when a call is immediately dissolved as the call being conferenced or
transferred for a cstaMonitorCallsViaDevice request, but not for a
cstaMonitorDevice request.

Before After

D2

D3

D1D2

D3

D1 C1* *

*

Issue 1 — December 2001

9-3DEFPROG.PDF R10.1 V1

Event Report Service Group
Service Parameters:

Private Parameters:

monitorCrossRefID [mandatory] Contains the handle to the monitor request for
which this event is reported.

clearedCall [mandatory] Specifies the callID of the call that has been
cleared. The deviceID is set to 0.

localConnectionInfo [optional — supported] Always specifies a null state (CS_
NULL).

cause [optional — supported] Specifies a cause when the call is
not terminated normally. EC_NONE is specified for normal
call termination.

■ EC_BUSY — Device busy.

■ EC_CALL_CANCELLED — Call rejected or canceled.

■ EC_DEST_NOT_OBTAINABLE — Called device is not
reachable or wrong number is called.

■ EC_CALL_NOT_ANSWERED — Called device not
responding or call not answered (maxRings timed out)
for a MakePredictiveCall.

■ EC_NETWORK_CONGESTION — Network congestion
or channel is unacceptable.

■ EC_RESOURCES_NOT_AVAILABLE — No circuit or
channel is available.

■ EC_TRANSFER — Call merged due to transfer or
conference.

■ EC_REORDER_TONE — Intercept SIT treatment -
Number changed.

■ EC_VOICE_UNIT_INITIATOR — Answer machine is
detected for a MakePredictiveCall.

reason [optional] Specifies the reason for this event. The following
reason codes are supported:

■ AR_NONE— indicate no value specified for reason.

■ AR_ANSWER_NORMAL — Answer supervision from
the network or internal answer.

■ AR_ANSWER_TIMED — Assumed answer based on
internal timer.

■ AR_ANSWER_VOICE_ENERGY — Voice energy
detection from a call classifier.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V19-4

Call Cleared Event
Detailed Information:

See the ‘‘Event Report Detailed Information’’ section in this chapter.

■ AR_ANSWER_MACHINE_DETECTED — Answering
machine detected

■ AR_SIT_REORDER — Switch equipment congestion

■ AR_SIT_NO_CIRCUIT — No circuit or channel
available

■ AR_SIT_INTERCEPT — Number changed

■ AR_SIT_VACANT_CODE — Unassigned number

■ AR_SIT_INEFFECTIVE_OTHER — Invalid number

■ AR_SIT_UNKNOWN — Normal unspecified
Issue 1 — December 2001

9-5DEFPROG.PDF R10.1 V1

Event Report Service Group
Syntax

#include <acs.h>
#include <csta.h>

// CSTACallClearedEvent

typedef struct
{

ACSHandle_t acsHandle;
EventClass_t eventClass; // CSTAUNSOLICITED
EventType_t eventType; // CSTA_CALL_CLEARED

} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_teventHeader;
union
{

struct
{

CSTAMonitorCrossRefID_tmonitorCrossRefId;
union
{

CSTACallClearedEvent_t callCleared;
} u;

} cstaUnsolicited;
} event;
charheap[CSTA_MAX_HEAP];

} CSTAEvent_t;

typedef struct CSTACallClearedEvent_t
{

ConnectionID_t clearedCall;
// DeviceID is always 0

LocalConnectionState_tlocalConnectionInfo;
// always CS_NULL

CSTAEventCause_tcause;
} CSTACallClearedEvent;
Issue 1 — December 2001

DEFPROG.PDF R10.1 V19-6

Call Cleared Event
Private Parameter Syntax

If private data accompanies a CSTACallClearedEvent, then
the private data would be stored in the location that the
application specified as the private data parameter in the
acsGetEventBlock() or acsGetEventPoll() request. If the
privateData pointer is set to NULL in these requests, then
the CSTACallClearedEvent does not deliver private data to
the application. If the acsGetEventBlock() or
acsGetEventPoll() returns a Private Data length of 0, then
no private data is provided with this event.
#include <acs.h>
#include <csta.h>
#include <attpriv.h>

// ATTCallClearedEvent - CSTA Unsolicited Event Private Data

typedef struct ATTEvent_t
{

ATTEventType_teventType;// ATT_CALL_CLEARED
union
{

ATTCallClearedEvent_tcallClearedEvent;
} u;

} ATTEvent_t;

typedef struct ATTCallClearedEvent_t
{

ATTReasonCode_treason;
} ATTCallClearedEvent_t;

typedef enum ATTReasonCode_t {
AR_NONE = 0, // no reason code specified
AR_ANSWER_NORMAL = 1, // answer supervision from

// the network or internal
// answer

AR_ANSWER_TIMED = 2, // assumed answer based on
// internal timer

AR_ANSWER_VOICE_ENERGY= 3, // voice energy detection by
// classifier

AR_ANSWER_MACHINE_DETECTED = 4, // answering machine detected
AR_SIT_REORDER = 5, // switch equipment congestion
AR_SIT_NO_CIRCUIT = 6, // no circuit or channel available
AR_SIT_INTERCEPT = 7, // number changed
AR_SIT_VACANT_CODE= 8, // unassigned number
AR_SIT_INEFFECTIVE_OTHER = 9,// invalid number
AR_SIT_UNKNOWN = 10, // normal unspecified
AR_IN_QUEUE = 11,// call still in queue - for

// Delivered Event only
AR_SERVICE_OBSERVER= 12 // service observer connected
} ATTReasonCode_t
Issue 1 — December 2001

9-7DEFPROG.PDF R10.1 V1

Event Report Service Group
Charge Advice Event (Private)

Direction: Switch to Client
Event: CSTAPrivateStatusEvent
Private Data Event: ATTChargeAdviceEvent
Service Parameters: monitorCrossRefID
Private Parameters: connection, calledDevice, chargingDevice, trunkGroup,
trunkMember, chargeType, charge, error

Functional Description:

This event reports the charging units for an outbound call to a trunk group (or all
trunk groups) monitoring, a station monitoring, or a call monitoring session. This
event is available only if trunk group (or all trunk groups) monitoring is requested
to the switch for turning the Charge Advice feature on.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V19-8

Charge Advice Event (Private)
Service Parameters:

Private Parameters:

monitorCrossRefID [mandatory] Contains the handle to the monitor request for
which this event is reported.

connection [mandatory] Specifies the connectionID of the trunk party
that generates the charge event. The deviceID is null if split
charge is reported due to a conference or transfer.

calledDevice [mandatory] Specifies the external device that was dialed or
requested. This number does not include ARS, FAC, or
TAC.

chargingDevice [mandatory] Specifies the local device that added the trunk
group member to the call or an external party if the
ISDN-PRI (or R2MFC) calling party number of the caller is
available. If no local party is involved, and no calling party is
available for an external call, then the TAC of the trunk used
on the incoming call will be present. This number indicates
to the application the number that may be used at the device
that is being charged. Note that this number is not always
identical to the CPN or SID that is provided in other event
reports reporting on the same call.

trunkGroup [mandatory] Specifies the trunk group receiving the charge.
The number provided correspond to the number used in
switch administration, and is not the Trunk Access Code.

trunkMember [mandatory] Specifies the member of the trunk group
receiving the charge.

chargeType [mandatory] Indicates the charge type provide by the
network. Valid types are:

■ CT_INTERMEDIATE_CHARGE — This is a charge sent
by the trunk while the call is active. The charge amounts
reported are cumulative. If a call receives two or more
consecutive intermediate charges, then the amount from
the last intermediate charge replaces the amount(s) of
the previous intermediate charges. The amounts are not
added to produce a total charge.

■ CT_FINAL_CHARGE — This charge is sent by the trunk
when a call is dropped. If call CDR outgoing call splitting
is not enabled, then the final charge reflects the charge
for the entire call.
Issue 1 — December 2001

9-9DEFPROG.PDF R10.1 V1

Event Report Service Group
Detailed Information:

■ Charge Advice Event Feature — This feature must be turned on via
cstaMonitorDevice() with attMonitorDevice().

■ Feature Availability — This feature is available starting with DEFINITY G3
Release 5.

■ Trunk Group Administration — Only ISDN-PRI trunk groups that have
Charge Advice set to “during-on-request” or “automatic” on the switch will
receive Charge Advice Events.

■ More Than 100 Calls in Call Clearing State — If more than 100 calls are in
a call clearing state waiting for charging information, the oldest record will
not receive final charge information. In this case a value of 0 and a cause
value of CE_NETWORK_BUSY will be reported.

■ CT_SPLIT_CHARGE — CDR outgoing call splitting is
used to divide the charge for a call among different
users. For example, if an outgoing call is placed by one
station and transferred to a second station, and if CDR
call splitting is enabled, then CDR and the Charge
Advice Events would charge the first station up to the
time of the transfer, and the second station after that. A
split charge reflects the charge for the call up to the time
the split charge is sent (starting at the beginning of the
call, or at the previous split charge).
Any Charge Advice Event received after a split charge
will reflect only that portion of the charge that took place
after the split charge. If split charges are received for a
call, then the total charge for the call can be computed
by adding the split charges and the final charge.

charge [mandatory] Specifies the amount of charging units.

error [optional — supported] Indicates a possible error in the
charge amount and the reason for the error. It will appear
only if there is an error.

■ CE_NONE — no error

■ CE_NO_FINAL_CHARGE — network failed to provide a
final charge for the call (CS3/38)

■ CE_LESS_FINAL_CHARGE — final charge provided by
the network is less than a previous charge (CS3/38)

■ CE_CHARGE_TOO_LARGE — charge provided by the
network is too large (CS3/38)

■ CE_NETWORK_BUSY — too many calls are waiting for
their final charge from the network (CS3/22)
Issue 1 — December 2001

DEFPROG.PDF R10.1 V19-10

Charge Advice Event (Private)
Syntax

#include <acs.h>
#include <csta.h>

// CSTAPrivateStatusEvent

typedef struct
{

ACSHandle_t acsHandle;
EventClass_teventClass; // CSTAUNSOLICITED
EventType_t eventType; // CSTA_PRIVATE_STATUS

} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_teventHeader;
struct
{ CSTAMonitorCrossRefID_tmonitorCrossRefId;

union
{

CSTAPrivateStatusEvent_tprivateStatus;
} cstaUnsolicited;

} event;
charheap[CSTA_MAX_HEAP];

} CSTAEvent_t;

typedef structCSTAPrivateStatusEvent_t
{

Nulltype null;

} CSTAPrivateStatusEvent_t;
Issue 1 — December 2001

9-11DEFPROG.PDF R10.1 V1

Event Report Service Group
Private Parameter Syntax

If private data accompanies a CSTAPrivateStatusEvent, then the
private data would be stored in the location that the application
specified as the privateData parameter in the acsGetEventBlock()
or acsGetEventPoll() request. If the privateData pointer is set
to NULL in these requests, then the CSTAPrivateStatusEvent does
not deliver private data to the application. If the
acsGetEventBlock() or acsGetEventPoll() returns a Private Data
length of 0, then no private data is provided with this event.

#include <acs.h>
#include <csta.h>
#include <attpriv.h>

// ATTChargeAdviceEvent - CSTA Unsolicited Event Private Data

typedef struct
{

ATTEventType_t eventType; // ATT_CHARGE_ADVICE
union
{

ATTChargeAdviceEvent_t chargeAdviceEvent;
} u;

} ATTEvent_t;

typedef struct ATTChargeAdviceEvent_t
{

ConnectionID_t connection;
DeviceID_t calledDevice;
DeviceID_t chargingDevice;
DeviceID_t trunkGroup;
DeviceID_t trunkMember;
ATTChargeType_t chargeType;
long charge;
ATTChargeError_t error;

} ATTChargeAdviceEvent_t;

typedef enum ATTChargeType_t
{

CT_INTERMEDIATE_CHARGE = 1,
CT_FINAL_CHARGE = 2,
CT_SPLIT_CHARGE = 3

} ATTChargeType_t;

typedef enum ATTChargeError_t
{

CE_NONE = 0,
CE_NO_FINAL_CHARGE = 1,

CE_LESS_FINAL_CHARGE = 2,
CE_CHARGE_TOO_LARGE = 3,
CE_NETWORK_BUSY = 4

} ATTChargeError_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 V19-12

Conferenced Event
Conferenced Event

Direction: Switch to Client
Event: CSTAConferencedEvent
Private Data Event: ATTConferencedEvent (private data version 6),
ATTV5ConferencedEvent (private data version 5), ATTV4ConferencedEvent
(private data version 4), ATTV3ConferencedEvent (private data versions 2
and 3)
Service Parameters: monitorCrossRefID, primaryOldCall, secondaryOldCall,
confController, addedParty, conferenceConnections, localConnectionInfo,
cause
Private Parameters: originalCallInfo, distributingDevice, ucid

Functional Description:

The Conference Event Report indicates that two calls are conferenced (merged)
into one, and no parties are removed from the resulting call in the process. The
event may include up to six parties on the resulting call.

Before After

The Conferenced Event Report is generated for the following circumstances:

■ When an on-PBX station completes a conference by pressing the
“conference” button on the voice terminal.

■ When an on-PBX station completes a conference after having activated the
“supervisor assist” button on the voice set.

■ When the on-PBX analog set user flashes the switch hook with one active
call and one call on conference and/or transfer hold.

■ When an application processor successfully completes a
cstaConferenceCall request.

■ When the “call park” feature is used in conjunction with the “conference”
button on the voice set.

D1 C1 D2

D3C2

D1 D2

D3c c

h

C3

* *

**
Issue 1 — December 2001

9-13DEFPROG.PDF R10.1 V1

Event Report Service Group
Service Parameters:

monitorCrossRefID [[mandatory] Contains the handle to the monitor request for
which this event is reported.

primaryOldCall [mandatory] Specifies the callID of the call that was
conferenced. This is usually the held call before the
conference. This call is ended as a result of the conference.

secondaryOldCall [mandatory] Specifies the callID of the call that was
conferenced. This is usually the active call before the
conference. This call was retained by the switch after the
conference.

contController [mandatory] Specifies the device that is controlling the
conference. This is the device that set up the conference.

addedParty [mandatory] Specifies the new conferenced-in device.

■ If the device is an on-PBX station, the extension is
specified.

■ If the party is an off-PBX endpoint, then the deviceID is
ID_NOT_KNOWN.1

There are call scenarios in which the conference operation
joins multiple parties to a call. In such situations, the
addedParty will be the extension for the last party to join the
call.

conferenceConnections [optional — supported] Specifies a count of the number of
devices and a list of connectionIDs and deviceIDs which
resulted from the conference.

■ If a device is on-PBX, the extension is specified. The
extension consists of station or group extensions.
Group extensions are provided when the conference is
to a group and the conference completes before the call
is answered by one of the group members (TEG, PCOL,
hunt group, or VDN extension). It may contain alerting
extensions.

■ The static deviceID of a queued endpoint is set to the
split extension of the queue.

■ If a party is off-PBX, then its static device identifier or its
previously assigned trunk identifier is specified.

localConnectionInfo [optional — supported] Specifies the local connection state
as perceived by the monitored device on this call. This is
provided for the cstaMonitorDevice requests only. A value
of CS_NONE indicates that the local connection state is
unknown.

cause [optional — limited supported] Specifies the reason for this
event.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V19-14

Conferenced Event

ot
■ EC_PARK — A call conference was performed for
parking a call rather than a true call conference
operation.

■ EC_ACTIVE_MONITOR — This is the cause value if the
Single Step Conference request is for PT_ACTIVE. For
details, see ‘‘Single Step Conference Call Service
(Private Data Version 5 and Later)’’ in Chapter 4.

■ EC_SILENT_MONITOR — This is the cause value if the
Single Step Conference request is for PT_SILENT. For
details, see ‘‘Single Step Conference Call Service
(Private Data Version 5 and Later)’’ in Chapter 4.

1. This endpoint’s trunk identifier is included in the conferenceConnections list, but n
in this parameter.
Issue 1 — December 2001

9-15DEFPROG.PDF R10.1 V1

Event Report Service Group
Private Parameters:

originalCallInfo [optional] specifies the original call information. This
parameter is sent with this event for the resulting newCall of
a cstaConferenceCall request or the retained call of a
(manual) conference call operation. The calls being
conferenced must be known to the G3PD via the Call
Control Services or Monitor Services.

NOTE:
For a cstaConferenceCall, the originalCallInfo
includes the original call information originally
received by the heldCall specified in the
cstaConferenceCall request. For a manual call
conference, the originalCallInfo includes the original
call information originally received by the
primaryOldCall specified in the event report.

The original call information includes:

■ reason — the reason for the originalCallInfo. The
following reasons are supported:

— OR_NONE — no originalCallInfo provided

— OR_CONFERENCED — call conferenced

■ callingDevice — the original callingDevice received by
the heldCall or the primaryOldCall. This parameter is
always provided.

■ calledDevice — the original calledDevice received by
the heldCall or the primaryOldCall. This parameter is
always provided.

■ trunk — the original trunk group received by the
heldCall or the primaryOldCall. This parameter is
supported by private data versions 2, 3, and 4.

■ trunkGroup — the original trunkGroup received by the
heldCall or the primaryOldCall. This parameter is
supported by private data version 5 and later only.

■ trunkMember (G3V4 switches and later) — the original
trunkMember received by the heldCall or the
primaryOldCall.

■ lookaheadInfo — the original lookaheadInfo received
by the heldCall or the primaryOldCall.

■ userEnteredCode — the original userEnteredCode
received by the heldCall or the primaryOldCall call.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V19-16

Conferenced Event
■ userInfo — the original userInfo received by the
heldCall or the primaryOldCall call.

Prior to G3V8, the maximum length of userInfo was 32
bytes. Beginning with G3V8, the maximum length of
userInfo is increased to 96 bytes.

NOTE:
An application using private data version 5 and earlier
can only receive a maximum of 32-byte data for
userInfo, regardless of the size data that is sent by the
switch.

■ ucid — the original ucid of the call. This parameter is
supported by private data version 5 and later only.

■ callOriginatorInfo — the original callOriginatorInfo
received by the activeCall. This parameter is supported
by private data version 5 and later only.

■ flexibleBilling — the original flexibleBilling information
of the call. This parameter is supported by private data
version 5 and later only.

See the ‘‘Delivered Event’’ section in this chapter for the
details of these parameters.

distributingDevice [optional] Specifies the original distributing device of the call
before the call is conferenced. See the ‘‘Delivered Event’’
section in this chapter for details on the distributingDevice
parameter. This parameter is supported by private data
version 4 and later

ucid [optional] Specifies the Universal Call ID (UCID) of the
resulting newCall. The UCID is a unique call identifier
across switches and the network. A valid UCID is a
null-terminated ASCII character string. If there is no UCID
associated with this call, the ucid contains the ATT_NULL_
UCID (a 20-character string of all zeros). This parameter is
supported by private data version 5 and later only.

trunkList [optional] Specifies a list of up to 5 trunk groups and trunk
members. This parameter is supported by private data
version 6 and later only. The following options are
supported:

■ count — The count of the connected parties on the call.

■ trunks — An array of 5 trunk group and trunk member
IDs, one for each connected party. The following options
are supported:
Issue 1 — December 2001

9-17DEFPROG.PDF R10.1 V1

Event Report Service Group
Detailed Information:

See the ‘‘Event Report Detailed Information’’ section in this chapter.

■ The originalCallInfo includes the original call information originally received
by the call that is ended (this is usually, but not always, the held call) as the
result of the conference.

The following special rules apply:

— If the Conferenced Event was a result of a cstaConferenceCall
request, the originalCallInfo and the distributingDevice sent with this
Conferenced Event is from the heldCall in the cstaConferenceCall
request. Thus the application can control what originalCallInfo and
distributingDevice to be sent in a Conferenced Event by putting the
original call on hold and specifying it as the heldCall in the
cstaConferenceCall request. The primaryOldCall (the call ended as
the result of the cstaConferenceCall) is usually the heldCall, but it
can be the activeCall.

— If the Conferenced Event was a result of a manual conference, the
originalCallInfo and the distributingDevice sent with this
Conferenced Event is from the primaryOldCall of the event. Thus
the application does not have control of what originalCallInfo and the
distributingDevice to be sent in the Conferenced Event. The
primaryOldCall (the call ended as the result of the manual
conference operation) is usually the held call, but it can be the active
call.

— connection — The connection ID of one of the parties
on the call.

— trunkGroup — The trunk group of the party
referenced by connection.

— trunkMember — The trunk member of the party
referenced by connection.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V19-18

Conferenced Event
Syntax

#include <acs.h>
#include <csta.h>

// CSTAConferencedEvent

typedef struct
{

ACSHandle_t acsHandle;
EventClass_teventClass; // CSTAUNSOLICITED
EventType_t eventType; // CSTA_CONFERENCED

} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_teventHeader;
union
{

struct
{

CSTAMonitorCrossRefID_tmonitorCrossRefId;
union
{

CSTAConferencedEvent_t conferenced;
} u;

} cstaUnsolicited;
} event;
charheap[CSTA_MAX_HEAP];

} CSTAEvent_t;

typedef struct CSTAConferencedEvent_t {
ConnectionID_t primaryOldCall;
ConnectionID_t secondaryOldCall;
SubjectDeviceID_t confController;
SubjectDeviceID_t addedParty;
ConnectionList_t conferenceConnections;
LocalConnectionState_t localConnectionInfo;
CSTAEventCause_t cause;

} CSTAConferencedEvent_t;

typedef struct Connection_t {
ConnectionID_t party;
SubjectDeviceID_t staticDevice;

} Connection_t;

typedef struct ConnectionList_t {
int count;
Connection_t *connection;

} ConnectionList_t;
Issue 1 — December 2001

9-19DEFPROG.PDF R10.1 V1

Event Report Service Group
Private Data Version 6 Syntax

If private data accompanies a CSTAConferencedEvent, then
the private data would be stored in the location that the
application specified as the privateData parameter in the
acsGetEventBlock() or acsGetEventPoll() request. If the
privateData pointer is set to NULL in these requests, then
the CSTAConferencedEvent does not deliver private data to
the application. If acsGetEventBlock() or
acsGetEventPoll() returns a Private Data length of 0, then
no private data is provided with this event.

#include <acs.h>
#include <csta.h>
#include <attpriv.h>

// ATTConferencedEvent - CSTA Unsolicited Event Private Data

typedef struct ATTEvent_t
{

ATTEventType_teventType;// ATT_CONFERENCED
union
{

ATTConferencedEvent_tconferencedEvent;
} u;

} ATTEvent_t;

typedef struct ATTConferencedEvent_t
{

ATTOriginalCallInfo_t originalCallInfo;
CalledDeviceID_t distributingDevice;
ATTUCID_t ucid;

} ATTConferencedEvent_t;

typedef struct ATTOriginalCallInfo_t
{

ATTReasonForCallInfo_t reason;
CallingDeviceID_t callingDevice;
CalledDeviceID_t calledDevice;
DeviceID_t trunkGroup;
DeviceID_t trunkMember;
ATTLookaheadInfo_t lookaheadInfo;
ATTUserEnteredCode_t userEnteredCode;
ATTUserToUserInfo_t userInfo;
ATTUCID_t ucid;
ATTCallOriginatorInfo_t callOriginatorInfo;
Boolean flexibleBilling;

} ATTOriginalCallInfo_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 V19-20

Conferenced Event
Private Data Version 6 Syntax (Continued)

typedef enum ATTReasonForCallInfo_t
{

OR_NONE = 0, // indicates not present
OR_CONSULTATION = 1,
OR_CONFERENCED = 2,
OR_TRANSFERRED = 3,
OR_NEW_CALL = 4

} ATTReasonForCallInfo_t;

typedef ExtendedDeviceID_t CallingDeviceID_t;

typedef ExtendedDeviceID_t CalledDeviceID_t;

typedef struct ATTLookaheadInfo_t
{

ATTInterflow_t type;
ATTPriority_t priority;
short hours;
short minutes;
short seconds;
DeviceID_t sourceVDN;
ATTUnicodeDeviceID_t uSourceVDN;// sourceVDN in Unicode

} ATTLookaheadInfo_t;

typedef enum ATTInterflow_t
{

LAI_NO_INTERFLOW = -1,// indicates info not present
LAI_ALL_INTERFLOW = 0,
LAI_THRESHOLD_INTERFLOW= 1,
LAI_VECTORING_INTERFLOW= 2

} ATTInterflow_t;

typedef enum ATTPriority_t
{

LAI_NOT_IN_QUEUE = 0,
LAI_LOW = 1,
LAI_MEDIUM = 2,
LAI_HIGH = 3,
LAI_TOP = 4

} ATTPriority_t;

typedef unsigned short ATTUnicodeDeviceID_t[64];

typedef struct ATTUserEnteredCode_t
{

ATTUserEnteredCodeType_t type;
ATTUserEnteredCodeIndicator_t indicator;
char data[ATT_MAX_USER_CODE];
DeviceID_t collectVDN;

} ATTUserEnteredCode_t;
Issue 1 — December 2001

9-21DEFPROG.PDF R10.1 V1

Event Report Service Group
Private Data Version 6 Syntax (Continued)

typedef enum ATTUserEnteredCodeType_t
{

UE_NONE = -1,// indicates not specified
UE_ANY = 0,
UE_LOGIN_DIGITS = 2,
UE_CALL_PROMPTER = 5,
UE_DATA_BASE_PROVIDED= 17,
UE_TONE_DETECTOR = 32

} ATTUserEnteredCodeType_t;

typedef enum ATTUserEnteredCodeIndicator_t
{

UE_COLLECT = 0,
UE_ENTERED = 1

} ATTUserEnteredCodeIndicator_t;

typedef struct ATTUserToUserInfo_t
{

ATTUUIProtocolType_ttype;
struct {

short length; // 0 indicates UUI not
// present

unsigned char value[ATT_MAX_USER_INFO];
} data;

} ATTUserToUserInfo_t;

typedef enum ATTUUIProtocolType_t
{

UUI_NONE = -1,// indicates not specified
UUI_USER_SPECIFIC = 0,// user-specific
UUI_IA5_ASCII = 4 // null terminated ascii

// character string
} ATTUUIProtocolType_t;

typedef charATTUCID_t[64];

typedef struct ATTCallOriginatorInfo_t
{

Boolean hasInfo;// if FALSE, no callOriginatorType
short callOriginatorType;

} ATTCallOriginatorInfo_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 V19-22

Conferenced Event
Private Data Version 5 Syntax

If private data accompanies a CSTAConferencedEvent, then
the private data would be stored in the location that the
application specified as the privateData parameter in the
acsGetEventBlock() or acsGetEventPoll() request. If the
privateData pointer is set to NULL in these requests, then
the CSTAConferencedEvent does not deliver private data to
the application. If acsGetEventBlock() or
acsGetEventPoll() returns a Private Data length of 0, then
no private data is provided with this event.

#include <acs.h>
#include <csta.h>
#include <attpriv.h>

// ATTV5ConferencedEvent - CSTA Unsolicited Event Private Data

typedef struct ATTEvent_t
{

ATTEventType_teventType;// ATT_CONFERENCED
union
{

ATTV5ConferencedEvent_tconferencedEvent;
} u;

} ATTEvent_t;

typedef struct ATTV5ConferencedEvent_t
{

ATTV5OriginalCallInfo_t originalCallInfo;
CalledDeviceID_t distributingDevice;
ATTUCID_t ucid;

} ATTV5ConferencedEvent_t;

typedef struct ATTV5OriginalCallInfo_t
{

ATTReasonForCallInfo_t reason;
CallingDeviceID_t callingDevice;
CalledDeviceID_t calledDevice;
DeviceID_t trunkGroup;
DeviceID_t trunkMember;
ATTLookaheadInfo_t lookaheadInfo;
ATTUserEnteredCode_t userEnteredCode;
ATTV5UserToUserInfo_t userInfo;
ATTUCID_t ucid;
ATTV5CallOriginatorInfo_tcallOriginatorInfo;
Boolean flexibleBilling;

} ATTV5OriginalCallInfo_t;
Issue 1 — December 2001

9-23DEFPROG.PDF R10.1 V1

Event Report Service Group
Private Data Version 5 Syntax (Continued)

typedef enum ATTReasonForCallInfo_t
{

OR_NONE = 0, // indicates not present
OR_CONSULTATION = 1,
OR_CONFERENCED = 2,
OR_TRANSFERRED = 3,
OR_NEW_CALL = 4

} ATTReasonForCallInfo_t;

typedef ExtendedDeviceID_t CallingDeviceID_t;

typedef ExtendedDeviceID_t CalledDeviceID_t;

typedef struct ATTLookaheadInfo_t
{

ATTInterflow_t type;
ATTPriority_t priority;
short hours;
short minutes;
short seconds;
DeviceID_t sourceVDN;
ATTUnicodeDeviceID_t uSourceVDN;// sourceVDN in Unicode

} ATTLookaheadInfo_t;

typedef enum ATTInterflow_t
{

LAI_NO_INTERFLOW = -1,// indicates info not present
LAI_ALL_INTERFLOW = 0,
LAI_THRESHOLD_INTERFLOW= 1,
LAI_VECTORING_INTERFLOW= 2

} ATTInterflow_t;

typedef enum ATTPriority_t
{

LAI_NOT_IN_QUEUE = 0,
LAI_LOW = 1,
LAI_MEDIUM = 2,
LAI_HIGH = 3,
LAI_TOP = 4

} ATTPriority_t;

typedef unsigned short ATTUnicodeDeviceID_t[64];

typedef struct ATTUserEnteredCode_t
{

ATTUserEnteredCodeType_t type;
ATTUserEnteredCodeIndicator_t indicator;
char data[33];
DeviceID_t collectVDN;

} ATTUserEnteredCode_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 V19-24

Conferenced Event
Private Data Version 5 Syntax (Continued)

typedef enum ATTUserEnteredCodeType_t
{

UE_NONE = -1,// indicates not specified
UE_ANY = 0,
UE_LOGIN_DIGITS = 2,
UE_CALL_PROMPTER = 5,
UE_DATA_BASE_PROVIDED= 17,
UE_TONE_DETECTOR = 32

} ATTUserEnteredCodeType_t;

typedef enum ATTUserEnteredCodeIndicator_t
{

UE_COLLECT = 0,
UE_ENTERED = 1

} ATTUserEnteredCodeIndicator_t;

typedef struct ATTV5UserToUserInfo_t
{

ATTUUIProtocolType_ttype;
struct {

short length; // 0 indicates UUI not
// present

unsigned char value[33];
} data;

} ATTV5UserToUserInfo_t;

typedef enum ATTUUIProtocolType_t
{

UUI_NONE = -1,// indicates not specified
UUI_USER_SPECIFIC = 0,// user-specific
UUI_IA5_ASCII = 4 // null terminated ascii

// character string
} ATTUUIProtocolType_t;

typedef charATTUCID_t[64];

typedef struct ATTCallOriginatorInfo_t
{

Boolean hasInfo;// if FALSE, no callOriginatorType
short callOriginatorType;

} ATTCallOriginatorInfo_t;
Issue 1 — December 2001

9-25DEFPROG.PDF R10.1 V1

Event Report Service Group
Private Data Version 4 Syntax

#include <acs.h>
#include <csta.h>
#include <attpriv.h>

// ATTV4ConferencedEvent - CSTA Unsolicited Event Private
Data

typedef struct ATTEvent_t
{

ATTEventType_teventType;// ATTV4_CONFERENCED
union
{

ATTV4ConferencedEvent_tv4conferencedEvent;
} u;

} ATTEvent_t;

typedef struct ATTV4ConferencedEvent_t
{

ATTV4OriginalCallInfo_t originalCallInfo;
CalledDeviceID_t distributingDevice;

} ATTV4ConferencedEvent_t;

typedef struct ATTV4OriginalCallInfo_t
{

ATTReasonForCallInfo_t reason;
CallingDeviceID_t callingDevice;
CalledDeviceID_t calledDevice;
DeviceID_t trunk;
DeviceID_t trunkMember;
ATTV4LookaheadInfo_t lookaheadInfo;
ATTUserEnteredCode_t userEnteredCode;
ATTV5UserToUserInfo_t userInfo;

} ATTV4OriginalCallInfo_t;

typedef enum ATTReasonForCallInfo_t
{

OR_NONE = 0, // indicates not present
OR_CONSULTATION = 1,
OR_CONFERENCED = 2,
OR_TRANSFERRED = 3,
OR_NEW_CALL = 4

} ATTReasonForCallInfo_t;

typedef ExtendedDeviceID_tCallingDeviceID_t;

typedef ExtendedDeviceID_tCalledDeviceID_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 V19-26

Conferenced Event
Private Data Version 4 Syntax (Continued)

typedef struct ATTV4LookaheadInfo_t
{

ATTInterflow_t type;
ATTPriority_t priority;
short hours;
short minutes;
short seconds;
DeviceID_t sourceVDN;

} ATTV4LookaheadInfo_t;

typedef enum ATTInterflow_t
{

LAI_NO_INTERFLOW = -1, // indicates info not present
LAI_ALL_INTERFLOW= 0,
LAI_THRESHOLD_INTERFLOW= 1,
LAI_VECTORING_INTERFLOW= 2

} ATTInterflow_t;

typedef enum ATTPriority_t
{

LAI_NOT_IN_QUEUE = 0,
LAI_LOW = 1,
LAI_MEDIUM = 2,
LAI_HIGH = 3,
LAI_TOP = 4

} ATTPriority_t;

typedef struct ATTUserEnteredCode_t
{

ATTUserEnteredCodeType_t type;
ATTUserEnteredCodeIndicator_tindicator;
char data[33];
DeviceID_t collectVDN;

} ATTUserEnteredCode_t;

typedef enum ATTUserEnteredCodeType_t
{

UE_NONE = -1, // indicates not specified
UE_ANY = 0,
UE_LOGIN_DIGITS = 2,
UE_CALL_PROMPTER = 5,
UE_DATA_BASE_PROVIDED= 17,
UE_TONE_DETECTOR = 32

} ATTUserEnteredCodeType_t;

typedef enum ATTUserEnteredCodeIndicator_t
{

UE_COLLECT = 0,
UE_ENTERED = 1

} ATTUserEnteredCodeIndicator_t;
Issue 1 — December 2001

9-27DEFPROG.PDF R10.1 V1

Event Report Service Group
Private Data Version 4 Syntax (Continued)

typedef struct ATTV5UserToUserInfo_t
{

ATTUUIProtocolType_t type;
struct {

short length; // 0 indicates UUI
// not present

unsigned charvalue[33];
} data;

} ATTV5UserToUserInfo_t;

typedef enum ATTUUIProtocolType_t
{

UUI_NONE = -1,// indicates not specified
UUI_USER_SPECIFIC = 0,// user-specific
UUI_IA5_ASCII = 4 // null terminated ascii

// character string
} ATTUUIProtocolType_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 V19-28

Conferenced Event
Private Data Versions 2 and 3 Syntax

#include <acs.h>
#include <csta.h>
#include <attpriv.h>

// ATTV3ConferencedEvent - CSTA Unsolicited Event Private
Data

typedef struct ATTEvent_t
{

ATTEventType_teventType;// ATTV3_CONFERENCED
union
{

ATTV3ConferencedEvent_tv3conferencedEvent;
} u;

} ATTEvent_t;

typedef struct ATTV3ConferencedEvent_t
{

ATTV4OriginalCallInfo_toriginalCallInfo;
} ATTV3ConferencedEvent_t;

typedef struct ATTV4OriginalCallInfo_t
{

ATTReasonForCallInfo_t reason;
CallingDeviceID_t callingDevice;
CalledDeviceID_t calledDevice;
DeviceID_t trunk;
DeviceID_t trunkMember;
ATTV4LookaheadInfo_t lookaheadInfo;
ATTUserEnteredCode_t userEnteredCode;
ATTV5UserToUserInfo_t userInfo;

} ATTV4OriginalCallInfo_t;

typedef enum ATTReasonForCallInfo_t
{

OR_NONE = 0,// indicates not present
OR_CONSULTATION = 1,
OR_CONFERENCED = 2,
OR_TRANSFERRED = 3,
OR_NEW_CALL = 4

} ATTReasonForCallInfo_t;

typedef ExtendedDeviceID_tCallingDeviceID_t;

typedef ExtendedDeviceID_tCalledDeviceID_t;
Issue 1 — December 2001

9-29DEFPROG.PDF R10.1 V1

Event Report Service Group
Private Data Versions 2 and 3 Syntax (Continued)

typedef struct ATTV4LookaheadInfo_t
{

ATTInterflow_t type;
ATTPriority_t priority;
short hours;
short minutes;
short seconds;
DeviceID_t sourceVDN;

} ATTV4LookaheadInfo_t;

typedef enum ATTInterflow_t
{

LAI_NO_INTERFLOW= -1,// indicates info not present
LAI_ALL_INTERFLOW= 0,
LAI_THRESHOLD_INTERFLOW= 1,
LAI_VECTORING_INTERFLOW= 2

} ATTInterflow_t;

typedef enum ATTPriority_t
{

LAI_NOT_IN_QUEUE = 0,
LAI_LOW = 1,
LAI_MEDIUM = 2,
LAI_HIGH = 3,
LAI_TOP = 4

} ATTPriority_t;

typedef struct ATTUserEnteredCode_t
{

ATTUserEnteredCodeType_t type;
ATTUserEnteredCodeIndicator_tindicator;
char data[33];
DeviceID_t collectVDN;

} ATTUserEnteredCode_t;

typedef enum ATTUserEnteredCodeType_t
{

UE_NONE = -1, // indicates not specified
UE_ANY = 0,
UE_LOGIN_DIGITS = 2,
UE_CALL_PROMPTER = 5,
UE_DATA_BASE_PROVIDED= 17,
UE_TONE_DETECTOR = 32

} ATTUserEnteredCodeType_t;

typedef enum ATTUserEnteredCodeIndicator_t
{

UE_COLLECT = 0,
UE_ENTERED = 1

} ATTUserEnteredCodeIndicator_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 V19-30

Conferenced Event
Private Data Versions 2 and 3 Syntax (Continued)

typedef struct ATTV5UserToUserInfo_t
{

ATTUUIProtocolType_t type;
struct {

short length; // 0 indicates UUI
// not present

unsigned char value[33];
} data;

} ATTV5UserToUserInfo_t;

typedef enum ATTUUIProtocolType_t
{

UUI_NONE = -1,// indicates not specified
UUI_USER_SPECIFIC = 0,// user-specific
UUI_IA5_ASCII = 4 // null terminated ascii

// character string
} ATTUUIProtocolType_t;
Issue 1 — December 2001

9-31DEFPROG.PDF R10.1 V1

Event Report Service Group
Connection Cleared Event

Direction: Switch to Client
Event: CSTAConnectionClearedEvent
Private Data Event: ATTConnectionClearedEvent (private data version 6),
ATTV5ConnectionClearedEvent (private data version 2, 3, 4 and 5)
Service Parameters: monitorCrossRefID, droppedConnection,
releasingDevice, localConnectionInfo, cause
Private Parameters: userInfo

Functional Description:

The Connection Cleared Event Report indicates that a device in a call disconnects
or is dropped. It does not indicate that a transferring device has left a call in the
act of transferring that call.

Before After

A Connection Cleared Event Report is generated in the following cases:

■ A simulated bridged appearance is dropped when one member drops.

■ When an on-PBX party drops from a call.

■ When an off-PBX party drops and the ISDN-PRI receives a disconnect
message.

■ When an off-PBX party drops and the non-ISDN-PRI trunk detects a drop.

A Connection Cleared Event Report is not generated in the following cases:

■ A party drops as a result of a transfer operation.

■ A split or vector announcement drops.

■ Attendant drops a call, if the call was received through the attendant group
(0).

■ A cstaMakePredictiveCall call is dropped during the call classification
stage. (A Call Cleared Event Report is generated instead.)

■ A call is delivered to an agent and de-queued from multiple splits as part of
vector processing.

D2

D3

D1D2

D3

D1 C1 C1* *

*

* *
Issue 1 — December 2001

DEFPROG.PDF R10.1 V19-32

Connection Cleared Event
This event report is not generated for the last disconnected party on a call for a
cstaMonitorCallsViaDevice request. In this case, a Call Cleared Event Report is
generated instead. This event is the last event of a call for a cstaMonitorDevice
request.
Issue 1 — December 2001

9-33DEFPROG.PDF R10.1 V1

Event Report Service Group
Service Parameters:

monitorCrossRefID [mandatory] Contains the handle to the monitor request for
which this event is reported.

droppedConnection [mandatory] Specifies the connection that has been
dropped from the call.

releasingDevice [mandatory] Specifies the dropped device.

■ If the device is on-PBX, then the extension is specified
(primary extension for TEGs, PCOLs, bridging).

■ If a party is off-PBX, then its static device identifier or its
previously assigned trunk identifier is specified.

localConnectionInfo [optional — supported] Specifies the local connection state
as perceived by the monitored device on this call. This is
provided for cstaMonitorDevice requests only. A value of
CS_NONE indicates that the local connection state is
unknown.

cause [optional — supported] Specifies a cause when the call is
not terminated normally. EC_NONE is specified for normal
call termination.

■ EC_BUSY — Device busy.

■ EC_CALL_CANCELLED — Call rejected or canceled.

■ EC_DEST_NOT_OBTAINABLE — Called device is not
reachable or wrong number is called

■ EC_CALL_NOT_ANSWERED — Called device not
responding or call not answered (maxRings has timed
out) for a MakePredictiveCall.

■ EC_NETWORK_CONGESTION — Network congestion
or channel is unacceptable.

■ EC_RESOURCES_NOT_AVAILABLE — No circuit or
channel is available.

■ EC_TRANSFER — Call merged due to transfer or
conference.

■ EC_REORDER_TONE — Intercept SIT treatment -
Number changed.

■ EC_VOICE_UNIT_INITIATOR — Answer machine is
detected for a MakePredictiveCall.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V19-34

Connection Cleared Event
Private Parameters:

Detailed Information:

See the ‘‘Event Report Detailed Information’’ section in this chapter.

userInfo [optional] Contains user-to-user information. This
parameter allows an application to associate caller
information, up to 32 or 96 bytes, with a call. This
information may be a customer number, credit card number,
alphanumeric digits, or a binary string. It is propagated with
the call when the call is dropped by a cstaClearConnection
with a userInfo and passed to an application in the
Connection Cleared Event Report.

Prior to G3V8, the maximum length of userInfo was 32
bytes. Beginning with G3V8, the maximum length of
userInfo is increased to 96 bytes.

NOTE:
An application using private data version 5 and earlier
can only receive a maximum of 32-byte data for
userInfo, regardless of the size data that is sent by the
switch.

The following UUI protocol types are supported:

■ UUI_NONE — There is no data provided in the data
parameter.

■ UUI_USER_SPECIFIC — The content of the data
parameter is a binary string. The correct size (maximum
of 32 or 96 bytes) of data must be specified in the size
parameter.

■ UUI_IA5_ASCII — The content of the data parameter
must be a null-terminated IA5 (ASCII) character string.
The correct size (maximum of 32 or 96 bytes excluding
the null terminator) of data must be specified in the size
parameter.
Issue 1 — December 2001

9-35DEFPROG.PDF R10.1 V1

Event Report Service Group
Syntax

#include <acs.h>
#include <csta.h>

// CSTAConnectionClearedEvent

typedef struct
{

ACSHandle_t acsHandle;
EventClass_teventClass; // CSTAUNSOLICITED
EventType_t eventType; // CSTA_CONNECTION_CLEARED

} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_teventHeader;
union
{

struct
{
CSTAMonitorCrossRefID_tmonitorCrossRefId;
union
{

CSTAConnectionClearedEvent_t
connectionCleared;

} u;
} cstaUnsolicited;

} event;
charheap[CSTA_MAX_HEAP];

} CSTAEvent_t;

typedef struct CSTAConnectionClearedEvent_t
{

ConnectionID_t droppedConnection;
SubjectDeviceID_t releasingDevice;
SubjectDeviceID_t localConnectionInfo;
CSTAEventCause_t cause;

} CSTAConnectionClearedEvent_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 V19-36

Connection Cleared Event
Private Parameter 6 Syntax

If private data accompanies a CSTAConnectionClearedEvent,
then the private data would be stored in the location that
the application specified as the privateData parameter in
the acsGetEventBlock() or acsGetEventPoll() request. If
the privateData pointer is set to NULL in these requests,
then the CSTAConnectionClearedEvent does not deliver
private data to the application. If the acsGetEventBlock()
or acsGetEventPoll() returns a Private Data length of 0,
then no private data is provided with this event.

#include <acs.h>
#include <csta.h>
#include <attpriv.h>

// ATTConnectionClearedEvent - CSTA Unsolicited Event Private Data

typedef struct
{

ATTEventType_teventType;// ATT_CONNECTION_CLEARED
union
{

ATTConnectionClearedEvent_tconnectionCleared;
} u;

} ATTEvent_t;

typedef struct ATTConnectionClearedEvent_t
{

ATTUserToUserInfo_tuserInfo;
} ATTConnectionClearedEvent_t;

typedef structATTUserToUserInfo_t {
ATTUUIProtocolType_t type;
struct {

short length;// 0 indicates UUI not present

unsigned char value[ATT_MAX_USER_INFO];
} data;

} ATTUserToUserInfo_t;

typedef enum ATTUUIProtocolType_t
{

UUI_NONE = -1,// indicates not specified
UUI_USER_SPECIFIC = 0,// user-specific
UUI_IA5_ASCII = 4 // null terminated ascii

// character string
} ATTUUIProtocolType_t
Issue 1 — December 2001

9-37DEFPROG.PDF R10.1 V1

Event Report Service Group
Private Data Version 2-5 Syntax

If private data accompanies a CSTAConnectionClearedEvent,
then the private data would be stored in the location that
the application specified as the privateData parameter in
the acsGetEventBlock() or acsGetEventPoll() request. If
the privateData pointer is set to NULL in these requests,
then the CSTAConnectionClearedEvent does not deliver
private data to the application. If the acsGetEventBlock()
or acsGetEventPoll() returns a Private Data length of 0,
then no private data is provided with this event.

#include <acs.h>
#include <csta.h>
#include <attpriv.h>

// ATTV5ConnectionClearedEvent - CSTA Unsolicited Event Private Data

typedef struct
{

ATTEventType_teventType;// ATTV5_CONNECTION_CLEARED
union
{

ATTV5ConnectionClearedEvent_tconnectionCleared;
} u;

} ATTEvent_t;

typedef struct ATTV5ConnectionClearedEvent_t
{

ATTV5UserToUserInfo_tuserInfo;
} ATTV5ConnectionClearedEvent_t;

typedef structATTV5UserToUserInfo_t {
ATTUUIProtocolType_t type;
struct {

short length;// 0 indicates UUI not present

unsigned char value[33];
} data;

} ATTV5UserToUserInfo_t;

typedef enum ATTUUIProtocolType_t
{

UUI_NONE = -1,// indicates not specified
UUI_USER_SPECIFIC = 0,// user-specific
UUI_IA5_ASCII = 4 // null terminated ascii

// character string
} ATTUUIProtocolType_t
Issue 1 — December 2001

DEFPROG.PDF R10.1 V19-38

Delivered Event
Delivered Event

Direction: Switch to Client
Event: CSTADeliveredEvent
Private Data Event: ATTDeliveredEvent (private data version 6),
ATTV5DeliveredEvent (private data version 5), ATTV4DeliveredEvent
(private data version 4), ATTV3DeliveredEvent (private data versions 2 and 3)
Service Parameters: monitorCrossRefID, connection, alertingDevice,
callingDevice, calledDevice, lastRedirectionDevice, localConnectionInfo,
cause
Private Parameters: deliveredType, trunk, trunkGroup, trunkMember, split,
lookaheadInfo, userEnteredCode, userInfo, reason, originalCallInfo,
distributingDevice, ucid, callOriginatorInfo, flexibleBilling

Functional Description:

The G3 switch reports two types of Delivered Event Reports (i.e., call delivered to
station and call delivered to ACD/VDN). The type of the Delivered Event is
specified in the ATTDeliveredEvent.

Call Delivered to a Station Device

A Delivered Event Report of this type indicates that “alerting” (tone, ring, etc.) is
applied to a device or when the switch detects that “alerting” has been applied to a
device.

Before After

Consecutive Delivered Event Reports are possible. Multiple Delivered Event
Reports for multiple devices are also possible (e.g., a principal and its bridging
users). The Delivered Event Report is not guaranteed for each call. The
Delivered Event Report is not sent for calls that connect to announcements as a
result of ACD split forced announcement or announcement vector commands.

The switch generates the Delivered Event Report when the following events
occur.

■ “Alerting” (tone, ring, etc.) is applied to a device or when the switch detects
that “alerting” has been applied to a device.

■ The originator of a cstaMakePredictiveCall call is an on-PBX station and
ringing or zip tone is started.

■ When a call is redirected to an off-PBX station and the ISDN ALERTing
message is received from an ISDN-PRI facility.

D1 C1 D1 C1 D2D2 a **
Issue 1 — December 2001

9-39DEFPROG.PDF R10.1 V1

Event Report Service Group
■ When a cstaMakePredictiveCall call is trying to reach an off-PBX station
and the call classifier detects precise, imprecise, or special ringing.

■ When a cstaMakeCall (or a cstaMakePredictiveCall) call is placed to an
off-PBX station, and the ALERTing message is received from the
ISDN-PRI facility.

When both a classifier and an ISDN-PRI facility report alerting on a call made by a
cstaMakePredictiveCall request, then the first occurrence generates a Delivered
Event Report; succeeding reports are not reported by the switch.

Consecutive Delivered Event Reports are possible in the following cases:

■ A station is alerted first and the call goes to coverage: a Delivered Event
Report is generated each time a new station is alerted.

■ A principal and its bridging users are alerted: a Delivered Event Report is
generated for the principal and for each bridged station alerted.

■ A call is alerting a Terminating Extension Group (TEG); one report is sent
for each TEG member alerted.

■ A call is alerting a Personal Central Office Line (PCOL); one report is sent
for each PCOL member is alerted.

■ A call is alerting a coverage/answer point; one report is sent for each
alerting member of the coverage answer group.

■ A call is alerting a principal with SAC active; one report is sent for the
principal and one or more are sent for the coverage points.

Call Delivered to an ACD Device

An ACD device can distribute calls within a switch. If an ACD device is called,
normally the call will pass through the device, as the ACD call processing
progresses, and eventually be delivered to a station device. Therefore, a call
delivered to an ACD device will have multiple Delivered Event Reports before it
connects.

Before After

There are two types of G3 devices that distribute calls, VDN and ACD split.

A Delivered Event Report of this type is generated when a call is delivered to an
ACD device.

■ Call Delivered to a VDN — This event is generated when a call is delivered
to a monitored VDN.

D1 C1 D1 C1 D2D2 a **
Issue 1 — December 2001

DEFPROG.PDF R10.1 V19-40

Delivered Event
■ Call Delivered to an ACD Split — This event is generated when a call is
delivered to a monitored ACD split. The report will be sent even if the ACD
split is in night service or has call forwarding active.

A report will be generated for each cstaMonitorCallsViaDevice request that
monitors an ACD device through which the call passes.

The Delivered Event Report is not sent for calls that connected to announcements
as a result of ACD split forced announcement or announcement vector
commands.
Issue 1 — December 2001

9-41DEFPROG.PDF R10.1 V1

Event Report Service Group
Service Parameters:

monitorCrossRefID [mandatory] Contains the handle to the monitor request for
which this event is reported.

connection [mandatory] Specifies the endpoint that is alerting.

alertingDevice [mandatory] Specifies the device that is alerting.

■ If the device being alerted is on-PBX, then the extension
of the device is specified (primary extension for TEGs,
PCOLs, bridging).

■ If a party is off-PBX, then its static device identifier or its
assigned trunk identifier is specified.

■ If the call was delivered to a VDN or ACD split, the
monitored object is specified.

callingDevice [mandatory] Specifies the calling device. The following
rules apply:

■ For internal calls — the originator’s extension.

■ For outgoing calls over PRI facilities1 — “calling
number” from the ISDN SETUP message or its assigned
trunk identifier is specified. If the “calling number” does
not exist, it is NULL.

■ For incoming calls over PRI facilities — “calling number”
from the ISDN SETUP message or its assigned trunk
identifier is specified. If the “calling number” does not
exist, it is NULL.

■ For incoming calls over non-PRI facilities — the calling
party number is generally not available. The assigned
trunk identifier2 is provided instead.

■ The trunk identifier is specified only when the calling
party number is not available.

■ For calls originated at a bridged call appearance — the
principal’s extension is specified.

■ There is a special case of a cstaMakePredictiveCall call
being delivered to a split: in this case, the callingDevice
contains the original digits (from the
cstaMakePredictiveCall request) provided in the
destination field.

calledDevice [mandatory] Specifies the originally called device. The
following rules apply:

■ For outgoing calls over PRI facilities — “called number”
from the ISDN SETUP message is specified. If the
“called number” does not exist (it is NULL), the
deviceIDStatus is ID_NOT_KNOWN.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V19-42

Delivered Event
■ For outgoing calls over non-PRI facilities — the
deviceIDStatus is ID_NOT_KNOWN.

■ For incoming calls over PRI facilities — “called number”
from the ISDN SETUP message is specified.

■ For incoming calls over non-PRI facilities — the principal
extension is specified. It may be a group extension for
TEG, hunt group, VDN. If the switch is administered to
modify the DNIS digits, then the modified DNIS string is
specified.

■ For incoming calls to PCOL, the deviceIDStatus is ID_
NOT_KNOWN.

■ For incoming calls to a TEG (principal) group, the TEG
group extension is specified.

■ For incoming calls to a principal with bridges, the
principal’s extension is specified.

■ If the called device is on-PBX and the call did not come
over a PRI facility, the extension of the party dialed is
specified.

lastRedirectionDevice [optional — limited support] Specifies the previous
redirection/alerted device in the case where the call was
redirected/diverted to the alertingDevice.

localConnectionInfo [optional — supported] Specifies the local connection state
as perceived by the monitored device on this call. This is
provided for cstaMonitorDevice requests only. A value of
CS_NONE means the local connection state is unknown.

cause [optional — supported] Specifies the cause for this event.
The following causes are supported:

The following four causes (i.e., EC_CALL_FORWARD, EC_
CALL_FORWARD_ALWAYS, EC_CALL_FORWARD_
BUSY, and EC_CALL_FORWARD_NO_ANSWER) are only
available on a G3 PBX with G3V4 or later software. They
have higher precedence than the other three causes (i.e.,
EC_KEY_CONFERENCE, EC_NEW_CALL, and EC_
REDIRECTED). For example, if two causes apply to an
event; one from the group with higher precedence (e.g.,
EC_CALL_FORWARD_ALWAYS) and one from the group
with a lower precedence (e.g., EC_NEW_CALL), only the
cause from the group with the higher precedence will apply.

■ EC_CALL_FORWARD (G3V4 or later) — The call has
been redirected via one of the following features:
Issue 1 — December 2001

9-43DEFPROG.PDF R10.1 V1

Event Report Service Group

rk

in
— Send All Calls

— Cover All Calls

— Go to Cover active

— cstaDeflectCall

■ EC_CALL_FORWARD_ALWAYS (G3V4 or later) —
The call has been redirected via the Call Forwarding
feature.

■ EC_CALL_FORWARD_BUSY (G3V4 or later) — The
call has been redirected for one of the following
reasons:

— Cover — principal busy

— Cover — all call appearance busy

■ EC_CALL_FORWARD_NO_ANSWER (G3V4 or later)
— The call has been redirected because no answer
from cover

■ EC_KEY_CONFERENCE — Indicates that the event
report occurred at a bridged device. This cause has
higher precedence than the following two causes.

■ EC_NEW_CALL — The call has not yet been
redirected.

■ EC_REDIRECTED — The call has been redirected.

1. For outgoing calls over non-PRI facilities, there is no Delivered Event Report. A Netwo
Reached Event Report is generated instead.

2. The trunk identifier is a dynamic device identifier and it cannot be used to access a trunk
the G3 switch.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V19-44

Delivered Event
Private Parameters:

deliveredType [optional] Specifies the type of the Delivered Event:

■ DELIVERED_TO_ACD — This type indicates that the
call is delivered to an ACD split or a VDN device and
subsequent Delivered or other events (e.g., QUEUED)
may be expected.

■ DELIVERED_TO_STATION — This type indicates that
the call is delivered to a station.

■ DELIVERED_OTHER — This type is not in use.

trunkGroup [optional] Specifies the trunk group number from which the
call originated. Beginning with G3V8, trunk group number is
provided regardless of whether the callingDevice is
available. Prior to G3V8, trunk group number is provided
only if the callingDevice is unavailable. This parameter is
supported by private data version 5 and later only.

trunk [optional] Specifies the trunk group number from which the
call originated. Trunk group number is provided only if the
callingDevice is unavailable. This parameter is supported by
private data versions 2, 3, and 4 only.

trunkMember [optional — limited supported] This parameter is supported
beginning with G3V4. It specifies the trunk member number
from which the call originated. Beginning with G3V8, trunk
member number is provided regardless of whether the
callingDevice is available. Prior to G3V8, trunk member
number is provided only if the callingDevice is unavailable.

split [optional] Specifies the ACD split extension to which the call
is delivered. This parameter applies to DELIVERED_TO_
STATION only.

lookaheadinfo [optional] Specifies the lookahead interflow information
received from the delivered call. Lookahead interflow is a
G3 switch feature that routes some of the incoming calls
from one switch to another so that they can be handled
more efficiently and will not be lost. The switch that
overflows the call provides the lookahead interflow
information. A routing application may use the lookahead
interflow information to determine the destination of the call.
See the G3 Feature Description for more information about
lookahead interflow. If the lookahead interflow type is set to
“LAI_NO_INTERFLOW”, no lookahead interflow private
data is provided with this event.
Issue 1 — December 2001

9-45DEFPROG.PDF R10.1 V1

Event Report Service Group
userEnteredCode [optional] Specifies the code/digits that may have been
entered by the caller through the G3 call prompting feature
or the collected digits feature. If the userEnteredCode code
is set to “UE_NONE”, no userEnteredCode private data is
provided with this event. See the ‘‘Detailed Information:’’
section for how to setup the switch and application for
collecting userEnteredCode.

userInfo [optional] Contains user-to-user information. This
parameter allows an application to associate caller
information, up to 32 or 96 bytes, with a call. This
information may be a customer number, credit card number,
alphanumeric digits, or a binary string.

Prior to G3V8, the maximum length of userInfo was 32
bytes. Beginning with G3V8, the maximum length of
userInfo is increased to 96 bytes.

NOTE:
An application using private data version 5 and earlier
can only receive a maximum of 32-byte data for
userInfo, regardless of the size data that is sent by the
switch.

The following UUI protocol types are supported:

■ UUI_NONE — There is no data provided in the data
parameter.

■ UUI_USER_SPECIFIC — The content of the data
parameter is a binary string. The correct size (maximum
of 32 or 96 bytes) of data must be specified in the size
parameter.

■ UUI_IA5_ASCII — The content of the data parameter
must be a null-terminated IA5 (ASCII) character string.
The correct size (maximum of 32 or 96 bytes excluding
the null terminator) of data must be specified in the size
parameter.

reason [optional] Specifies the reason of this event. The following
reason is supported:

■ AR_NONE— indicate no value specified for reason.

■ AR_IN_QUEUE — When an already queued call
reaches a converse vector step, the Delivered Event will
include this reason code to inform the application that
the call is still in queue. This reason applies to
DELIVERED_TO_ACD only. Otherwise, this parameter
will be set to AR_NONE.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V19-46

Delivered Event
.

originalCallInfo [optional] Specifies the original call information. Note that
information is not repeated in the originalCallInfo, if it is
already reported in the CSTA service parameters or in the
private data. For example, the callingDevice and
calledDevice in the originalCallInfo will be NULL, if the
callingDevice and the calledDevice in the CSTA service
parameters are the original calling and called devices. Only
when the original devices are different from the most recent
callingDevice and calledDevice, the callingDevice and
calledDevice in the originalCallInfo will be set. If the
userEnteredCode in the private data is the original
userEnteredCode, the userEnteredCode in the
originalCallInfo will be UE_NONE. Only when new
userEnteredCode is received and reported in the
userEnteredCode, the originalCallInfo will have the original
userEnteredCode

NOTE:
For the Delivered Event sent to the newCall of a
Consultation Call, the originalCallInfo is taken from the
activeCall specified in the Consultation Call request.
Thus the application can pass the original call
information between two calls. The calledDevice of
the Consultation Call must reside on the same switch
and must be monitored via the same Tserver.

The original call information includes:

■ reason — the reason for the originalCallInfo. The
following reasons are supported.

— OR_NONE — no originalCallInfo provided

— OR_CONSULTATION — consultation call

— OR_CONFERENCED — call conferenced

— OR_TRANSFERRED — call transferred

— OR_NEW_CALL — new call

■ callingDevice — the original callingDevice received by
the activeCall.

■ calledDevice — the original calledDevice received by
the activeCall.

■ trunk — the original trunk group received by the
activeCall. This parameter is supported by private data
version 2, 3, and 4.
Issue 1 — December 2001

9-47DEFPROG.PDF R10.1 V1

Event Report Service Group
■ trunkGroup — the original trunkGroup received by the
activeCall. This parameter is supported by private data
version 5 and later only.

■ trunkMember (G3V4 switches and later) — the original
trunkMember received by the activeCall.

■ lookaheadInfo — the original lookaheadInfo received
by the activeCall.

■ userEnteredCode — the original userEnteredCode
received by the activeCall.

■ userInfo — the original userInfo received by the
activeCall.

Prior to G3V8, the maximum length of userInfo was 32
bytes. Beginning with G3V8, the maximum length of
userInfo is increased to 96 bytes.

NOTE:
An application using private data version 5 and earlier
can only receive a maximum of 32-byte data for
userInfo, regardless of the size data that is sent by the
switch.

■ ucid — the original ucid of the call. This parameter is
supported by private data version 5 and later only.

■ callOriginatorInfo — the original callOriginatorInfo
received by the activeCall. This parameter is supported
by private data version 5 and later only.

■ flexibleBilling — the original flexibleBilling information
of the call. This parameter is supported by private data
version 5 and later only.

distributingDevice [optional] Specifies the ACD or VDN device that distributed
the call to the agent station. This information is provided
only when the call was processed by the switch ACD or Call
Vectoring processing and is only sent for a station monitor
(i.e., the delivery type is DELIVERED_TO_STATION). This
parameter is supported by private data version 4 and later
Issue 1 — December 2001

DEFPROG.PDF R10.1 V19-48

Delivered Event
NOTE:
The calledDevice specifies the originally called device.
In most ACD call scenarios, calledDevice and
distributingDevice have the same device ID.
However, in call scenarios that involve call vectoring
with the VDN Override feature turned on, calledDevice
and distributingDevice may have different device IDs.
Incoming calls arriving at the same calledDevice may
be distributed to an agent via different call paths that
have more than one VDN involved. If the VDN
Override feature is used on the calledDevice, the
distributingDevice specifies the VDN that distributes
the call to the agent. This is particularly useful for
applications that need to know the call path.

For example, VDN 25201 has VDN Override feature
on. VDN 25201 can either route the call to VDN 25202
or VDN 25204. VDN Override is not administered on
25202 and 25204, based on conditions set up at the
vector associated with VDN 25201. Both VDN 25202
and 25204 route the call to VDN 25203. Then VDN
25203 routes the call to an agent. If VDN 25201 and
the agent’s station are both monitored, but not VDN
25202 and 25204, the agent’s station monitoring can
tell from the distributingDevice whether the path of a
call involves 24202 or 24204 when 25201 is called.
Also note that, in the Delivered and Established
events for the agent’s station monitoring, the
calledDevice will be 25201 and the
lastRedirectionDevice will also be 25201(if VDN
25203 is monitored, the lastRedirectionDevice will
change to 25203).

NOTE:
Proper switch administration of the VDN Override
feature is required on the G3 switch in order to receive
a useful distributingDevice. The distributingDevice
contains the originally called device if such
administration is not performed on the G3 switch.
Issue 1 — December 2001

9-49DEFPROG.PDF R10.1 V1

Event Report Service Group
Detailed Information:

In addition to the information given below, see the ‘‘Event Report Detailed
Information’’ section in this chapter.

■ Distributing Device — There was no support for the distributingDevice
parameter in G3PD before Release 2.2. In Release 2.1, the calledDevice
always contains the originally called device and the distributing device, if it
is different from the calledDevice, is not reported.

In Release 1, the calledDevice contains the originally called device if there
is no distributing device or contains the distributing device if call vectoring
with VDN override feature of the PBX is turned on. In the later case, the
originally called device is not reported.

■ Last Redirection Device — There is only limited support for this parameter.
An application must understand the limitations of this parameter in order to
use the information correctly.

NOTE:
The accuracy of the information provided in this parameter depends on how
an application monitors the devices involved in a call scenario.
Experimentation may be required before an application can use this
information.

ucid [optional] Specifies the Universal Call ID (UCID) of the
resulting newCall. The UCID is a unique call identifier
across switches and the network. A valid UCID is a
null-terminated ASCII character string. If there is no UCID
associated with this call, the ucid contains the ATT_NULL_
UCID (a 20-character string of all zeros). This parameter is
supported by private data version 5 and later only.

callOriginatorInfo [optional] Specifies the callOriginatorType of the call
originator such as coin call, 800-service call, or cellular call.
This information is from the network, not from the DEFINITY
switch. The type is defined in the Bell Communications
Research (Bellcore) publication, “Local Exchange Routing
Guide,” (document number TR-EOP-000085). A list of the
currently defined codes (June 1994) is in the Detailed
Information sub-section of the “Delivered Event” section in
this chapter. This parameter is supported by private data
version 5 and later only.

flexibleBilling [optional] Specifies whether the Flexible Billing feature is
allowed for this call and the Flexible Billing customer option
is assigned on the switch. If this parameter is set to TRUE,
the billing rate can be changed for the incoming 900-type
call using the Set Bill Rate Service. This parameter is
supported by private data version 5 and later only.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V19-50

Delivered Event
NOTE:
This parameter provides the last device known by the G3PD through
monitor services that redirects the call or diverts the call to the device
(alertingDevice, answeringDevice, queued) to which the call arrives. The
redirection device can be a VDN, ACD Split, or station device. The following
call scenarios describe this parameter and its limitations.

Call Scenario 1:

— Both caller and agent device are monitored.

— Caller dials an ACD Split (not monitored) or a VDN (not monitored) to
connect to the agent.

— Call arrives at the agent station.

■ If the caller dials the ACD Split directly, the Delivered/Established
Events sent to both caller and the agent will have the ACD Split as
the lastRedirectionDevice.

NOTE:
If the caller calls the VDN, instead of the ACD Split, and the VDN
sends the call to the ACD Split, the Delivered/Established Events
sent to both the caller and the agent will have the VDN as the
lastRedirectionDevice. The last redirection device in the PBX is
actually the ACD Split.

NOTE:
If the caller dials the VDN, the VDN sends the call to the ACD Split,
and the call is queued at the ACD Split before the agent receives the
call, the Delivered/Established Events will have the VDN as the
lastRedirectionDevice. The last redirection device in the PBX is
actually the ACD Split.

NOTE:
If the caller calls from an external device, the agent station receives
the same lastRedirectionDevice information.

Call Scenario 2:

— Both caller and agent device are monitored.

— Caller dials an ACD Split (not monitored) or a VDN (monitored) to connect
to the agent.

— Call arrives at the agent station.

Same results as in the call scenario 1, except in the following case.
Issue 1 — December 2001

9-51DEFPROG.PDF R10.1 V1

Event Report Service Group
■ If the caller dials the VDN, the VDN sends the call to the ACD Split,
and the call is queued at the ACD Split before the agent receives the
call, the Queued Event will have the VDN as the
lastRedirectionDevice. The Delivered/Established Events will have
the ACD Split as the lastRedirectionDevice.

■ If the caller calls from an external device, the agent station receives
the same lastRedirectionDevice information.

Call Scenario 3:

— Both caller and the answering party are monitored.

— Caller dials a number (having no effect on the result whether it is monitored
or not) and call goes to the first coverage point (not monitored).

— Call goes to the second coverage point (answering station).

— Call arrives at the answering station.

■ The Delivered Event sent to the caller will have the dialed number
as the lastRedirectionDevice when call arrives at the first coverage
point.

■ The Delivered/Established Events sent to both caller and the
answering party will have the first coverage point as the
lastRedirectionDevices when call arrives at the answering party.

Call Scenario 4:

— Caller is not monitored, but answering party is monitored.

— Caller dials a number (having no effect on the result whether it is monitored
or not) and call goes to the first coverage point (not monitored).

— Call goes to the second coverage point (answering station).

— Call arrives at the answering station.

NOTE:
The Delivered/Established Events sent to the answering party will have the
dialed number as the lastRedirectionDevice event though the first coverage
point redirects the call to the answering party.

Call Scenario 5:

— Caller is not monitored, but answering party is monitored.

— Caller dials a number (having no effect on the result whether it is monitored
or not) and call goes to the first coverage point (monitored).

— Call goes to the second coverage point (answering station).

— Call arrives at the answering station.

■ The Delivered Event sent to the first coverage point will have the
dialed number as the lastRedirectionDevice.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V19-52

Delivered Event
■ The Delivered/Established Events sent to the answering party will
have the first coverage point as the lastRedirectionDevice.

■ The trunkGroup (private data version 5) trunk (private data versions
2-4), split, lookaheadInfo, userEnteredCode, and userInfo private
parameters contain the most recent information about a call, while
the originalCallInfo contains the original values for this information. If
the most recent values are the same as the original values, the
original values are not repeated in the originalCallInfo.

■ How to Collect userEnteredCode (UEC)

■ The following are steps for setting up VDNs, simple vector steps and
CSTA Monitor Service requests required for a client application to
receive UECs from the switch.

1. Administer a VDN and a vector on the G3 switch with a
collect digits step and route command to a second VDN. See
‘‘Call Scenario 1:’’ and ‘‘Call Scenario 2:’’.

The purpose of this VDN is to collect UEC, but it will not
report the UEC to the G3PD, even if the VDN is monitored.
The route command must redirect the call to a second VDN.
The first VDN doesn’t have to be monitored by any client
application.

2. Administer a second VDN and vector to receive the
redirected call from the first VDN.

The purpose of this second VDN is to report the UEC to the
G3PD. Thus it must be monitored by a
cstaMonitorCallsViaDevice service request from at least one
client. This VDN should redirect the call to its destination. The
destination can be a station extension, an ACD split, or
another VDN.

If the destination is a station extension and if the station is
monitored by a cstaMonitorDevice service request, the
station monitor will receive the UEC collected by the first
VDN.

If the destination is an ACD split and if an agent station in the
split is monitored by a cstaMonitorDevice service request, the
station monitor will receive the UEC collected by the first
VDN.

If the destination is a VDN and if the VDN is monitored by a
cstaMonitorCallsViaDevice Service request, the VDN monitor
will not receive the UEC collected by the first VDN.

UEC is reported in Delivered Event Reports (for detailed
information, see ‘‘Call Scenario 1:’’ and ‘‘Call Scenario 2:’’). If
multiple UECs are collected by multiple VDNs in call
processing, only the most recently collected UEC is reported.
Issue 1 — December 2001

9-53DEFPROG.PDF R10.1 V1

Event Report Service Group
Limitations

■ A monitored VDN only reports the UEC it receives (UEC collected in a
previous VDN). It will not report UEC it collects or UEC collected after the
call is redirected from the VDN.

■ A station monitor reports only the UEC that is received by the VDN that
redirects the call to the station, provided that the VDN is monitored (see
‘‘Call Scenario 2:’’).

Call Scenario 1:

■ If VDN 24101 is mapped to vector 1, vector 1 has the following steps:

1. Collect 16 digits after announcement extension 1000

2. Route to 24102

3. Stop

■ If VDN 24102 is mapped to vector 2, vector 2 has the following steps:

1. Route to 24103

2. Stop

■ If 24103 is a station extension, the following can occur:

— When a call is arrived on VDN 24101, the caller will hear the
announcement and the switch will wait for the caller to enter 16
digits. After the 16 digits are collected in time (if the collect digits
step is timed out, the next step is executed), the call is routed to
VDN 24102. The VDN 24102 routes the call to station 24103.

— If VDN 24101 is monitored using cstaMonitorCallsViaDevice, the
User Entered Digits will NOT be reported in the Delivered Event
Report (Call Delivered to an ACD Device) for the VDN 24101
monitor. This is because the Delivered Event Report is sent before
the digits are collected.

— If VDN 24102 is monitored using cstaMonitorCallsViaDevice, the 16
digits collected by VDN 24101 will be reported in the Delivered
Event Report (Call Delivered to an ACD Device) for the VDN 24102
monitor. VDN 24101 monitoring is not required for the VDN 24102
monitor to receive UEC collected by VDN 24101.

— If VDN 24102 is monitored using cstaMonitorCallsViaDevice from
any client and station 24103 is monitored using cstaMonitorDevice,
the 16 digits collected by VDN 24101 will be reported in the
Delivered Event Report (Call Delivered to a Station Device) sent to
the station 24103 monitor. If the client application is interested in the
events reported by the station 24103 monitor only, call filters can be
used in the cstaMonitorCallsViaDevice service to filter out all event
reports from VDN 24102. This will not affect the UEC sent to the
station 24103 monitor.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V19-54

Delivered Event
NOTE:
VDN 24102 monitoring (with or without call filters) is required
for the station 24103 monitor to receive UEC collected by VDN
24101.

Call Scenario 2:

■ If VDN 24201 is mapped to vector 11, vector 11 has the following steps:

1. Collect 10 digits after announcement extension 2000.

2. Route to 24202.

3. Stop.

■ If VDN 24202 is mapped to vector 12, vector 12 has the following steps:

1. Collect 16 digits after announcement extension 3000.

2. Route to 24203.

3. Stop.

■ If VDN 24203 is mapped to vector 13, vector 13 has the following steps:

1. Queue to main split 2 priority.

2. Stop.

Where split 2 is a vector-controlled ACD split that has agent extensions 24301,
24302, 24303.

When a call arrives on VDN 24201, the caller will hear an announcement and the
switch will wait for the caller to enter 10 digits. After the 10 digits are collected in
time, the call is routed to VDN 24202. When the call arrives on VDN 24202, the
caller will hear an announcement and the switch willwait for the caller to enter 16
digits. After the 16 digits are collected in time, the call is routed to VDN 24203.
The VDN 24203 queues the call to ACD Split 2. If the agent at station 24301 is
available, the call is sent to station 24301.

If VDN 24201 is monitored using cstaMonitorCallsViaDevice, the 10 digits
collected by VDN 24201 will not be reported in the Delivered Event Report (Call
Delivered to an ACD Device) sent for the VDN 24201 monitor. This occurs
because the Delivered Event Report is sent before the digits are collected.

If VDN 24202 is monitored using cstaMonitorCallsViaDevice, the 10 digits
collected by VDN 24201 will be reported in the Delivered Event Report (Call
Delivered to an ACD Device) sent for the VDN 24202 monitor.

If VDN 24203 is monitored using cstaMonitorCallsViaDevice, the 16 digits
collected by VDN 24202 will be reported in the Delivered Event Report (Call
Delivered to an ACD Device) sent for the VDN 24203 monitor. However, the 10
digits collected by VDN 24201 will not be reported in the Delivered Event for the
VDN 24203 monitor.
Issue 1 — December 2001

9-55DEFPROG.PDF R10.1 V1

Event Report Service Group
The cstaMonitorCallsViaDevice service receives only the most recent UEC.

If VDN 24202 and VDN 24203 are both monitored using
cstaMonitorCallsViaDevice from any client, and station 24301 is monitored using
cstaMonitorDevice, only the 16 digits collected by VDN 24202 will be reported in
the Delivered Event Report (Call Delivered to a Station Device) for the station
24301 monitor. The cstaMonitorDevice service will receive the UEC that is
received by the VDN that redirects calls to the station.

NOTE:
In order to receive the UEC for station monitoring, the VDN that receives the
UEC and redirects calls to the station must be monitored. For example, if
VDN 24203 is not monitored by any client, a cstaMonitorDevice Service on
station 24301 will not receive the 16 digits collected by VDN 24202.

Call Originator Type - The type is defined in a Bell Communications Research
(Bellcore) publication, “Local Exchange Routing Guide,” (document number
TR-EOP-000085). A list of defined codes, as of June 1994, is shown in Table 9-1:

Table 9-1. Call Originator Type

Code Description

00 Identified Line — No Special Treatment

01 Multiparty — ANI Cannot Be Provided

02 ANI Failure

06 Hotel/Motel — DN Not Accompanied by Automatic Room ID

07 Special Operator Handling Required

20 AIOD — Listed DN of PBX Sent

23 Coin or Non-Coin — Line Status Unknown

24 800 Service Call

27 Coin Call

29 Prison/Inmate Service

30 - 32 Intercept

34 Telco Operator Handled Call

40 - 49 Locally Determined By Carrier

52 Out WATS

60 Telecommunication Relay Service (TRS) — Station Paid

61 Type 1 Cellular

62 Type 2 Cellular

63 Roamer Cellular
Issue 1 — December 2001

DEFPROG.PDF R10.1 V19-56

Delivered Event
NOTE:
Although each value in callOriginatorType has a special meaning, neither
the G3 PBX nor the G3PD interprets these values. The values in
callOriginatorType are from the network and the application should interpret
the meaning of a particular value based on Bellcore’s specification.

66 TRS — From Hotel/Motel

67 TRS — From Restricted Line

70 Private Pay Station

93 Private Virtual Network Call

Table 9-1. Call Originator Type

Code Description
Issue 1 — December 2001

9-57DEFPROG.PDF R10.1 V1

Event Report Service Group
Syntax

#include <acs.h>
#include <csta.h>

// CSTADeliveredEvent

typedef struct
{

ACSHandle_t acsHandle;
EventClass_t eventClass; // CSTAUNSOLICITED
EventType_t eventType; // CSTA_DELIVERED

} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_teventHeader;
union
{

struct
{

CSTAMonitorCrossRefID_tmonitorCrossRefId;
union
{

CSTADeliveredEvent_t delivered;
} u;

} cstaUnsolicited;
} event;
charheap[CSTA_MAX_HEAP];

} CSTAEvent_t;

typedef struct CSTADeliveredEvent_t
{

ConnectionID_t connection;
SubjectDeviceID_t alertingDevice;
CallingDeviceID_t callingDevice;
CalledDeviceID_t calledDevice;
RedirectionDeviceID_t lastRedirectionDevice;
LocalConnectionState_t localConnectionInfo;
CSTAEventCause_t cause;

} CSTADeliveredEvent_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 V19-58

Delivered Event
Private Data Version 6 Syntax

If private data accompanies a CSTADeliveredEvent, then the
private data would be stored in the location that the
application specified as the privateData parameter in the
acsGetEventBlock() or acsGetEventPoll() request. If the
privateData pointer is set to NULL in these requests, then
the CSTADeliveredEvent does not deliver private data to the
application. If acsGetEventBlock() or acsGetEventPoll()
returns a Private Data length of 0, then no private data
is provided with this event.

#include <acs.h>
#include <csta.h>
#include <attpriv.h>

// ATTDeliveredEvent - CSTA Unsolicited Event Private Data

typedef struct
{

ATTEventType_t eventType;// ATT_DELIVERED
union
{

ATTDeliveredEvent_t deliveredEvent;
} u;

} ATTEvent_t;

typedef struct ATTDeliveredEvent_t
{

ATTDeliveredType_t deliveredType;
DeviceID_t trunkGroup;
DeviceID_t trunkMember;
DeviceID_t split;
ATTLookaheadInfo_t lookaheadInfo;
ATTUserEnteredCode_t userEnteredCode;
ATTUserToUserInfo_t userInfo;
ATTReasonCode_t reason;
ATTOriginalCallInfo_t originalCallInfo;
CalledDeviceID_t distributingDevice;
ATTUCID_t ucid;
ATTCallOriginatorType_t callOriginatorInfo;
Boolean flexibleBilling;

} ATTDeliveredEvent_t;

typedef enum ATTDeliveredType_t
{

DELIVERED_TO_ACD = 1,
DELIVERED_TO_STATION = 2,
DELIVERED_OTHER = 3 // not in use

} ATTDeliveredType_t;
Issue 1 — December 2001

9-59DEFPROG.PDF R10.1 V1

Event Report Service Group
Private Data Version 6 Syntax (Continued)

typedef struct ATTLookaheadInfo_t
{

ATTInterflow_t type;
ATTPriority_t priority;
short hours;
short minutes;
short seconds;
DeviceID_t sourceVDN;
ATTUnicodeDeviceID_tuSourceVDN; // sourceVDN in Unicode

} ATTLookaheadInfo_t;

typedef enum ATTInterflow_t
{

LAI_NO_INTERFLOW = -1, // indicates info not present
LAI_ALL_INTERFLOW = 0,
LAI_THRESHOLD_INTERFLOW= 1,
LAI_VECTORING_INTERFLOW= 2

} ATTInterflow_t;

typedef enum ATTPriority_t
{

LAI_NOT_IN_QUEUE = 0,
LAI_LOW = 1,
LAI_MEDIUM = 2,
LAI_HIGH = 3,
LAI_TOP = 4

} ATTPriority_t;

typedef struct ATTUnicodeDeviceID_t
{

short count;
unsigned shortvalue[64];

} ATTUnicodeDeviceID_t;

typedef struct ATTUserEnteredCode_t
{

ATTUserEnteredCodeType_t type;
ATTUserEnteredCodeIndicator_tindicator;
char data[ATT_MAX_USER_CODE];

DeviceID_t collectVDN;
} ATTUserEnteredCode_t;

typedef enum ATTUserEnteredCodeType_t
{
UE_NONE = -1, // indicates not specified
UE_ANY = 0,
UE_LOGIN_DIGITS = 2,
UE_CALL_PROMPTER = 5,
UE_DATA_BASE_PROVIDED= 17,
UE_TONE_DETECTOR = 32
} ATTUserEnteredCodeType_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 V19-60

Delivered Event
Private Data Version 6 Syntax (Continued)

typedef enum ATTUserEnteredCodeIndicator_t
{
UE_COLLECT= 0,
UE_ENTERED= 1
} ATTUserEnteredCodeIndicator_t;

typedef struct ATTUserToUserInfo_t
{

ATTUUIProtocolType_ttype;
struct {
short length; // 0 indicates UUI not present
unsigned char value[ATT_MAX_USER_INFO];
} data;

} ATTUserToUserInfo_t;

typedef enum ATTUUIProtocolType_t
{

UUI_NONE = -1, // indicates not specified
UUI_USER_SPECIFIC= 0, // user-specific
UUI_IA5_ASCII = 4 // null terminated ascii

// character string
} ATTUUIProtocolType_t;

typedef enum ATTReasonCode_t
{
AR_NONE = 0,// no reason code specified
AR_ANSWER_NORMAL = 1,// answer supervision from

// the network or internal answer
AR_ANSWER_TIMED = 2,// assumed answer based on

// internal timer
AR_ANSWER_VOICE_ENERGY = 3,// voice energy detection by

// classifier
AR_ANSWER_MACHINE_DETECTED= 4,// answering machine detected
AR_SIT_REORDER = 5,// switch equipment congestion
AR_SIT_NO_CIRCUIT = 6,// no circuit or channel

// available
AR_SIT_INTERCEPT = 7,// number changed
AR_SIT_VACANT_CODE = 8,// unassigned number
AR_SIT_INEFFECTIVE_OTHER= 9,// invalid number
AR_SIT_UNKNOWN = 10,// normal unspecified
AR_IN_QUEUE = 11,// call still in queue - for

// Delivered Event only
AR_SERVICE_OBSERVER= 12 // service observer connected
} ATTReasonCode_t
Issue 1 — December 2001

9-61DEFPROG.PDF R10.1 V1

Event Report Service Group
Private Data Version 6 Syntax (Continued)

typedef struct ATTOriginalCallInfo_t
{

ATTReasonForCallInfo_treason;
CallingDeviceID_t callingDevice;
CalledDeviceID_t calledDevice;
DeviceID_t trunkGroup;
DeviceID_t trunkMember;
ATTLookaheadInfo_t lookaheadInfo;
ATTUserEnteredCode_tuserEnteredCode;
ATTUserToUserInfo_t userInfo;
ATTUCID_t ucid;
ATTCallOriginatorType_tcallOriginatorInfo;
Boolean flexibleBilling;

} ATTOriginalCallInfo_t;

typedef enum ATTReasonForCallInfo_t
{

OR_NONE = 0,// indicates Original
// Call Info not present

OR_CONSULTATION = 1,
OR_CONFERENCED = 2,
OR_TRANSFERRED = 3,
OR_NEW_CALL = 4

} ATTReasonForCallInfo_t;

typedef ExtendedDeviceID_tCallingDeviceID_t;

typedef ExtendedDeviceID_tCalledDeviceID_t;

typedef char ATTUCID_t[64];

typedef struct ATTCallOriginatorInfo_t
{

Boolean hasInfo; // If FALSE, no
// callOriginatorType

short callOriginatorType;
} ATTCallOriginatorInfo_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 V19-62

Delivered Event
Private Data Version 5 Syntax

If private data accompanies a CSTADeliveredEvent, then the
private data would be stored in the location that the
application specified as the privateData parameter in the
acsGetEventBlock() or acsGetEventPoll() request. If the
privateData pointer is set to NULL in these requests, then
the CSTADeliveredEvent does not deliver private data to the
application. If acsGetEventBlock() or acsGetEventPoll()
returns a Private Data length of 0, then no private data
is provided with this event.

#include <acs.h>
#include <csta.h>
#include <attpriv.h>

// ATTV5DeliveredEvent - CSTA Unsolicited Event Private Data

typedef struct
{

ATTEventType_t eventType;// ATT_DELIVERED
union
{

ATTV5DeliveredEvent_tdeliveredEvent;
} u;

} ATTEvent_t;

typedef struct ATTV5DeliveredEvent_t
{

ATTDeliveredType_t deliveredType;
DeviceID_t trunkGroup;
DeviceID_t trunkMember;
DeviceID_t split;
ATTLookaheadInfo_t lookaheadInfo;
ATTUserEnteredCode_t userEnteredCode;
ATTV5UserToUserInfo_t userInfo;
ATTReasonCode_t reason;
ATTV5OriginalCallInfo_t originalCallInfo;
CalledDeviceID_t distributingDevice;
ATTUCID_t ucid;
ATTCallOriginatorType_t callOriginatorInfo;
Boolean flexibleBilling;

} ATTV5DeliveredEvent_t;

typedef enum ATTDeliveredType_t
{

DELIVERED_TO_ACD = 1,
DELIVERED_TO_STATION = 2,
DELIVERED_OTHER = 3 // not in use

} ATTDeliveredType_t;
Issue 1 — December 2001

9-63DEFPROG.PDF R10.1 V1

Event Report Service Group
Private Data Version 5 Syntax (Continued)

typedef struct ATTLookaheadInfo_t
{

ATTInterflow_t type;
ATTPriority_t priority;
short hours;
short minutes;
short seconds;
DeviceID_t sourceVDN;
ATTUnicodeDeviceID_tuSourceVDN; // sourceVDN in Unicode

} ATTLookaheadInfo_t;

typedef enum ATTInterflow_t
{

LAI_NO_INTERFLOW = -1, // indicates info not present
LAI_ALL_INTERFLOW = 0,
LAI_THRESHOLD_INTERFLOW= 1,
LAI_VECTORING_INTERFLOW= 2

} ATTInterflow_t;

typedef enum ATTPriority_t
{

LAI_NOT_IN_QUEUE = 0,
LAI_LOW = 1,
LAI_MEDIUM = 2,
LAI_HIGH = 3,
LAI_TOP = 4

} ATTPriority_t;

typedef struct ATTUnicodeDeviceID_t
{

short count;
unsigned shortvalue[64];

} ATTUnicodeDeviceID_t;

typedef struct ATTUserEnteredCode_t
{

ATTUserEnteredCodeType_t type;
ATTUserEnteredCodeIndicator_tindicator;
char data[ATT_MAX_USER_CODE];

DeviceID_t collectVDN;
} ATTUserEnteredCode_t;

typedef enum ATTUserEnteredCodeType_t
{
UE_NONE = -1, // indicates not specified
UE_ANY = 0,
UE_LOGIN_DIGITS = 2,
UE_CALL_PROMPTER = 5,
UE_DATA_BASE_PROVIDED= 17,
UE_TONE_DETECTOR = 32
} ATTUserEnteredCodeType_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 V19-64

Delivered Event
Private Data Version 5 Syntax (Continued)

typedef enum ATTUserEnteredCodeIndicator_t
{
UE_COLLECT= 0,
UE_ENTERED= 1
} ATTUserEnteredCodeIndicator_t;

typedef struct ATTV5UserToUserInfo_t
{

ATTUUIProtocolType_ttype;
struct {
short length; // 0 indicates UUI not present
unsigned char value[33];
} data;

} ATTV5UserToUserInfo_t;

typedef enum ATTUUIProtocolType_t
{

UUI_NONE = -1, // indicates not specified
UUI_USER_SPECIFIC= 0, // user-specific
UUI_IA5_ASCII = 4 // null terminated ascii

// character string
} ATTUUIProtocolType_t;

typedef enum ATTReasonCode_t
{
AR_NONE = 0,// no reason code specified
AR_ANSWER_NORMAL = 1,// answer supervision from

// the network or internal answer
AR_ANSWER_TIMED = 2,// assumed answer based on

// internal timer
AR_ANSWER_VOICE_ENERGY = 3,// voice energy detection by

// classifier
AR_ANSWER_MACHINE_DETECTED= 4,// answering machine detected
AR_SIT_REORDER = 5,// switch equipment congestion
AR_SIT_NO_CIRCUIT = 6,// no circuit or channel

// available
AR_SIT_INTERCEPT = 7,// number changed
AR_SIT_VACANT_CODE = 8,// unassigned number
AR_SIT_INEFFECTIVE_OTHER= 9,// invalid number
AR_SIT_UNKNOWN = 10,// normal unspecified
AR_IN_QUEUE = 11,// call still in queue - for

// Delivered Event only
AR_SERVICE_OBSERVER= 12 // service observer connected
} ATTReasonCode_t
Issue 1 — December 2001

9-65DEFPROG.PDF R10.1 V1

Event Report Service Group
Private Data Version 5 Syntax (Continued)

typedef struct ATTV5OriginalCallInfo_t
{

ATTReasonForCallInfo_treason;
CallingDeviceID_t callingDevice;
CalledDeviceID_t calledDevice;
DeviceID_t trunkGroup;
DeviceID_t trunkMember;
ATTLookaheadInfo_t lookaheadInfo;
ATTUserEnteredCode_tuserEnteredCode;
ATTV5UserToUserInfo_tuserInfo;
ATTUCID_t ucid;
ATTCallOriginatorType_tcallOriginatorInfo;
Boolean flexibleBilling;

} ATTV5OriginalCallInfo_t;

typedef enum ATTReasonForCallInfo_t
{

OR_NONE = 0,// indicates Original
// Call Info not present

OR_CONSULTATION = 1,
OR_CONFERENCED = 2,
OR_TRANSFERRED = 3,
OR_NEW_CALL = 4

} ATTReasonForCallInfo_t;

typedef ExtendedDeviceID_tCallingDeviceID_t;

typedef ExtendedDeviceID_tCalledDeviceID_t;

typedef char ATTUCID_t[64];

typedef struct ATTV5CallOriginatorInfo_t
{

Boolean hasInfo; // If FALSE, no
// callOriginatorType

short callOriginatorType;
} ATTV5CallOriginatorInfo_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 V19-66

Delivered Event
Private Data Version 4 Syntax

#include <acs.h>
#include <csta.h>
#include <attpriv.h>

// ATTV4DeliveredEvent - CSTA Unsolicited Event Private Data

typedef struct
{

ATTEventType_teventType;// ATTV4_DELIVERED
union
{

ATTV4DeliveredEvent_tv4deliveredEvent;
} u;

} ATTEvent_t;

typedef struct ATTV4DeliveredEvent_t
{

ATTDeliveredType_t deliveredType;
DeviceID_t trunk;
DeviceID_t trunkMember;
DeviceID_t split;
ATTV4LookaheadInfo_tlookaheadInfo;
ATTUserEnteredCode_tuserEnteredCode;
ATTV5UserToUserInfo_tuserInfo;
ATTReasonCode_t reason;
ATTV4OriginalCallInfo_toriginalCallInfo;
CalledDeviceID_t distributingDevice;

} ATTV4DeliveredEvent_t;

typedef enum ATTDeliveredType_t
{

DELIVERED_TO_ACD = 1,
DELIVERED_TO_STATION = 2,
DELIVERED_OTHER = 3 // not in use

} ATTDeliveredType_t;

typedef structATTV4LookaheadInfo_t{
ATTInterflow_t type;
ATTPriority_t priority;
short hours;
short minutes;
short seconds;
DeviceID_t sourceVDN;

} ATTV4LookaheadInfo_t;
Issue 1 — December 2001

9-67DEFPROG.PDF R10.1 V1

Event Report Service Group
Private Data Version 4 Syntax (Continued)

typedef enum ATTInterflow_t
{

LAI_NO_INTERFLOW= -1,// indicates info not present
LAI_ALL_INTERFLOW= 0,
LAI_THRESHOLD_INTERFLOW= 1,
LAI_VECTORING_INTERFLOW= 2

} ATTInterflow_t;

typedef enum ATTPriority_t
{

LAI_NOT_IN_QUEUE= 0,
LAI_LOW = 1,
LAI_MEDIUM = 2,
LAI_HIGH = 3,
LAI_TOP = 4

} ATTPriority_t;

typedef struct ATTUserEnteredCode_t
{

ATTUserEnteredCodeType_t type;
ATTUserEnteredCodeIndicator_tindicator;
char data[ATT_MAX_USER_CODE];

DeviceID_t collectVDN;
} ATTUserEnteredCode_t;

typedef enum ATTUserEnteredCodeType_t
{
UE_NONE = -1, // indicates not specified
UE_ANY = 0,
UE_LOGIN_DIGITS= 2,
UE_CALL_PROMPTER= 5,
UE_DATA_BASE_PROVIDED= 17,
UE_TONE_DETECTOR= 32
} ATTUserEnteredCodeType_t;

typedef enum ATTUserEnteredCodeIndicator_t
{
UE_COLLECT= 0,
UE_ENTERED= 1
} ATTUserEnteredCodeIndicator_t;

typedef struct ATTV5UserToUserInfo_t
{

ATTUUIProtocolType_ttype;
struct {
short length; // 0 indicates UUI not present
unsigned charvalue[33];
} data;

} ATTV5UserToUserInfo_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 V19-68

Delivered Event
Private Data Version 4 Syntax (Continued)

typedef enum ATTUUIProtocolType_t
{

UUI_NONE = -1, // indicates not specified
UUI_USER_SPECIFIC = 0, // user-specific
UUI_IA5_ASCII = 4 // null terminated ascii

// character string
} ATTUUIProtocolType_t;

typedef enum ATTReasonCode_t
{
AR_NONE = 0, // no reason code specified
AR_ANSWER_NORMAL = 1, // answer supervision from

// the network or internal answer
AR_ANSWER_TIMED = 2, // assumed answer based on

// internal timer
AR_ANSWER_VOICE_ENERGY= 3,// voice energy detection by

// classifier
AR_ANSWER_MACHINE_DETECTED= 4,// answering machine detected
AR_SIT_REORDER = 5, // switch equipment

// congestion
AR_SIT_NO_CIRCUIT = 6, // no circuit or channel

// available
AR_SIT_INTERCEPT = 7, // number changed
AR_SIT_VACANT_CODE = 8, // unassigned number
AR_SIT_INEFFECTIVE_OTHER = 9, // invalid number
AR_SIT_UNKNOWN = 10, // normal unspecified
AR_IN_QUEUE = 11 // call still in queue - for
// Delivered Event only} ATTReasonCode_t

typedef struct ATTV4OriginalCallInfo_t
{

ATTReasonForCallInfo_t reason;
CallingDeviceID_t callingDevice;
CalledDeviceID_t calledDevice;
DeviceID_t trunk;
DeviceID_t trunkMember;
ATTV4LookaheadInfo_t lookaheadInfo;
ATTUserEnteredCode_t userEnteredCode;
ATTV5UserToUserInfo_t userInfo;

} ATTV4OriginalCallInfo_t;

typedef enum ATTReasonForCallInfo_t
{

OR_NONE = 0, // indicates Original
// Call Info not present

OR_CONSULTATION = 1,
OR_CONFERENCED = 2,
OR_TRANSFERRED = 3,
OR_NEW_CALL = 4

} ATTReasonForCallInfo_t;

typedef ExtendedDeviceID_tCallingDeviceID_t;

typedef ExtendedDeviceID_tCalledDeviceID_t;
Issue 1 — December 2001

9-69DEFPROG.PDF R10.1 V1

Event Report Service Group
Private Data Versions 2 and 3 Syntax

#include <acs.h>
#include <csta.h>
#include <attpriv.h>

// ATTV3DeliveredEvent - CSTA Unsolicited Event Private Data

typedef struct
{

ATTEventType_teventType;// ATTV3_DELIVERED
union
{

ATTV3DeliveredEvent_tv3deliveredEvent;
} u;

} ATTEvent_t;

typedef struct ATTV3DeliveredEvent_t
{

ATTDeliveredType_t deliveredType;
DeviceID_t trunk;
DeviceID_t trunkMember;
DeviceID_t split;
ATTV4LookaheadInfo_t lookaheadInfo;
ATTUserEnteredCode_t userEnteredCode;
ATTV5UserToUserInfo_t userInfo;
ATTReasonCode_t reason;
ATTV4OriginalCallInfo_toriginalCallInfo;

} ATTV3DeliveredEvent_t;

typedef enum ATTDeliveredType_t
{

DELIVERED_TO_ACD = 1,
DELIVERED_TO_STATION = 2,
DELIVERED_OTHER = 3 // not in use

} ATTDeliveredType_t;

typedef structATTV4LookaheadInfo_t
{

ATTInterflow_t type;
ATTPriority_t priority;
short hours;
short minutes;
short seconds;
DeviceID_t sourceVDN;

} ATTV4LookaheadInfo_t;

typedef enum ATTInterflow_t
{

LAI_NO_INTERFLOW= -1,// indicates info not present
LAI_ALL_INTERFLOW= 0,
LAI_THRESHOLD_INTERFLOW= 1,
LAI_VECTORING_INTERFLOW= 2

} ATTInterflow_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 V19-70

Delivered Event
Private Data Versions 2 and 3 Syntax (Continued)

typedef enum ATTPriority_t
{

LAI_NOT_IN_QUEUE= 0,
LAI_LOW = 1,
LAI_MEDIUM = 2,
LAI_HIGH = 3,
LAI_TOP = 4

} ATTPriority_t;

typedef struct ATTUserEnteredCode_t
{

ATTUserEnteredCodeType_t type;
ATTUserEnteredCodeIndicator_tindicator;
char data[ATT_MAX_USER_CODE];

DeviceID_t collectVDN;
} ATTUserEnteredCode_t;

typedef enum ATTUserEnteredCodeType_t
{
UE_NONE = -1, // indicates not specified
UE_ANY = 0,
UE_LOGIN_DIGITS= 2,
UE_CALL_PROMPTER= 5,
UE_DATA_BASE_PROVIDED= 17,
UE_TONE_DETECTOR= 32
} ATTUserEnteredCodeType_t;

typedef enum ATTUserEnteredCodeIndicator_t
{
UE_COLLECT= 0,
UE_ENTERED= 1
} ATTUserEnteredCodeIndicator_t;

typedef struct ATTV5UserToUserInfo_t
{

ATTUUIProtocolType_ttype;
struct {
short length; // 0 indicates UUI not present
unsigned charvalue[33];
} data;

} ATTV5UserToUserInfo_t;

typedef enum ATTUUIProtocolType_t
{

UUI_NONE = -1, // indicates not specified
UUI_USER_SPECIFIC= 0, // user-specific
UUI_IA5_ASCII = 4 // null terminated ascii

// character string
} ATTUUIProtocolType_t;
Issue 1 — December 2001

9-71DEFPROG.PDF R10.1 V1

Event Report Service Group
Private Data Versions 2 and 3 Syntax (Continued)

typedef enum ATTReasonCode_t
{
AR_NONE = 0,// no reason code specified
AR_ANSWER_NORMAL = 1,// answer supervision from

// the network or internal answer
AR_ANSWER_TIMED = 2,// assumed answer based on

// internal timer
AR_ANSWER_VOICE_ENERGY= 3, // voice energy detection by

// classifier
AR_ANSWER_MACHINE_DETECTED= 4,// answering machine detected
AR_SIT_REORDER = 5, // switch equipment

// congestion
AR_SIT_NO_CIRCUIT = 6, // no circuit or channel

// available
AR_SIT_INTERCEPT = 7, // number changed
AR_SIT_VACANT_CODE = 8, // unassigned number
AR_SIT_INEFFECTIVE_OTHER = 9, // invalid number
AR_SIT_UNKNOWN = 10, // normal unspecified
} ATTReasonCode_t

typedef struct ATTV4OriginalCallInfo_t
{

ATTReasonForCallInfo_treason;
CallingDeviceID_t callingDevice;// original info
CalledDeviceID_t calledDevice;// original info
DeviceID_t trunk; // original info
DeviceID_t trunkMember;// not in use
ATTV4LookaheadInfo_t lookaheadInfo; // original info
ATTUserEnteredCode_t userEnteredCode;// original info
ATTV5UserToUserInfo_tuserInfo;// original info

} ATTV4OriginalCallInfo_t;

typedef enum ATTReasonForCallInfo_t
{

OR_NONE = 0, // indicates Original
// Call Info not present

OR_CONSULTATION = 1,
OR_CONFERENCED = 2,
OR_TRANSFERRED = 3,
OR_NEW_CALL = 4

} ATTReasonForCallInfo_t;

typedef ExtendedDeviceID_tCallingDeviceID_t;

typedef ExtendedDeviceID_tCalledDeviceID_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 V19-72

Diverted Event
Diverted Event

Direction: Switch to Client
Event: CSTADivertedEvent
Service Parameters: monitorCrossRefID, connection, divertingDevice,
newDestination, localConnectionInfo, cause

Functional Description:

The Diverted Event Report indicates a call that has been deflected or diverted
from a monitored device, and is no longer present at the device.

Before After

The Diverted Event Report is sent to notify the client application that event reports
for a call will no longer be provided. This event report is sent under the following
circumstances:

■ When a call enters a new VDN or ACD split that is being monitored.1 For
example, if a call leaves one monitored ACD device and enters another, a
Call Diverted Event Report is sent to the monitor for the first ACD device.
A Delivered Event Report must have been received by the ACD monitoring
before the Diverted Event Report.

■ When a call leaves a monitored station, without having been dropped or
disconnected, this report is sent to the monitor for the station. A Delivered
Event Report must have been received by the station monitoring before the
Diverted Event Report.

■ When a call that had been alerting at the station leaves the station
because:

— One member of a coverage and/or answer group answers a call
offered to a coverage group. In this case, all other members of the
coverage and/or answer group that were alerting for the call receive
a Diverted Event Report.

— A call has gone to AUDIX coverage and the Coverage Response
Interval (CRI) has elapsed (the principal’s call is redirected).

1. Described in the ‘‘Delivered Event’’ section.

D1 C1 D2 D1 C1 D2

D3 D3

a * *

*

Issue 1 — December 2001

9-73DEFPROG.PDF R10.1 V1

Event Report Service Group
— The principal answers the call while the coverage point is alerting
and the coverage point is dropped from the call.

— For stations that are members of a TEG group with no associated
TEG button (typically analog stations).

■ The monitored station is an analog phone and an alerting call is now
alerting elsewhere (gone to coverage) because:

— The pick-up feature is used to answer a call alerting an analog
principal’s station.

— An analog phone call is sent to coverage due to “no answer” (the
analog station’s call is redirected).

This event report will not be sent if the station is never alerted or if it retains a
simulated bridge appearance until the call is dropped/disconnected. Examples of
situations when this event is not sent are:

■ Bridging

■ Call forwarding

■ Calls to a TEG (multifunction set with TEG button)

■ Cover-All

■ Coverage/Busy

■ Incoming PCOL calls (multifunction sets)

■ Pick-up for multifunction set principals

This event report will never follow an Established Event Report and is always
preceded by a Delivered Event Report.

NOTE:
Event reporting has been changed for Release 3.10 and later. Prior to
Release 3.10, the Diverted Event was only sent to the device monitor from
which the call was diverted. Therefore, a monitored calling device could not
tell whether the call was diverted from a called device (the calling device will
receive only a Delivered Event when the call is alerting at a coverage point)
or the called device was still on the call when the call went to the coverage
point. Only the called device could tell if the call was diverted. All other
devices or calls, if monitored, did not receive the Diverted Event.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V19-74

Diverted Event
NOTE:
This has been changed since Release 3.10 and applies to streams opened
with Private Data Version 5 only. If an application opens a stream with
Private Data Version 4 or earlier, it will not be affected by this change. When
the application opens a Private Data Version 5 stream, the Diverted Event is
sent for all station device monitors, ACD devices (VDNs and ACD Splits)
monitors, and call monitors independent of whether the diverting device is
the monitored device. A station device monitor, an ACD device monitor, or a
call monitor will be reported whether a call is leaving or staying at a
previously alerted device (when a call goes to a coverage point) via the
presence or absence of the Diverted Event, respectively. Note that this
change only affects the Diverted event reporting; there is no private data
change for the Diverted Event itself.

Service Parameters:

Detailed Information:

See the ‘‘Event Report Detailed Information’’ section in this chapter.

monitorCrossRefID [mandatory] Contains the handle to the monitor request for
which this event is reported.

connection [mandatory] Specifies the connection that was alerting.

divertingDevice [optional — partially supported] Specifies the device from
which the call was diverted.

newDestination [optional — partially supported] Specifies the device to
which the call was diverted.

localConnectionInfo [optional — supported] Specifies the local connection state
as perceived by the monitored device on this call. This is
provided for the cstaMonitorDevice requests only. A value
of CS_NONE indicates that the local connection state is
unknown.

cause [optional — supported] Specifies the cause for this event.
The following cause is supported:

■ EC_REDIRECTED — The call has been redirected.
Issue 1 — December 2001

9-75DEFPROG.PDF R10.1 V1

Event Report Service Group
Syntax

#include <acs.h>
#include <csta.h>

// CSTADivertedEvent

typedef struct
{

ACSHandle_tacsHandle;
EventClass_teventClass; // CSTAUNSOLICITED
EventType_teventType; // CSTA_DIVERTED

} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_teventHeader;
union
{

struct
{

CSTAMonitorCrossRefID_tmonitorCrossRefId;
union
{

CSTADivertedEvent_t diverted;
} u;

} cstaUnsolicited;
} event;
charheap[CSTA_MAX_HEAP];

} CSTAEvent_t;

typedef struct CSTADivertedEvent_t
{

ConnectionID_t connection;
SubjectDeviceID_t divertingDevice;
CalledDeviceID_t newDestination;
LocalConnectionState_t localConnectionInfo;
CSTAEventCause_t cause;

} CSTADivertedEvent_t;

typedef ExtendedDeviceID_tSubjectDeviceID_t;

typedef ExtendedDeviceID_tCalledDeviceID_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 V19-76

Entered Digits Event (Private)
Entered Digits Event (Private)

Direction: Switch to Client
Event: CSTAPrivateStatusEvent
Private Data Event: ATTEnteredDigitsEvent
Service Parameters: monitorCrossRefID
Private Parameters: connection, digits, localConnectionInfo, cause

Functional Description:

The Entered Digits Event is sent when a DTMF tone detector attached to a call
and DTMF tones are received. The tone detector is disconnected when the far
end answers or "#" is detected. The digits reported include: 0-9, "*", and "#". The
digit string includes the "#", if present. Up to 24 digits can be entered.

Service Parameters:

Private Parameters:

Detailed Information:

See the ‘‘Event Report Detailed Information’’ section in this chapter.

monitorCrossRefID [mandatory] Contains the handle to the monitor request for
which this event is reported.

connection [mandatory] Specifies the callID of the call for which this
event is reported.

digits [mandatory] Specifies the digits user entered. The digits
reported include: 0-9, "*", and "#". The digit string includes
the "#", if present. The digit string is null terminated.

localConnectionInfo [optional] Specifies the local connection state as perceived
by the monitored device on this call. A value of CS_NONE
is always specified.

cause [optional] Specifies the cause for this event.
Issue 1 — December 2001

9-77DEFPROG.PDF R10.1 V1

Event Report Service Group
Syntax

#include <acs.h>
#include <csta.h>

// CSTAPrivateStatusEvent

typedef struct
{

ACSHandle_t acsHandle;
EventClass_teventClass; // CSTAUNSOLICITED
EventType_t eventType; // CSTA_PRIVATE_STATUS

} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_teventHeader;
union
{

struct
{

CSTAMonitorCrossRefID_tmonitorCrossRefId;
union
{

CSTAPrivateEvent_tprivateStatus;
} u;

} cstaUnsolicited;
} event;
charheap[CSTA_MAX_HEAP];

} CSTAEvent_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 V19-78

Entered Digits Event (Private)
Private Parameter Syntax

If private data accompanies a CSTAPrivateStatusEvent, then
the private data would be stored in the location that the
application specified as the privateData parameter in the
acsGetEventBlock() or acsGetEventPoll() request. If the
privateData pointer is set to NULL in these requests, then
the CSTAPrivateStatusEvent does not deliver private data
to the application. If acsGetEventBlock() or
acsGetEventPoll() returns a Private Data length of 0, then
no private data is provided with this event.

#include <acs.h>
#include <csta.h>
#include <attpriv.h>

// ATTEnteredDigitsEvent - CSTA Unsolicited Event Private Data

typedef struct
{

ATTEventType_teventType;// ATT_ENTERED_DIGITS
union
{

ATTEnteredDigitsEvent_tenteredDigitsEvent;
} u;

} ATTEvent_t;

// ATT Entered Digits Structure
typedef struct ATTEnteredDigitsEvent_t
{

ConnectionID_t connection;
char digits[ATT_MAX_ENTERED_DIGITS];
LocalConnectionState_tlocalConnectionInfo;
CSTAEventCause_t cause;

} ATTEnteredDigitsEvent_t;
Issue 1 — December 2001

9-79DEFPROG.PDF R10.1 V1

Event Report Service Group
Established Event

Direction: Switch to Client
Event: CSTAEstablishedEvent
Private Data Event: ATTEstablishedEvent (private data version 6),
ATTV5EstablishedEvent (private data version 5), ATTV4EstablishedEvent
(private data version 4), ATTV3EstablishedEvent (private data versions 2
and 3)
Service Parameters: monitorCrossRefID, establishedConnection,
answeringDevice, callingDevice, calledDevice, lastRedirectionDevice,
localConnectionInfo, cause
Private Parameters: trunkGroup, trunkMember, split, lookaheadInfo,
userEnteredCode, userInfo, reason, originalCallInfo, distributingDevice,
ucid, callOriginatorInfo, flexibleBilling

Functional Description:

The Established Event Report indicates that the switch detects that a device has
answer or connected to a call.

Before After

The Established Event Report is sent as follows:

■ When a cstaMakePredictiveCall call is delivered to an on-PBX party (after
having been answered at the destination) and the on-PBX party answers
the call (picked up handset or cut-through after zip tone).

■ When a cstaMakePredictiveCall call is placed to an off-PBX destination
and an ISDN CONNect message is received from an ISDN-PRI facility.

■ When a cstaMakePredictiveCall call is placed to an off-PBX destination
and the call classifier detects an answer or a Special Information Tone
(SIT) administered to answer.

■ When a call is delivered to an on-PBX party and the on-PBX party has
answered the call (picked up handset or cut-through after zip tone).

■ When a call is redirected to an off-PBX destination, and the ISDN CONN
(ISDN connect) message is received from an ISDN-PRI facility.

■ Any time a station is connected to a call (picked up on a bridged call
appearance, service observing, busy verification, etc.).

In general, the Established Event Report is not sent for split or vector
announcements nor it is sent for the attendant group (0).

D1 C1 D1 C1 D2D2 ca * *
Issue 1 — December 2001

DEFPROG.PDF R10.1 V19-80

Established Event
Multiple Established Event Reports

Multiple Established Event Reports may be sent for a specific call. For example,
when a call is first picked up by coverage, the event is sent to the active monitors
for the coverage party, as well as to the active monitors for all other extensions
already on the call. If the call is then bridged onto by the principal, the Established
Event Report is then sent to the monitors for the principal, as well as to the
monitors for all other extensions active on the call.

Multiple Established Event Reports may also be sent for the same extension on a
call. For example, when a call is first picked up by a member of a bridge, TEG,
PCOL, an Established Event Report is generated. If that member goes on-hook
and then off-hook again while another member of the particular group is
connected on the call, a second Established Event Report will be sent for the
same extension. This event report is not sent for split or vector announcements,
nor it is sent for the attendant group (0).
Issue 1 — December 2001

9-81DEFPROG.PDF R10.1 V1

Event Report Service Group
Service Parameters:

monitorCrossRefID [mandatory] Contains the handle to the monitor request for
which this event is reported.

establishedConnection [mandatory] Specifies the endpoint that joined the call.

answeringDevice [mandatory] Specifies the device that joined the call.

■ For outgoing calls over PRI facilities1 —“connected
number” from the ISDN CONN (ISDN connect)
message.

■ If the device being connected is on-PBX, then the
extension of the device is specified (primary extension
for TEGs, PCOLs, bridging).

callingDevice [mandatory] Specifies the calling device. The following
rules apply:

■ For internal calls originated at an on-PBX station — the
station’s extension is specified.

■ For outgoing calls over PRI facilities —“calling number”
from the ISDN SETUP message or its assigned trunk
identifier is specified, if the “calling number” does not
exist (it is NULL).

■ For incoming calls over PRI facilities —“calling number”
from the ISDN SETUP message or its assigned trunk
identifier is specified, if the “calling number” does not
exist (it is NULL).

■ For incoming calls over non-PRI facilities — the calling
party number is generally not available. The assigned
trunk identifier2 is provided instead.

■ The trunk group number is specified only when the
calling party number is not available.

■ For calls originated at a bridged call appearance —the
principal’s extension is specified.

calledDevice [mandatory — partially supported] Specifies the originally
called device. The following rules apply:

■ For outgoing calls over PRI facilities — “called number”
from the ISDN SETUP message is specified. If the
“called number” does not exist (it is NULL), the
deviceIDStatus is ID_NOT_KNOWN.

■ For incoming calls over PRI facilities — “called number”
from the ISDN SETUP message is specified. If the
“called number” does not exist (it is NULL), the
deviceIDStatus is ID_NOT_KNOWN.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V19-82

Established Event
■ For incoming calls over non-PRI facilities — the principal
extension is specified. It may be a group extension for
TEG, hunt group, VDN. If the switch is administered to
modify the DNIS digits, then the modified DNIS string is
specified.

■ For incoming calls to PCOL, the deviceID is ID_NOT_
KNOWN.

■ For incoming calls to a TEG (principal) group, the TEG
group extension is specified.

■ For incoming calls to a principal with bridges, the
principal’s extension is specified.

■ If the called device is on-PBX and the call did not come
over a PRI facility, the extension of the party dialed is
specified.

lastRedirectionDevice [optional — limited support] Specifies the previously
redirection/alerted device in the case where the call was
redirected/diverted to the answeringDevice.

localConnectionInfo [optional — supported] Specifies the local connection state
as perceived by the monitored device on this call. This is
provided for cstaMonitorDevice requests only. A value of
CS_NONE indicates that the local connection state is
unknown.

cause [optional — supported] Specifies the cause for this event.
The following causes are supported:

■ EC_TRANSFER — A call transfer has occurred. This
cause has higher precedence than the following two.
See Blind Transfer in the ‘‘Detailed Information:’’
section.

■ EC_KEY_CONFERENCE — Indicates that the event
report occurred at a bridged device. This cause has
higher precedence than the following one

■ EC_NEW_CALL — The call has not yet been
transferred.

■ EC_PARK — The call is connected due to picking up a
parked call.
Issue 1 — December 2001

9-83DEFPROG.PDF R10.1 V1

Event Report Service Group

rk

3

■ EC_ACTIVE_MONITOR — This is the cause value if the
Established Event Report resulted from a Single Step
Conference request and the Single Step Conference
request is for PT_ACTIVE. For details, see “Single Step
Conference Call Service” in Chapter 4.

■ EC_SILENT_MONITOR —

1. This is the cause value if the Established Event Report
resulted from a Single Step Conference request and the
Single Step Conference request is for PT_SILENT. For
details, see “Single Step Conference Call Service” in
Chapter 4.

2. This is also the cause value if the Established Event
Report resulted from a Service Observer (with either
listen-only or listen-and-talk mode) joining the call. In
this case, the reason parameter in private data version 5
and later will have AR_SERVICE_OBSERVER. Private
data version 4 and earlier will not have this information.

NOTE:
An application cannot distinguish between case 1
from and case 2 using the cause value only. However,
the reason parameter in private data version 5 and
later indicates whether the EC_SILENT_MONITOR is
from Single Step Conference or Service Observer.
The EC_SILENT_MONITOR for AR_SERVICE_
OBSERVER is a G3V6 feature.

1. For outgoing calls over non_PRI facilities, there is no Established Event Report. A Netwo
Reached Event Report is generated instead.

2. The trunk identifier is a dynamic identifer and it cannot be used to access a trunk in the G
switch.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V19-84

Established Event
Private Parameters:

trunkGroup [optional] Specifies the trunk group number from which the
call originated. Beginning with G3V8, trunk group number is
provided regardless of whether the callingDevice is
available. Prior to G3V8, trunk group number is provided
only if the callingDevice is unavailable. This parameter is
supported by private data version 5 and later only.

trunk [optional] Specifies the trunk group number from which the
call originated. Trunk group number is provided only if the
callingDevice is unavailable. This parameter is supported by
private data versions 2, 3, and 4 only.

trunkMember [optional — limited supported] This parameter is supported
beginning with G3V4. It specifies the trunk member number
from which the call originated. Beginning with G3V8, trunk
member number is provided regardless of whether the
callingDevice is available. Prior to G3V8, trunk member
number is provided only if the callingDevice is unavailable.

split [optional] Specifies the ACD split extension to which the call
is delivered.

distributingDevice [optional] Specifies the ACD or VDN device that distributed
the call to the station. This information is provided only
when the call was processed by the switch ACD or Call
Vectoring processing and is only sent for a station monitor
(i.e., the delivery type is DELIVERED_TO_STATION). This
parameter is supported by private data version 4 and later.

NOTE:
The calledDevice specifies the originally called device.
In most ACD call scenarios, calledDevice and
distributingDevice have the same device ID.
However, in call scenarios that involve call vectoring
with the VDN Override feature turned on, calledDevice
and distributingDevice may have different deviceIDs.
Incoming calls that arrived at the same calledDevice
may be distributed to an agent via different call paths
that have more than one VDN involved. If the VDN
Override feature is used on the calledDevice, the
distributingDevice specifies the VDN that distributed
the call to the agent. This is particularly useful for
applications that need to know the call path.

NOTE:
Proper switch administration is required on the G3
switch in order to receive a useful distributingDevice.
The distributingDevice contains the originally called
device if such administration is not performed on the
G3 switch.
Issue 1 — December 2001

9-85DEFPROG.PDF R10.1 V1

Event Report Service Group
lookaheadInfo [optional] Specifies the lookahead interflow information
received from the established call. The lookahead interflow
is a G3 switch feature that routes some of the incoming calls
from one switch to another so that they can be handled
more efficiently and will not be lost. The lookahead interflow
information is provided by the switch that overflows the call.
A routing application may use the lookahead interflow
information to determine the destination of the call. See the
G3 Feature Description for more information about
lookahead interflow. If the lookahead interflow type is set to
“LAI_NO_INTERFLOW”, no lookahead interflow private
data is provided with this event.

userEnteredCode [optional] Specifies the code/digits that may have been
entered by the caller through the G3 call prompting feature
or the collected digits feature. If the userEnteredCode code
is set to “UE_NONE”, no userEnteredCode private data is
provided with this event.

userInfo [optional] Contains user-to-user information. This
parameter allows an application to associate caller
information, up to 32 or 96 bytes, with a call. This
information may be a customer number, credit card number,
alphanumeric digits, or a binary string.

Prior to G3V8, the maximum length of userInfo was 32
bytes. Beginning with G3V8, the maximum length of
userInfo is increased to 96 bytes.

NOTE:
An application using private data version 5 and earlier
can only receive a maximum of 32-byte data for
userInfo, regardless of the size data that is sent by the
switch.

The following UUI protocol types are supported:

■ UUI_NONE — There is no data provided in the data
parameter.

■ UUI_USER_SPECIFIC — The content of the data
parameter is a binary string. The correct size (maximum
of 32 or 96 bytes) of data must be specified in the size
parameter.

■ UUI_IA5_ASCII — The content of the data parameter
must be a null-terminated IA5 (ASCII) character string.
The correct size (maximum of 32 or 96 bytes excluding
the null terminator) of data must be specified in the size
parameter.

reason [optional] Specifies the reason that caused this event. The
following reasons are supported:
Issue 1 — December 2001

DEFPROG.PDF R10.1 V19-86

Established Event
■ AR_NONE— indicate no value specified for reason.

■ AR_ANSWER_NORMAL— answer supervision from
the network or internal answer.

■ AR_ANSWER_TIMED — assumed answer based on
internal timer.

■ AR_ANSWER_VOICE_ENERGY — voice energy
detection from a call classifier.

■ AR_ANSWER_MACHINE_DETECTED — answering
machine detected

■ AR_SIT_REORDER — switch equipment congestion

■ AR_SIT_NO_CIRCUIT — no circuit or channel available

■ AR_SIT_INTERCEPT — number changed

■ AR_SIT_VACANT_CODE — unassigned number

■ AR_SIT_INEFFECTIVE_OTHER — invalid number

■ AR_SIT_UNKNOWN — normal unspecified

originalCallInfo [optional] Specifies the original call information. Note that
information is not repeated in the originalCallInfo, if it is
already reported in the CSTA service parameters or in the
private data. For example, the callingDevice and
calledDevice in the originalCallInfo will be NULL, if the
callingDevice and the calledDevice in the CSTA service
parameters are the original calling and called devices. Only
when the original devices are different from the most recent
callingDevice and calledDevice, the callingDevice and
calledDevice in the originalCallInfo will be set. If the
userEnteredCode in the private data is the original (first time
entered) userEnteredCode, the userEnteredCode in the
originalCallInfo will be UE_NONE. Only when new (second
time entered) userEnteredCode is received, will
originalCallInfo have the original userEnteredCode.

NOTE:
For the Established Event sent to the newCall of a
Consultation Call, the originalCallInfo is taken from the
activeCall specified in the Consultation Call request.
Thus the application can pass the original call
information between two calls. The calledDevice of
the Consultation Call must reside on the same switch
and must be monitored via the same Tserver.

The originalCallInfo includes the original call information
received by the activeCall in the Consultation Call request.
The original call information includes:
Issue 1 — December 2001

9-87DEFPROG.PDF R10.1 V1

Event Report Service Group
■ reason — the reason for the originalCallInfo. The
following reasons are supported.

— OR_NONE — no originalCallInfo provided

— OR_CONFERENCED — call conferenced

— OR_CONSULTATION — consultation call

— OR_TRANSFERRED — call transferred

— OR_NEW_CALL — new call

■ callingDevice — the original callingDevice received by
the activeCall.

■ calledDevice — the original calledDevice received by
the activeCall.

■ trunk — the original trunk group received by the
activeCall. This parameter is supported by private data
versions 2, 3, and 4.

■ trunkGroup — the original trunkGroup received by the
activeCall. This parameter is supported by private data
version 5 and later only.

■ trunkMember (G3V4 switches and later) — the original
trunkMember received by the activeCall.

■ lookaheadInfo — the original lookaheadInfo received
by the activeCall.

■ userEnteredCode — the original userEnteredCode
received by the activeCall.

■ userInfo — the original userInfo received by the
activeCall.

Prior to G3V8, the maximum length of userInfo was 32
bytes. Beginning with G3V8, the maximum length of
userInfo is increased to 96 bytes.

NOTE:
An application using private data version 5 and earlier
can only receive a maximum of 32-byte data for
userInfo, regardless of the size data that is sent by the
switch.

■ ucid — the original ucid of the call. This parameter is
supported by private data version 5 and later only.

■ callOriginatorInfo — the original callOriginatorInfo for
the call. This parameter is supported by private data
version 5 and later only.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V19-88

Established Event
Detailed Information:

See the ‘‘Event Report Detailed Information’’ section in this chapter.

■ Call Classification — For cstaMakePredictiveCall, the switch uses the Call
Classification process, along with a variety of internal and external events,
to determine a predictive (switch-classified call) call outcome. Whenever
the called endpoint is external, a call classifier is used.

The classifier is inserted in the connection as soon as the digits have been
outpulsed (sent out on a circuit). A call is classified as either answered
(Established Event) or dropped (Call Cleared/Connection Cleared Event).

A Delivered Event is reported to the application, but it is not the final
classification. “Non-classified energy” is always treated as an answer
classification and reported to the application in an Established Event. A
modem answer back tone results in a Call Cleared/Connection Cleared
Event. Special Information Tone (SIT) detection is reported to the
application as an Established Event or a Call Cleared/Connection Cleared
Event, depending on the customer’s administration preference. Answer
Machine Detection (AMD) is reported as an Established Event or a Call
Cleared/Connection Cleared Event, depending on administration or call
options.

■ flexibleBilling — the original flexibleBilling information
of the call. This parameter is supported by private data
version 5 and later only.

ucid [optional] Specifies the Universal Call ID (UCID) of the call.
The UCID is a unique call identifier across switches and the
network. A valid UCID is a null-terminated ASCII character
string. If there is no UCID associated with this call, the ucid
contains the ATT_NULL_UCID (a 20-character string of all
zeros). This parameter is supported by private data version
5 and later only.

callOriginatorInfo [optional] Specifies the callOriginatorType of the call
originator such as coin call, 800-service call, or cellular call.
This information is from the network, not from the DEFINITY
switch. The type is defined in the Bellcore publication, “Local
Exchange Routing Guide,” (document number
TR-EOP-000085). A list of the currently defined codes (June
1994) is in the Detailed Information sub-section of the
“Delivered Event” section in this chapter. This parameter is
supported by private data version 5 and later only.

flexibleBilling [optional] Specifies whether the Flexible Billing feature is
allowed for this call and the Flexible Billing customer option
is assigned on the switch. If this parameter is set to TRUE,
the billing rate can be changed for the incoming 900-type
call using the Set Bill Rate Service. This parameter is
supported by private data version 5 and later only.
Issue 1 — December 2001

9-89DEFPROG.PDF R10.1 V1

Event Report Service Group
■ Last Redirection Device — There is only limited support for this parameter.
An application must understand the limitations of this parameter in order to
use the information correctly.

■ Blind Transfer — Application designers using caller information to pop
screens should refer to ‘‘Transferring or Conferencing a Call Together with
Screen Pop Information’’ in Chapter 3 that describes how to coordinate the
passing of caller information across applications.

An EC_TRANSFER in the cause indicates that a blind transfer occurred
before the call was established. A blind transfer is a call transfer operation
that completes before the receiving party answers. Thus, when the
receiving party answers, the caller and the receiving party are connected.
The transferring party is not part of the connection. In terms of manual
operations, it is as if the transferring party presses the transfer button to put
the caller on hold, dials the receiving party, and immediately presses the
transfer button again (while the call is ringing at the receiving party). Since
the transfer occurs between the time the call rings at the receiving party
(CSTA Delivered Event) and the time that the receiving party answers the
call (CSTA Established Event), the callingDevice changes between these
two events.

NOTE:
The G3 PBX will not send a Transferred Event for the blind transfer
operation to the receiving party before or after the Established event.
An application must look in the CSTA Established Event for the
callingDevice (ANI) information.

■ Consultation Transfer — (Also known as “manual transfer” or “supervised
transfer”) — The transfer does not complete before the receiving party
answers. Specifically, the transferring party and the receiving party are
connected and can consult before the transfer occurs. The caller is not
connected to this consultation conversation. In terms of manual
operations, it is as if the transferring party presses the transfer button to put
the caller on hold, dials the receiving party, the receiving party answers, the
transferring and receiving parties consult, and then the transferring party
presses transfer again to transfer the call. Since the transfer occurs after
the time that the receiving party answers the consultation call (after the
CSTA Established Event), there is no EC_TRANSFER in the cause of the
Established Event.

NOTE:
ANI screen pop applications should follow the guidelines in Chapter
3. ANI screen pop in cases where the user does a consultation
transfer manually from the telephone requires information that
appears on a cstaMonitorDevice of the transferring party. If both the
transferring party and the receiving party run applications that use the
same G3PD, then this requirement is met. To do an ANI screen pop
in this case, an application must look in the CSTA Transfer Event for
the ANI information. An ANI screen pop for a manual consultation
Issue 1 — December 2001

DEFPROG.PDF R10.1 V19-90

Established Event
transfer is done in this way at the time the call transfers, not when the
consultation call rings or is answered.

Basic information on the design of application pop screens using caller
information is found in Chapter 3. Additional details and interactions are
found in the ‘‘Event Report Detailed Information’’ section in this chapter.
The notes above are special cases and do not reflect the recommended
design.

The trunkGroup, trunk, split, lookaheadInfo, userEnteredCode, userInfo
private parameters contain the most recent information about a call, while
the originalCallInfo contains the original values for this information. If the
most recent values are the same as the original values, the original values
are not repeated in the originalCallInfo.
Issue 1 — December 2001

9-91DEFPROG.PDF R10.1 V1

Event Report Service Group
Syntax

#include <acs.h>
#include <csta.h>

// CSTAEstablishedEvent

typedef struct
{

ACSHandle_t acsHandle;
EventClass_teventClass; // CSTAUNSOLICITED
EventType_t eventType; // CSTA_ESTABLISHED

} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_teventHeader;
union
{

struct
{

CSTAMonitorCrossRefID_tmonitorCrossRefId;
union
{

CSTAEstablishedEvent_t established;
} u;

} cstaUnsolicited;
} event;
charheap[CSTA_MAX_HEAP];

} CSTAEvent_t;

typedef struct CSTAEstablishedEvent_t
{

ConnectionID_t establishedConnection;
SubjectDeviceID_t answeringDevice;
CallingDeviceID_t callingDevice;
CalledDeviceID_t calledDevice;
RedirectionDeviceID_t lastRedirectionDevice;
LocalConnectionState_t localConnectionInfo;
CSTAEventCause_t cause;

} CSTAEstablishedEvent_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 V19-92

Established Event
Private Data Version 6 Syntax

If private data accompanies a CSTAEstablishedEvent, then
the private data would be stored in the location that the
application specified as the privateData parameter in the
acsGetEventBlock() or acsGetEventPoll() request. If the
privateData pointer is set to NULL in these requests, then
the CSTAEstablishedEvent does not deliver private data to
the application. If acsGetEventBlock() or
acsGetEventPoll() returns a Private Data length of 0, then
no private data is provided with this event.
#include <acs.h>
#include <csta.h>
#include <attpriv.h>

// ATTEstablishedEvent - CSTA Unsolicited Event Private Data

typedef struct
{

ATTEventType_teventType;// ATT_ESTABLISHED
union
{

ATTEstablishedEvent_testablishedEvent;
} u;

} ATTEvent_t;

typedef struct ATTEstablishedEvent_t
{

DeviceID_t trunkGroup;// most recent info
DeviceID_t trunkMember;// not in use
DeviceID_t split; // for monitor device

// (station) only
ATTLookaheadInfo_t lookaheadInfo;// most recent info
ATTUserEnteredCode_t userEnteredCode;// most recent info
ATTUserToUserInfo_t userInfo; // most recent info
ATTReasonCode_t reason;
ATTOriginalCallInfo_t originalCallInfo;// original info
CalledDeviceID_t distributingDevice; // most recent

info
ATTUCID_t ucid;
ATTCallOriginatorInfo_t callOriginatorInfo;
Boolean flexibleBilling;

} ATTEstablishedEvent_t;

typedef struct ATTLookaheadInfo_t
{

ATTInterflow_t type;
ATTPriority_t priority;
short hours;
short minutes;
short seconds;
DeviceID_t sourceVDN;
ATTUnicodeDeviceID_t uSourceVDN;// sourceVDN in Unicode

} ATTLookaheadInfo_t;
Issue 1 — December 2001

9-93DEFPROG.PDF R10.1 V1

Event Report Service Group
Private Data Version 6 Syntax (Continued)

typedef struct ATTUnicodeDeviceID_t
{

short count;
unsigned short value[64];

} ATTUnicodeDeviceID_t;

typedef enum ATTInterflow_t
{
LAI_NO_INTERFLOW= -1,// indicates Info not present

LAI_ALL_INTERFLOW = 0,
LAI_THRESHOLD_INTERFLOW = 1,
LAI_VECTORING_INTERFLOW = 2

} ATTInterflow_t;

typedef enum ATTPriority_t
{

LAI_NOT_IN_QUEUE = 0,
LAI_LOW = 1,
LAI_MEDIUM = 2,
LAI_HIGH = 3,
LAI_TOP = 4

} ATTPriority_t;

typedef struct ATTUserEnteredCode_t
{

ATTUserEnteredCodeType_t type;
ATTUserEnteredCodeIndicator_tindicator;
char data[ATT_MAX_USER_CODE];
DeviceID_t collectVDN; // VDN that reports

// this userEnteredCode
} ATTUserEnteredCode_t;

typedef enum ATTUserEnteredCodeType_t
{

UE_NONE = -1,// indicates not specified
UE_ANY = 0,
UE_LOGIN_DIGITS = 2,
UE_CALL_PROMPTER= 5,
UE_DATA_BASE_PROVIDED= 17,
UE_TONE_DETECTOR= 32

} ATTUserEnteredCodeType_t;

typedef enum ATTUserEnteredCodeIndicator_t
{

UE_COLLECT= 0,
UE_ENTERED= 1

} ATTUserEnteredCodeIndicator_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 V19-94

Established Event
Private Data Version 6 Syntax (Continued)

typedef struct ATTUserToUserInfo_t
{

ATTUUIProtocolType_t type;
struct {

short length; // 0 - UUI not present
unsigned char value[ATT_MAX_USER_INFO];

} data;
} ATTUserToUserInfo_t;

typedef enum ATTUUIProtocolType_t
{

UUI_NONE = -1,// indicates not specified
UUI_USER_SPECIFIC = 0,// user-specific
UUI_IA5_ASCII = 4 // null terminated ascii

// character string
} ATTUUIProtocolType_t;

typedef enum ATTReasonCode_t
{

AR_NONE = 0,// no reason code specified
AR_ANSWER_NORMAL= 1,// answer supervision from

// the network or internal
// answer

AR_ANSWER_TIMED= 2, // assumed answer based on
// internal timer

AR_ANSWER_VOICE_ENERGY= 3,// voice energy detection
// by classifier

AR_ANSWER_MACHINE_DETECTED = 4,// answering machine
// detected

AR_SIT_REORDER= 5, // switch equipment
// congestion

AR_SIT_NO_CIRCUIT= 6, // no circuit or channel
// available

AR_SIT_INTERCEPT= 7, // number changed
AR_SIT_VACANT_CODE= 8, // unassigned number
AR_SIT_INEFFECTIVE_OTHER= 9,// invalid number
AR_SIT_UNKNOWN= 10, // normal unspecified
AR_IN_QUEUE = 11, // call still in queue - for

// Delivered Event only
AR_SERVICE_OBSERVER= 12 // service observer

// connected
} ATTReasonCode_t
Issue 1 — December 2001

9-95DEFPROG.PDF R10.1 V1

Event Report Service Group
Private Data Version 6 Syntax (Continued)

typedef struct ATTOriginalCallInfo_t
{

ATTReasonForCallInfo_t reason;
CallingDeviceID_t callingDevice;
CalledDeviceID_t calledDevice;
DeviceID_t trunkGroup;
DeviceID_t trunkMember;
ATTLookaheadInfo_t lookaheadInfo;
ATTUserEnteredCode_t userEnteredCode;
ATTUserToUserInfo_t userInfo;
ATTUCID_t ucid;

ATTCallOriginatorInfo_t callOriginatorInfo;
Boolean flexibleBilling;

} ATTOriginalCallInfo_t;

typedef enum ATTReasonForCallInfo_t
{

OR_NONE = 0,// indicates info not present
OR_CONSULTATION = 1,
OR_CONFERENCED = 2,
OR_TRANSFERRED = 3,
OR_NEW_CALL = 4

} ATTReasonForCallInfo_t;

typedef ExtendedDeviceID_tCallingDeviceID_t;

typedef ExtendedDeviceID_tCalledDeviceID_t;

typedef char ATTUCID_t[64];

typedef struct ATTCallOriginatorInfo_t
{

Boolean hasInfo;// if FALSE, no callOriginatorType

short callOriginatorType;
} ATTCallOriginatorInfo_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 V19-96

Established Event
Private Data Version 5 Syntax

If private data accompanies a CSTAEstablishedEvent, then
the private data would be stored in the location that the
application specified as the privateData parameter in the
acsGetEventBlock() or acsGetEventPoll() request. If the
privateData pointer is set to NULL in these requests, then
the CSTAEstablishedEvent does not deliver private data to
the application. If acsGetEventBlock() or
acsGetEventPoll() returns a Private Data length of 0, then
no private data is provided with this event.
#include <acs.h>
#include <csta.h>
#include <attpriv.h>

// ATTV5EstablishedEvent - CSTA Unsolicited Event Private Data

typedef struct
{

ATTEventType_teventType;// ATT_ESTABLISHED
union
{

ATTV5EstablishedEvent_testablishedEvent;
} u;

} ATTEvent_t;

typedef struct ATTV5EstablishedEvent_t
{

DeviceID_t trunkGroup;// most recent info
DeviceID_t trunkMember;// not in use
DeviceID_t split; // for monitor device

// (station) only
ATTLookaheadInfo_t lookaheadInfo;// most recent info
ATTUserEnteredCode_t userEnteredCode;// most recent info
ATTV5UserToUserInfo_t userInfo; // most recent info
ATTReasonCode_t reason;
ATTV5OriginalCallInfo_t originalCallInfo;// original info
CalledDeviceID_t distributingDevice; // most recent

info
ATTUCID_t ucid;
ATTCallOriginatorInfo_t callOriginatorInfo;
Boolean flexibleBilling;

} ATTV5EstablishedEvent_t;

typedef struct ATTLookaheadInfo_t
{

ATTInterflow_t type;
ATTPriority_t priority;
short hours;
short minutes;
short seconds;
DeviceID_t sourceVDN;
ATTUnicodeDeviceID_t uSourceVDN;// sourceVDN in Unicode

} ATTLookaheadInfo_t;
Issue 1 — December 2001

9-97DEFPROG.PDF R10.1 V1

Event Report Service Group
Private Data Version 5 Syntax (Continued)

typedef struct ATTUnicodeDeviceID_t
{

short count;
unsigned short value[64];

} ATTUnicodeDeviceID_t;

typedef enum ATTInterflow_t
{
LAI_NO_INTERFLOW= -1,// indicates Info not present

LAI_ALL_INTERFLOW = 0,
LAI_THRESHOLD_INTERFLOW = 1,
LAI_VECTORING_INTERFLOW = 2

} ATTInterflow_t;

typedef enum ATTPriority_t
{

LAI_NOT_IN_QUEUE = 0,
LAI_LOW = 1,
LAI_MEDIUM = 2,
LAI_HIGH = 3,
LAI_TOP = 4

} ATTPriority_t;

typedef struct ATTUserEnteredCode_t
{

ATTUserEnteredCodeType_t type;
ATTUserEnteredCodeIndicator_tindicator;
char data[ATT_MAX_USER_CODE];
DeviceID_t collectVDN; // VDN that reports

// this userEnteredCode
} ATTUserEnteredCode_t;

typedef enum ATTUserEnteredCodeType_t
{

UE_NONE = -1,// indicates not specified
UE_ANY = 0,
UE_LOGIN_DIGITS = 2,
UE_CALL_PROMPTER= 5,
UE_DATA_BASE_PROVIDED= 17,
UE_TONE_DETECTOR= 32

} ATTUserEnteredCodeType_t;

typedef enum ATTUserEnteredCodeIndicator_t
{

UE_COLLECT= 0,
UE_ENTERED= 1

} ATTUserEnteredCodeIndicator_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 V19-98

Established Event
Private Data Version 5 Syntax (Continued)

typedef struct ATTV5UserToUserInfo_t
{

ATTUUIProtocolType_t type;
struct {

short length; // 0 - UUI not present
unsigned char value[33];

} data;
} ATTV5UserToUserInfo_t;

typedef enum ATTUUIProtocolType_t
{

UUI_NONE = -1,// indicates not specified
UUI_USER_SPECIFIC = 0,// user-specific
UUI_IA5_ASCII = 4 // null terminated ascii

// character string
} ATTUUIProtocolType_t;

typedef enum ATTReasonCode_t
{

AR_NONE = 0,// no reason code specified
AR_ANSWER_NORMAL= 1,// answer supervision from

// the network or internal
// answer

AR_ANSWER_TIMED= 2, // assumed answer based on
// internal timer

AR_ANSWER_VOICE_ENERGY= 3,// voice energy detection
// by classifier

AR_ANSWER_MACHINE_DETECTED = 4,// answering machine
// detected

AR_SIT_REORDER= 5, // switch equipment
// congestion

AR_SIT_NO_CIRCUIT= 6, // no circuit or channel
// available

AR_SIT_INTERCEPT= 7, // number changed
AR_SIT_VACANT_CODE= 8, // unassigned number
AR_SIT_INEFFECTIVE_OTHER= 9,// invalid number
AR_SIT_UNKNOWN= 10, // normal unspecified
AR_IN_QUEUE = 11, // call still in queue - for

// Delivered Event only
AR_SERVICE_OBSERVER= 12 // service observer

// connected
} ATTReasonCode_t
Issue 1 — December 2001

9-99DEFPROG.PDF R10.1 V1

Event Report Service Group
Private Data Version 5 Syntax (Continued)

typedef struct ATTV5OriginalCallInfo_t
{

ATTReasonForCallInfo_t reason;
CallingDeviceID_t callingDevice;
CalledDeviceID_t calledDevice;
DeviceID_t trunkGroup;
DeviceID_t trunkMember;
ATTLookaheadInfo_t lookaheadInfo;
ATTUserEnteredCode_t userEnteredCode;
ATTV5UserToUserInfo_t userInfo;
ATTUCID_t ucid;

ATTV5CallOriginatorInfo_t callOriginatorInfo;
Boolean flexibleBilling;

} ATTOriginalCallInfo_t;

typedef enum ATTReasonForCallInfo_t
{

OR_NONE = 0,// indicates info not present
OR_CONSULTATION = 1,
OR_CONFERENCED = 2,
OR_TRANSFERRED = 3,
OR_NEW_CALL = 4

} ATTReasonForCallInfo_t;

typedef ExtendedDeviceID_tCallingDeviceID_t;

typedef ExtendedDeviceID_tCalledDeviceID_t;

typedef char ATTUCID_t[64];

typedef struct ATTCallOriginatorInfo_t
{

Boolean hasInfo;// if FALSE, no callOriginatorType

short callOriginatorType;
} ATTCallOriginatorInfo_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 V19-100

Established Event
Private Data Version 4 Syntax

#include <acs.h>
#include <csta.h>
#include <attpriv.h>

// ATTV4EstablishedEvent - CSTA Unsolicited Event Private Data

typedef struct
{

ATTEventType_teventType;// ATTV4_ESTABLISHED
union
{

ATTV4EstablishedEvent_tv4establishedEvent;
} u;

} ATTEvent_t;

typedef struct ATTV4EstablishedEvent_t
{

DeviceID_t trunk; // most recent info
DeviceID_t trunkMember; // not in use
DeviceID_t split; // for monitor device

// (station) only
ATTV4LookaheadInfo_t lookaheadInfo;// most recent info
ATTUserEnteredCode_t userEnteredCode;// most recent info
ATTV5UserToUserInfo_t userInfo; // most recent info
ATTReasonCode_t reason;
ATTV4OriginalCallInfo_t originalCallInfo;// original info
CalledDeviceID_t distributingDevice; // most recent

// info
} ATTV4EstablishedEvent_t;

typedef struct ATTV4LookaheadInfo_t
{

ATTInterflow_t type;
ATTPriority_t priority;
short hours;
short minutes;
short seconds;
DeviceID_t sourceVDN;

} ATTV4LookaheadInfo_t;
Issue 1 — December 2001

9-101DEFPROG.PDF R10.1 V1

Event Report Service Group
Private Data Version 4 Syntax (Continued)

typedef enum ATTInterflow_t
{

LAI_NO_INTERFLOW = -1,// indicates Info not present
LAI_ALL_INTERFLOW = 0,
LAI_THRESHOLD_INTERFLOW= 1,
LAI_VECTORING_INTERFLOW= 2

} ATTInterflow_t;

typedef enum ATTPriority_t
{

LAI_NOT_IN_QUEUE= 0,
LAI_LOW = 1,
LAI_MEDIUM = 2,
LAI_HIGH = 3,
LAI_TOP = 4

} ATTPriority_t;

typedef struct ATTUserEnteredCode_t
{

ATTUserEnteredCodeType_t type;
ATTUserEnteredCodeIndicator_t indicator;
char data[ATT_MAX_USER_CODE];
DeviceID_t collectVDN; // VDN that

// reports this userEnteredCode
} ATTUserEnteredCode_t;

typedef enum ATTUserEnteredCodeType_t
{

UE_NONE = -1,// indicates not specified
UE_ANY = 0,
UE_LOGIN_DIGITS = 2,
UE_CALL_PROMPTER = 5,
UE_DATA_BASE_PROVIDED= 17,
UE_TONE_DETECTOR= 32

} ATTUserEnteredCodeType_t;

typedef enum ATTUserEnteredCodeIndicator_t
{

UE_COLLECT = 0,
UE_ENTERED = 1

} ATTUserEnteredCodeIndicator_t;

typedef struct ATTV5UserToUserInfo_t
{

ATTUUIProtocolType_t type;
struct {

short length; // 0 indicates UUI not
// present

unsigned char value[33];
} data;

} ATTV5UserToUserInfo_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 V19-102

Established Event
Private Data Version 4 Syntax (Continued)

typedef enum ATTUUIProtocolType_t
{

UUI_NONE = -1,// indicates not specified
UUI_USER_SPECIFIC= 0,// user-specific
UUI_IA5_ASCII= 4 // null terminated ascii

// character string
} ATTUUIProtocolType_t;

typedef enum ATTReasonCode_t
{
AR_NONE = 0,// no reason code specified
AR_ANSWER_NORMAL= 1, // answer supervision from

// the network or internal
// answer

AR_ANSWER_TIMED= 2, // assumed answer based on
// internal timer

AR_ANSWER_VOICE_ENERGY= 3,// voice energy detection
// by classifier

AR_ANSWER_MACHINE_DETECTED = 4,// answering machine detected

AR_SIT_REORDER= 5, // switch equipment congestion
AR_SIT_NO_CIRCUIT= 6, // no circuit or channel

// available
AR_SIT_INTERCEPT= 7, // number changed
AR_SIT_VACANT_CODE= 8, // unassigned number
AR_SIT_INEFFECTIVE_OTHER= 9,// invalid number
AR_SIT_UNKNOWN= 10, // normal unspecified
} ATTReasonCode_t

typedef struct ATTV4OriginalCallInfo_t
{

ATTReasonForCallInfo_t reason;
CallingDeviceID_t callingDevice;
CalledDeviceID_t calledDevice;
DeviceID_t trunk;
DeviceID_t trunkMember;
ATTV4LookaheadInfo_t lookaheadInfo;
ATTUserEnteredCode_t userEnteredCode;
ATTV5UserToUserInfo_t userInfo;

} ATTV4OriginalCallInfo_t;
Issue 1 — December 2001

9-103DEFPROG.PDF R10.1 V1

Event Report Service Group
Private Data Version 4 Syntax (Continued)

typedef enum ATTReasonForCallInfo_t
{

OR_NONE = 0,// indicates info not present
OR_CONSULTATION = 1,
OR_CONFERENCED = 2,
OR_TRANSFERRED = 3,
OR_NEW_CALL = 4

} ATTReasonForCallInfo_t;

typedef ExtendedDeviceID_tCallingDeviceID_t;

typedef ExtendedDeviceID_tCalledDeviceID_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 V19-104

Established Event
Private Data Versions 2 and 3 Syntax

#include <acs.h>
#include <csta.h>
#include <attpriv.h>

// ATTV3EstablishedEvent - CSTA Unsolicited Event Private Data

typedef struct
{

ATTEventType_teventType;// ATTV3_ESTABLISHED
union
{

ATTV3EstablishedEvent_tv3establishedEvent;
} u;

} ATTEvent_t;

typedef struct ATTV3EstablishedEvent_t
{

DeviceID_t trunk; // most recent info
DeviceID_t trunkMember; // not in use

DeviceID_t split; // for monitor device
// (station) only

ATTV4LookaheadInfo_t lookaheadInfo;// most recent info
ATTUserEnteredCode_t userEnteredCode;// most recent info
ATTV5UserToUserInfo_t userInfo; // most recent info
ATTReasonCode_t reason;
ATTV4OriginalCallInfo_toriginalCallInfo;// original info

} ATTV3EstablishedEvent_t;

typedef struct ATTV4LookaheadInfo_t
{

ATTInterflow_t type;
ATTPriority_t priority;
short hours;
short minutes;
short seconds;
DeviceID_t sourceVDN;

} ATTV4LookaheadInfo_t;
Issue 1 — December 2001

9-105DEFPROG.PDF R10.1 V1

Event Report Service Group
Private Data Versions 2 and 3 Syntax (Continued)

typedef enum ATTInterflow_t
{
LAI_NO_INTERFLOW = -1,// indicates Info not present

LAI_ALL_INTERFLOW= 0,
LAI_THRESHOLD_INTERFLOW= 1,
LAI_VECTORING_INTERFLOW= 2

} ATTInterflow_t;

typedef enum ATTPriority_t
{

LAI_NOT_IN_QUEUE= 0,
LAI_LOW = 1,
LAI_MEDIUM = 2,
LAI_HIGH = 3,
LAI_TOP = 4

} ATTPriority_t;

typedef struct ATTUserEnteredCode_t
{

ATTUserEnteredCodeType_t type;
ATTUserEnteredCodeIndicator_tindicator;
char data[ATT_MAX_USER_CODE];
DeviceID_t collectVDN; // VDN that reports

// this userEnteredCode
} ATTUserEnteredCode_t;

typedef enum ATTUserEnteredCodeType_t
{

UE_NONE = -1,// indicates not specified
UE_ANY = 0,
UE_LOGIN_DIGITS = 2,
UE_CALL_PROMPTER = 5,
UE_DATA_BASE_PROVIDED= 17,
UE_TONE_DETECTOR = 32

} ATTUserEnteredCodeType_t;

typedef enum ATTUserEnteredCodeIndicator_t
{

UE_COLLECT= 0,
UE_ENTERED= 1

} ATTUserEnteredCodeIndicator_t;

typedef struct ATTV5UserToUserInfo_t
{

ATTUUIProtocolType_t type;
struct {

short length; // 0 indicates UUI not present
unsigned charvalue[33];

} data;
} ATTV5UserToUserInfo_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 V19-106

Established Event
Private Data Versions 2 and 3 Syntax (Continued)

typedef enum ATTUUIProtocolType_t
{

UUI_NONE = -1,// indicates not specified
UUI_USER_SPECIFIC= 0,// user-specific
UUI_IA5_ASCII= 4 // null terminated ascii

// character string
} ATTUUIProtocolType_t;

typedef enum ATTReasonCode_t
{

AR_NONE = 0, // no reason code specified
AR_ANSWER_NORMAL= 1,// answer supervision from

// the network or internal
// answer

AR_ANSWER_TIMED= 2, // assumed answer based on
// internal timer

AR_ANSWER_VOICE_ENERGY= 3,// voice energy detection
// by classifier

AR_ANSWER_MACHINE_DETECTED = 4,// answering machine
// detected

AR_SIT_REORDER = 5, // switch equipment congestion
AR_SIT_NO_CIRCUIT = 6, // no circuit or channel

// available
AR_SIT_INTERCEPT = 7, // number changed
AR_SIT_VACANT_CODE= 8,// unassigned number
AR_SIT_INEFFECTIVE_OTHER= 9,// invalid number
AR_SIT_UNKNOWN= 10, // normal unspecified

} ATTReasonCode_t

typedef struct ATTV4OriginalCallInfo_t
{

ATTReasonForCallInfo_t reason;
CallingDeviceID_t callingDevice;
CalledDeviceID_t calledDevice;
DeviceID_t trunk;
DeviceID_t trunkMember;
ATTV4LookaheadInfo_t lookaheadInfo;
ATTUserEnteredCode_t userEnteredCode;
ATTV5UserToUserInfo_t userInfo;

} ATTV4OriginalCallInfo_t;
Issue 1 — December 2001

9-107DEFPROG.PDF R10.1 V1

Event Report Service Group
Private Data Versions 2 and 3 Syntax (Continued)

typedef enum ATTReasonForCallInfo_t
{

OR_NONE = 0,// indicates info not present
OR_CONSULTATION = 1,
OR_CONFERENCED = 2,
OR_TRANSFERRED = 3,
OR_NEW_CALL = 4

} ATTReasonForCallInfo_t;

typedef ExtendedDeviceID_tCallingDeviceID_t;

typedef ExtendedDeviceID_tCalledDeviceID_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 V19-108

Failed Event
Failed Event

Direction: Switch to Client
Event: CSTAFailedEvent
Service Parameters: monitorCrossRefID, failedConnection, failingDevice,
calledDevice, localConnectionInfo, cause

Functional Description:

The Failed Event Report indicates that a call cannot be completed.

Before After

This event report is generated when the destination of a call is busy or
unavailable, as follows:

■ When a call is delivered to an on-PBX station and the station is busy
(without coverage and call waiting).

■ When a call tries to terminate on an ACD split without going through a
vector and the destination ACD split’s queue is full, and the ACD split does
not have coverage.

■ When a call encounters a busy vector command in vector processing.

■ When a Direct-Agent call tries to terminate an on-PBX ACD agent and the
specified ACD agent’s split queue is full and the specified ACD agent does
not have coverage.

■ When a call is trying to reach an off-PBX party and an ISDN DISConnect
message with a User Busy cause is received from an ISDN-PRI facility.

The Failed Event Report is also generated when the destination of a call receives
reorder/denial treatment, as follows:

■ When a call is trying to terminate to an on-PBX destination but the
destination specified is inconsistent with the dial plan, has failed the “class
of restriction” check, or inter-digit timeout has occurred.

■ When a call encounters a step in vector processing which causes the
denial treatment to be applied to the originator.

■ When a Direct-Agent call is placed to a destination agent who is not a
member of the specified split.

■ When a Direct-Agent call is placed to a destination agent who is not logged
in.

D1 D2C1D1 D2 c fC1c
Issue 1 — December 2001

9-109DEFPROG.PDF R10.1 V1

Event Report Service Group
The Failed Event Report is not sent under the following circumstances:

■ For a cstaMakePredictiveCall call when any of the above conditions occur
the Call Cleared Event Report is generated to indicate that the call has
been terminated.

The call is terminated because a connection could not be established to the
destination.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V19-110

Failed Event
Service Parameters:

monitorCrossRefID [mandatory] Contains the handle to the monitor request for
which this event is reported.

failingConnection [mandatory — partially supported] Specifies the callID of
the call that failed

failingDevice [mandatory — partially supported] Specifies the device that
failed. The deviceIDStatus may be ID_NOT_KNOWN.

calledDevice [mandatory — partially supported] Specifies the called
device. The following rules apply:

■ For outgoing calls over PRI facilities, the “called
number” from the ISDN SETUP message is specified. If
the “called number” does not exist (it is NULL), the
deviceIDStatus is ID_NOT_KNOWN.

■ For outgoing calls over non-PRI facilities, then the
deviceIDStatus is ID_NOT_KNOWN.

■ For calls to a TEG (principal) group, the TEG group
extension is provided.

■ If the busy party is on the PBX, then the extension of the
party will be specified. If there is an internal error in the
extension, then the deviceIDStatus is ID_NOT_
KNOWN.

■ For incoming calls to a principal with bridges, the
principal’s extension is provided.

■ If the destination is inconsistent with the dial plan, then
the deviceIDStatus is ID_NOT_KNOWN.

localConnectionInfo [optional — supported] Specifies the local connection state
as perceived by the monitored device on this call. This is
provided for the cstaMonitorDevice requests only. A value
of CS_NONE indicates that the local connection state is
unknown.

cause [optional — supported] Specifies the reason for this event.
The following Event Causes are explicitly sent from the
switch:

■ EC_BUSY — User is busy or queue is full.

■ EC_CALL_NOT_ANSWERED — User is not
responding.

■ EC_TRUNKS_BUSY — No trunks are available.

■ EC_RESOURCES_NOT_AVAILABLE— Call cannot be
completed due to switching resources limitation; for
example, no circuit or channel is available.
Issue 1 — December 2001

9-111DEFPROG.PDF R10.1 V1

Event Report Service Group
Detailed Information:

See the ‘‘Event Report Detailed Information’’ section in this chapter.

■ EC_REORDER_TONE — Call is rejected or outgoing
call is barred.

■ EC_DEST_NOT_OBTAINABLE — Invalid destination
number.

■ EC_NETWORK_NOT_OBTAINABLE — Bearer
capability is not available.

■ EC_INCOMPATIBLE_DESTINATION — Incompatible
destination number. For example, a call from a voice
station to a data extension.

■ EC_NO_AVAILABLE_AGENTS — Queue full or for
direct agent calls — the agent is not a member of the
split or the agent is not logged in.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V19-112

Failed Event
Syntax

#include <acs.h>
#include <csta.h>

// CSTAFailedEvent

typedef struct
{

ACSHandle_t acsHandle;
EventClass_teventClass; // CSTAUNSOLICITED
EventType_t eventType; // CSTA_FAILED

} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_teventHeader;
union
{

struct
{

CSTAMonitorCrossRefID_tmonitorCrossRefId;
union
{

CSTAFailedEvent_t failed;
} u;

} cstaUnsolicited;
} event;
charheap[CSTA_MAX_HEAP];

} CSTAEvent_t;

typedef struct CSTAFailedEvent_t
{

ConnectionID_t failedConnection;
SubjectDeviceID_t failingDevice;
CalledDeviceID_t calledDevice;
LocalConnectionState_t localConnectionInfo;
CSTAEventCause_t cause;

} CSTAFailedEvent_t;
Issue 1 — December 2001

9-113DEFPROG.PDF R10.1 V1

Event Report Service Group
Held Event

Direction: Switch to Client
Event: CSTAHeldEvent
Service Parameters: monitorCrossRefID, heldConnection, holdingDevice,
localConnectionInfo, cause

Functional Description:

The Held Event Report indicates that an on-PBX station has placed a call on hold.
This includes the hold for conference and transfer.

Before After

Placing a call on hold can be done either manually at the station or via a Hold
Service request.

Service Parameters:

Detailed Information:

See the ‘‘Event Report Detailed Information’’ section in this chapter.

monitorCrossRefID [mandatory] Contains the handle to the monitor request for
which this event is reported.

heldConnection [mandatory] Specifies the endpoint where hold was
activated.

holdingDevice [mandatory] Specifies the station extension that placed the
call on hold.

localConnectionInfo [optional — supported] Specifies the local connection state
as perceived by the monitored device on this call. This is
provided for cstaMonitorDevice requests only. A value of
CS_NONE indicates that the local connection state is
unknown.

cause [optional — supported] Specifies the cause for this event.
The following causes are supported.

■ EC_KEY_CONFERENCE — Indicates that the event
report occurred at a bridged device.

■ EC_NEW_CALL — The call has not yet been
transferred.

D1 C1 D1 C1 D2D2 hc * *
Issue 1 — December 2001

DEFPROG.PDF R10.1 V19-114

Held Event
Syntax

#include <acs.h>
#include <csta.h>

// CSTAHeldEvent

typedef struct
{

ACSHandle_t acsHandle;
EventClass_teventClass; // CSTAUNSOLICITED
EventType_t eventType; // CSTA_HELD

} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_teventHeader;
union
{

struct
{

CSTAMonitorCrossRefID_tmonitorCrossRefId;
union
{

CSTAHeldEvent_t held;
} u;

} cstaUnsolicited;
} event;
charheap[CSTA_MAX_HEAP];

} CSTAEvent_t;

typedef struct CSTAHeldEvent_t
{

ConnectionID_t heldConnection;
SubjectDeviceID_t holdingDevice;
LocalConnectionState_t localConnectionInfo;
CSTAEventCause_t cause;

} CSTAHeldEvent_t;
Issue 1 — December 2001

9-115DEFPROG.PDF R10.1 V1

Event Report Service Group
Logged Off Event

Direction: Switch to Client
Event: CSTALoggedOffEvent
Private Data Event: ATTLoggedOffEvent
Service Parameters: monitorCrossRefID, agentDevice, agentID, agent
GroupPrivate Parameters: reasonCode

Functional Description:

The Logged Off Event Report informs the application that an agent has logged out
of an ACD Split. An application needs to request a cstaMonitorDevice on the
ACD Split in order to receive this event.

Service Parameters:

Private Parameters:

Detailed Information:

See the ‘‘Event Report Detailed Information’’ section in this chapter.

monitorCrossRefID [mandatory] Contains the handle to the monitor request for
which this event is reported.

agentDevice [mandatory] Indicates the extension of the agent that is
logging on.

agentID [optional — not supported] Indicates the agent identifier.

agentGroup [optional — supported] Indicates the ACD Split that is being
logged on.

reasonCode [optional] Specifies the reason the agent logged out. Valid
reason codes are a single digit 1– 9. A value of 0 indicates
that the reason code is not available. The meaning of the
code (1-9) is defined by the DEFINITY switch. This
parameter is supported by private data version 5 and later
only.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V19-116

Logged Off Event
Syntax

#include <acs.h>
#include <csta.h>

// CSTALoggedOffEvent

typedef struct
{

ACSHandle_t acsHandle;
EventClass_teventClass; // CSTAUNSOLICITED
EventType_t eventType; // CSTA_LOGGED_OFF

} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_teventHeader;
union
{

struct
{

CSTAMonitorCrossRefID_tmonitorCrossRefId;
union
{

CSTALoggedOffEvent_t loggedOff;
} u;

} cstaUnsolicited;
} event;
charheap[CSTA_MAX_HEAP];

} CSTAEvent_t;

typedef struct CSTALoggedOffEvent_t
{

SubjectDeviceID_t agentDevice;
AgentID_t agentID;
AgentGroup_t agentGroup;

} CSTALoggedOffEvent_t;

typedef ExtendedDeviceID_t SubjectDeviceID_t;

typedef char AgentID_t[32];

typedef DeviceID_t AgentGroup_t;
Issue 1 — December 2001

9-117DEFPROG.PDF R10.1 V1

Event Report Service Group
Private Parameter Syntax

If private data accompanies a CSTALoggedOffEvent, then the
private data would be stored in the location that the
application specified as the privateData parameter in the
acsGetEventBlock() or acsGetEventPoll() request. If the
privateData pointer is set to NULL in these requests, then
the CSTALoggedOffEvent does not deliver private data to the
application. If the acsGetEventBlock() or
acsGetEventPoll() returns a Private Data length of 0, then
no private data is provided with this event.

#include <acs.h>
#include <csta.h>
#include <attpriv.h>

// ATTLoggedOffEvent - CSTA Unsolicited Event Private Data

typedef struct
{

ATTEventType_teventType;// ATT_LOGGED_OFF
union
{

ATTLoggedOffEvent_tloggedOff;
} u;

} ATTEvent_t;

typedef struct ATTLoggedOffEvent_t
{

long reasonCode;// single digit 1 - 9
} ATTLoggedOffEvent_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 V19-118

Logged On Event
Logged On Event

Direction: Switch to Client
Event: CSTALoggedOnEvent
Private Data Event: ATTLoggedOnEvent
Service Parameters: monitorCrossRefID, agentDevice, agentID,
agentGroup, password
Private Parameters: workMode

Functional Description:

The Logged On Event Report informs the application that an agent has logged
into an ACD Split. An application needs to request a cstaMonitorDevice on the
ACD Split in order to receive this event.

The initial agent work mode is provided in the private data.

Service Parameters:

Private Parameters:

Detailed Information:

In addition to the information provided below, see the ‘‘Event Report Detailed
Information’’ section in this chapter.

■ Service Availability — This event is only available on a G3 PBX with G3V4
or later software.

monitorCrossRefID [mandatory] Contains the handle to the monitor request for
which this event is reported.

agentDevice [mandatory] Indicates the station extension of the agent
that is logging on.

agentID [optional — partially supported] Indicates the logical agent
identifier. This is provided for an EAS environment only. For
atraditional ACD environment, this is not supported.

agentGroup [optional — supported] Indicates the ACD Split that is being
logged on.

password [optional — not supported] Indicates the agent password for
logging in.

workMode [optional — not supported] Specifies the initial work mode
for the Agent as Auxiliary-Work Mode (WM_AUX_WORK),
After-Call-Work Mode (WM_AFT_CALL), Auto-In Mode
(WM_AUTO_IN), or Manual-In-Work Mode (WM_MANUAL_
IN).
Issue 1 — December 2001

9-119DEFPROG.PDF R10.1 V1

Event Report Service Group
Syntax

#include <acs.h>
#include <csta.h>

// CSTALoggedOnEvent

typedef struct
{

ACSHandle_t acsHandle;
EventClass_teventClass; // CSTAUNSOLICITED
EventType_t eventType; // CSTA_LOGGED_ON

} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_teventHeader;
union
{

struct
{

CSTAMonitorCrossRefID_tmonitorCrossRefId;
union
{

CSTALoggedOnEvent_t loggedOn;
} u;

} cstaUnsolicited;
} event;
charheap[CSTA_MAX_HEAP];

} CSTAEvent_t;

typedef struct CSTALoggedOnEvent_t
{

SubjectDeviceID_t agentDevice;
AgentID_t agentID;
AgentGroup_t agentGroup;
AgentPassword_t password;// not supported

} CSTALoggedOnEvent_t;

typedef ExtendedDeviceID_t SubjectDeviceID_t;

typedef char AgentID_t[32];

typedef DeviceID_t AgentGroup_t;

typedef char AgentPassword_t[32];
Issue 1 — December 2001

DEFPROG.PDF R10.1 V19-120

Logged On Event
Private Parameter Syntax

If private data accompanies a CSTALoggedOnEvent, then the
private data would be stored in the location that the
application specified as the privateData parameter in the
acsGetEventBlock() or acsGetEventPoll() request. If the
privateData pointer is set to NULL in these requests, then
the CSTALoggedOnEvent does not deliver private data to the
application. If the acsGetEventBlock() or
acsGetEventPoll() returns a Private Data length of 0, then
no private data is provided with this event.

#include <acs.h>
#include <csta.h>
#include <attpriv.h>

// ATTLoggedOnEvent - CSTA Unsolicited Event Private Data

typedef struct
{

ATTEventType_teventType;// ATT_LOGGED_ON
union
{

ATTLoggedOnEvent_tloggedOnEvent;
} u;

} ATTEvent_t;

typedef struct ATTLogedOnEvent_t
{

ATTWorkMode_tworkMode;
} ATTLoggedOnEvent_t;

typedef enum ATTWorkMode_t {
WM_AUX_WORK = 1,
WM_AFTCAL_WK = 2,
WM_AUTO_IN = 3,
WM_MANUAL_IN = 4

} ATTWorkMode_t;
Issue 1 — December 2001

9-121DEFPROG.PDF R10.1 V1

Event Report Service Group
Network Reached Event

Direction: Switch to Client
Event: CSTANetworkReachedEvent
Private Data Event: ATTNetworkReachedEvent (private data version 5),
ATTV4NetworkReachedEvent (private data versions 2, 3, and 4)
Service Parameters: monitorCrossRefID, connection, trunkUsed,
calledDevice, localConnectionInfo, cause
Private Parameters: progressLocation, progressDescription, trunkGroup,
trunkMember

Functional Description:

This event indicates the following two situations when establishing a connection:

■ a non-ISDN call is cut through the switch boundary to another network (set
to outgoing trunk), or

■ an ISDN call is leaving the ISDN network.

Switching Subdomain Boundary

Before After

This event report implies that there will be a reduced level of event reporting and
possibly no additional device feedback, except disconnect/drop, provided for this
party in the call. A Network Reached Event Report is never sent for calls made to
devices connected directly to the switch.

The Network Reached Event Report is generated when:

■ an ISDN PROG (ISDN progress) message has been received for a call
using the ISDN-PRI facilities.2

■ a call is placed to an off-PBX destination and a non-PRI trunk is seized

■ a call is redirected to an off-PBX destination and a non-PRI trunk is seized.

A switch may receive multiple PROGress messages for any given call; each will
generate a Network Reached Event Report. This event will not be generated for a
cstaMakePredictiveCall call.

2. The reason for the PROG (progress) message is contained in the Progress Indicator. This
indicator is sent in private data.

Trunk
D1 C1D1 D2 cC1c c D2

Trunk
Issue 1 — December 2001

DEFPROG.PDF R10.1 V19-122

Network Reached Event
Service Parameters:

Private Parameters:

monitorCrossRefID [mandatory] Contains the handle to the monitor request for
which this event is reported.

connection [mandatory] Specifies the endpoint for the outbound
connection to another network.

trunkUsed [mandatory — not supported] Specifies the trunk identifier
that was used to establish the connection. This information
is provided in the private data.

calledDevice [mandatory — partially supported] Specifies the destination
device of the call. The deviceIDStatus may be ID_NOT_
KNOWN.

localConnectionInfo [optional — supported] Specifies the local connection state
as perceived by the monitored device on this call. This is
provided for cstaMonitorDevice requests only. A value of
CS_NONE indicates that the local connection state is
unknown.

cause [optional —supported] Specifies the cause for this event.
The following cause is supported.

■ EC_REDIRECTED — The call has been redirected.

progressLocation [mandatory] Specifies the progress location in a Progress
Indicator Information Element from the PRI network. The
following location indicators are supported:

■ PL_USER

■ PL_PUB_LOCAL

■ PL_PUB_REMOTE

■ PL_PRIV_REMOTE

progressDescription [mandatory] Specifies the progress description in a
Progress Indicator Information Element from the PRI
network. The following description indicators are supported:

■ PD_CALL_OFF_ISDN

■ PD_DEST_NOT_ISDN

■ PD_ORIG_NOT_ISDN

■ PD_CALL_ON_ISDN
Issue 1 — December 2001

9-123DEFPROG.PDF R10.1 V1

Event Report Service Group
Detailed Information:

See the ‘‘Event Report Detailed Information’’ section in this chapter.

■ PD_INBAND

trunkGroup [optional — limited supported] This parameter is supported
by G3V6 and later switches only. Specifies the trunk group
number from which the call leaves the switch and enters the
network. This information will not be reported in the
originalCallInfo parameter in the events following Network
Reached. This parameter is supported by private data
version 5 and later only.

trunkMember [optional — limited supported] This parameter is supported
by G3V6 and later switches only. Specifies the trunk
member from which the call leaves the switch and enters the
network. This information will not be reported in the
originalCallInfo parameter in the events following Network
Reached. This parameter is supported by private data
version 5 and later only.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V19-124

Network Reached Event
Syntax

#include <acs.h>
#include <csta.h>

// CSTANetworkReachedEvent

typedef struct
{

ACSHandle_t acsHandle;
EventClass_teventClass; // CSTAUNSOLICITED
EventType_t eventType; // CSTA_NETWORK_REACHED

} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_teventHeader;
union
{

struct
{

CSTAMonitorCrossRefID_t monitorCrossRefId;
union
{
CSTANetworkReachedEvent_t networkReached;
} u;

} cstaUnsolicited;
} event;
charheap[CSTA_MAX_HEAP];

} CSTAEvent_t;

typedef struct CSTANetworkReachedEvent_t
{

ConnectionID_t connection;
SubjectDeviceID_t trunkUsed;
CalledDeviceID_t calledDevice;
LocalConnectionState_t localConnectionInfo;
CSTAEventCause_t cause;

} CSTANetworkReachedEvent_t;
Issue 1 — December 2001

9-125DEFPROG.PDF R10.1 V1

Event Report Service Group
Private Data Version 5 Syntax

If private data accompanies a CSTANetworkReachedEvent,
then the private data would be stored in the location that
the application specified as the privateData parameter in
the acsGetEventBlock() or acsGetEventPoll() request. If
the privateData pointer is set to NULL in these requests,
then the CSTANetworkReachedEvent does not deliver private
data to the application. If acsGetEventBlock() or
acsGetEventPoll() returns a Private Data length of 0, then
no private data is provided with this event.

#include <acs.h>
#include <csta.h>
#include <attpriv.h>

// ATTNetworkReachedEvent - CSTA Unsolicited Event Private Data

typedef struct
{

ATTEventType_teventType;// ATT_NETWORK_REACHED
union
{

ATTNetworkReachedEvent_tnetworkReachedEvent;
} u;

} ATTEvent_t;

typedef struct ATTNetworkReachedEvent_t
{

ATTProgressLocation_t progressLocation;
ATTProgressDescription_tprogressDescription;
DeviceID_t trunkGroup;
DeviceID_t trunkMember;

} ATTNetworkReachedEvent_t;

// ATT progress location values

typedef enum ATTProgressLocation_t
{

PL_USER = 0,// user
PL_PUB_LOCAL = 1,// public network serving

// local user
PL_PUB_REMOTE = 4,// public network serving

// remote user
PL_PRIV_REMOTE = 5 // private network serving

// remote user
} ATTProgressLocation_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 V19-126

Network Reached Event
Private Data Version 5 Syntax (Continued)

// ATT progress description values

typedef enum ATTProgressDescription_t
{

PD_CALL_OFF_ISDN= 1,// call is not end-to-end ISDN,
// call progress in-band

PD_DEST_NOT_ISDN= 2,// destination address is
// non-ISDN

PD_ORIG_NOT_ISDN= 3,// origination address is non-ISDN

PD_CALL_ON_ISDN = 4,// call has returned to ISDN
PD_INBAND = 8 // in-band information now

// available
} ATTProgressDescription_t;
Issue 1 — December 2001

9-127DEFPROG.PDF R10.1 V1

Event Report Service Group
Private Data Versions 2-4 Syntax

#include <acs.h>
#include <csta.h>
#include <attpriv.h>

// ATTV4NetworkReachedEvent - CSTA Unsolicited Event Private Data

typedef struct
{

ATTEventType_teventType;// ATTV4_NETWORK_REACHED
union
{
ATTV4NetworkReachedEvent_tv4networkReachedEvent;
} u;

} ATTEvent_t;

typedef struct ATTV4NetworkReachedEvent_t
{

ATTProgressLocation_t progressLocation;
ATTProgressDescription_t progressDescription;

} ATTV4NetworkReachedEvent_t;

// ATT progress location values

typedef enum ATTProgressLocation_t
{

PL_USER = 0, // user
PL_PUB_LOCAL = 1, // public network serving

// local user
PL_PUB_REMOTE = 4, // public network serving

// remote user
PL_PRIV_REMOTE = 5 // private network serving

// remote user
} ATTProgressLocation_t;

// ATT progress description values

typedef enum ATTProgressDescription_t
{

PD_CALL_OFF_ISDN= 1, // call is not end-to-end ISDN,
// call progress in-band

PD_DEST_NOT_ISDN= 2, // destination address is
// non-ISDN

PD_ORIG_NOT_ISDN= 3, // origination address is non-ISDN
PD_CALL_ON_ISDN = 4, // call has returned to ISDN
PD_INBAND = 8 // in-band information now

// available
} ATTProgressDescription_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 V19-128

Originated Event
Originated Event

Direction: Switch to Client
Event: CSTAOriginatedEvent
Private Data Event: ATTOriginatedEvent (private data version 6),
ATTV5OriginatedEvent (private data version 2, 3, 4, and 5)
Service Parameters: monitorCrossRefID, originatedConnection,
callingDevice, calledDevice, localConnectionInfo, cause
Private Parameters: logicalAgent, userInfo

Functional Description:

The Originated Event Report indicates that a station has completed dialing and
the switch has decided to attempt the call. This event is reported to
cstaMonitorDevice associations only.

Before After

This event is generated as follows:

■ When a station user completes dialing a valid number.

■ When a cstaMakeCall is requested on a station, and the station is in the
off-hook state (goes off-hook manually, or is forced off-hook), the switch
processes the request and determines that a call is to be attempted.

■ When a call is attempted using an outgoing trunk and the switch stops
collecting digits for that call.

This event will not be reported when a call is aborted because an invalid number
was provided, or because the originating number provided is not allowed (via
COR) to originate a call.

D1 C1D1 c
Issue 1 — December 2001

9-129DEFPROG.PDF R10.1 V1

Event Report Service Group
Service Parameters:

Private Parameters:

monitorCrossRefID [mandatory] Contains the handle to the monitor request for
which this event is reported.

originatedConnection [mandatory] Specifies the connection for which the call has
been originated.

callingDevice [mandatory] Specifies the device from which the call has
been originated.

calledDevice [mandatory] Specifies the number that the user dialed or
the destination requested by a cstaMakeCall. This is the
number dialed rather than the number out-pulsed. It does
not include the AAR/ARS FAC (Feature Access Code), or
TAC (Trunk Access Code; for example, without the leading 9
often used as the ARS FAC).

localConnectionInfo [optional — supported] Specifies the local connection state
as perceived by the monitored device on this call. This
information is provided for cstaMonitorDevice requests only.
A value of CS_NONE indicates that the local connection
state is unknown.

cause [optional — supported] Specifies the cause for this event.
The following causes are supported:

■ EC_KEY_CONFERENCE — Indicates that the event
report occurred at a bridged device. This cause has
higher precedence than the following cause.

■ EC_NEW_CALL — The call has not yet been
redirected.

logicalAgent [optional] Specifies the logical agent extension of the agent
that is logged into the station making the call for a
cstaMakeCall request.

userInfo [optional] This parameter allows the application to associate
caller information, up to 32 or 96 bytes, with a call. This
information may be a customer number, credit card number,
alphanumeric digits, or a binary string.

NOTE:
The userInfo parameter is defined for this event, but it
is not supported by the DEFINITY switch (i.e., the
userInfo parameter will not be received for this event).
Issue 1 — December 2001

DEFPROG.PDF R10.1 V19-130

Originated Event
Detailed Information:

In addition to the information provided below, see the ‘‘Event Report Detailed
Information’’ section in this chapter.

■ Abbreviated Dialing — The Originated Event will be reported when a call is
attempted after requesting an abbreviated or speed dialing feature.

■ Account Codes — (CDR or SMDR Account Code Dialing) — The
Originated Event will be reported when a call is originated after an optional
or mandatory account code entry.

■ Authorization Codes — The Originated Event will be reported when a call is
originated after an authorization code entry.

■ Automatic Callback — The Originated Event will be reported when an
automatic callback feature matures and the caller goes off-hook on the
automatic callback call.

■ Bridged Call Appearance — The Originated Event will be reported for a call
originated from a bridged appearance.

■ Call Park — The Originated Event will not be reported when a call is parked
or retrieved from a parking spot.

■ cstaMakePredictiveCall — The Originated Event will not be reported for a
cstaMakePredictiveCall.

■ Service Availability — This event is only available on a G3 PBX with G3V4
or later software.
Issue 1 — December 2001

9-131DEFPROG.PDF R10.1 V1

Event Report Service Group
Syntax

#include <acs.h>
#include <csta.h>

// CSTAOriginatedEvent

typedef struct
{

ACSHandle_t acsHandle;
EventClass_t eventClass; // CSTAUNSOLICITED
EventType_t eventType; // CSTA_ORIGINATED

} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_teventHeader;
union
{

struct
{

CSTAMonitorCrossRefID_tmonitorCrossRefId;
union
{

CSTAOriginatedEvent_t originated;
} u;

} cstaUnsolicited;
} event;
charheap[CSTA_MAX_HEAP];

} CSTAEvent_t;

typedef struct CSTAOriginatedEvent_t
{

ConnectionID_t originatedConnection;
SubjectDeviceID_t callingDevice;
CalledDeviceID_t calledDevice;
LocalConnectionState_t localConnectionInfo;
CSTAEventCause_t cause;

} CSTAOriginatedEvent_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 V19-132

Originated Event
Private Data Version 6 Syntax

If private data accompanies a CSTAOriginatedEvent, then the
private data would be stored in the location that the application
specified as the privateData parameter in the acsGetEventBlock()
or acsGetEventPoll() request. If the privateData pointer is set
to NULL in
these requests, then the CSTAOriginatedEvent does not deliver
private
data to the application. If the acsGetEventBlock() or
acsGetEventPoll() returns a Private Data length of 0, then no
private
data is provided with this event.

#include <acs.h>
#include <csta.h>
#include <attpriv.h>

// ATTOriginatedEvent - CSTA Unsolicited Event Private Data

typedef struct
{

ATTEventType_t eventType; // ATT_ORIGINATED
union
{

ATTOriginatedEvent_t originatedEvent;
} u;

} ATTEvent_t;

typedef struct ATTOriginatedEvent_t
{

DeviceID_t logicalAgent;
ATTUserToUserInfo_t userInfo;

} ATTOriginatedEvent_t;

typedef struct ATTUserToUserInfo_t {
ATTUUIProtocolType_t type;
struct {

short length; // 0 indicates UUI not
// present

unsigned char value[33];
} data;

} ATTUserToUserInfo_t;

typedef enum ATTUUIProtocolType_t {
UUI_NONE = -1,// indicates not specified
UUI_USER_SPECIFIC = 0, // user-specific
UUI_IA5_ASCII = 4 // null terminated ascii

// character string
} ATTUUIProtocolType_t;
Issue 1 — December 2001

9-133DEFPROG.PDF R10.1 V1

Event Report Service Group
Private Data Version 2-5 Syntax

If private data accompanies a CSTAOriginatedEvent, then the
private data would be stored in the location that the application
specified as the privateData parameter in the acsGetEventBlock()
or acsGetEventPoll() request. If the privateData pointer is set
to NULL in
these requests, then the CSTAOriginatedEvent does not deliver
private
data to the application. If the acsGetEventBlock() or
acsGetEventPoll() returns a Private Data length of 0, then no
private
data is provided with this event.

#include <acs.h>
#include <csta.h>
#include <attpriv.h>

// ATTOriginatedEvent - CSTA Unsolicited Event Private Data

typedef struct
{

ATTEventType_t eventType; // ATT_ORIGINATED
union
{

ATTOriginatedEvent_t originatedEvent;
} u;

} ATTEvent_t;

typedef struct ATTOriginatedEvent_t
{

DeviceID_t logicalAgent;
ATTUserToUserInfo_t userInfo;

} ATTOriginatedEvent_t;

typedef struct ATTV5UserToUserInfo_t {
ATTUUIProtocolType_t type;
struct {

short length; // 0 indicates UUI not
// present

unsigned char value[33];
} data;

} ATTV5UserToUserInfo_t;

typedef enum ATTUUIProtocolType_t {
UUI_NONE = -1,// indicates not specified
UUI_USER_SPECIFIC = 0, // user-specific
UUI_IA5_ASCII = 4 // null terminated ascii

// character string
} ATTUUIProtocolType_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 V19-134

Queued Event
Queued Event

Direction: Switch to Client
Event: CSTAQueuedEvent
Service Parameters: monitorCrossRefID, queuedConnection, queue,
callingDevice, calledDevice, lastRedirectionDevice, numberQueued,
localConnectionInfo, cause

Functional Description:

The Queued Event Report indicates that a call queued.

Before After

The Queued Event report is generated as follows:

■ When a cstaMakePredictiveCall call is delivered to a hunt group or ACD
split and the call queues.

■ When a call is delivered or redirected to a hunt group or ACD split and the
call queues.

It is possible to have multiple Queued Event Reports for a call. For example, the
call vectoring feature may queue a call in up to three ACD splits at any one time.
In addition, the event is sent if the call queues to the same split with a different
priority.

This event report is not generated when a call queues to an announcement,
Vector announcement or trunk group. It is also not generated when a call queues,
again, to the same ACD split at the same priority.

D1 D2C1D1 D2 cC1c q
Issue 1 — December 2001

9-135DEFPROG.PDF R10.1 V1

Event Report Service Group
Service Parameters:

Detailed Information:

In addition to the information provided below, see the ‘‘Event Report Detailed
Information’’ section in this chapter.

monitorCrossRefID [mandatory] Contains the handle to the monitor request for
which this event is reported.

queuedConnection [mandatory] Specifies the connection that queued.

queue [mandatory] Specifies the queuing device to which the call
has queued. This is the extension of the ACD split to which
the call queued.

callingDevice [mandatory — partially supported] Specifies the calling
device. The deviceIDStatus may be ID_NOT_KNOWN.

calledDevice [mandatory — partially supported] Specifies the called
device. The following rules apply:

■ For incoming calls over PRI facilities, the “called
number” from the ISDN SETUP message is specified. If
the “called number” does not exist (i.e., NULL), the
deviceIDStatus is ID_NOT_KNOWN.

■ For incoming calls over non-PRI facilities the called
number is the principal extension (a group extension for
TEG, PCOL, hunt group, VDN). If the switch is
administered to modify the DNIS digits, then the
modified DNIS is specified.

■ For outbound calls, dialed number is specified.

lastRedirectionDevice [optional — limited support] Specifies the previous
redirection/alerted device in case where the call was
redirected/diverted to the queue device.

localConnectionInfo [optional — supported] Specifies the local connection state
as perceived by the monitored device on this call. This is
provided for cstaMonitorDevice requests only. A value of
CS_NONE indicates that the local connection state is
unknown.

numberQueued [optional — supported] Specifies how many calls are
queued to the queue device. This is the call position in the
queue in the hunt group or ACD split. This number will
include the current call and excludes all direct-agent calls in
the queue.

cause [optional — supported] Specifies the cause for this event.
The following cause is supported:

■ EC_REDIRECTED — The call has been redirected.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V19-136

Queued Event
■ Last Redirection Device — There is only limited support for this parameter.
An application must understand the limitations of this parameter in order to
use the information correctly.
Issue 1 — December 2001

9-137DEFPROG.PDF R10.1 V1

Event Report Service Group
Syntax

#include <acs.h>
#include <csta.h>

// CSTAQueuedEvent

typedef struct
{

ACSHandle_t acsHandle;
EventClass_teventClass; // CSTAUNSOLICITED
EventType_t eventType; // CSTA_QUEUED

} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_teventHeader;
union
{

struct
{

CSTAMonitorCrossRefID_tmonitorCrossRefId;
union
{

CSTAQueuedEvent_t queued;
} u;

} cstaUnsolicited;
} event;
charheap[CSTA_MAX_HEAP];

} CSTAEvent_t;

typedef struct CSTAQueuedEvent_t
{

ConnectionID_t queuedConnection;
SubjectDeviceID_t queue;
CallingDeviceID_t callingDevice;
CalledDeviceID_t calledDevice;
RedirectionDeviceID_t lastRedirectionDevice;
short numberQueued;
LocalConnectionState_t localConnectionInfo;
CSTAEventCause_t cause;

} CSTAQueuedEvent_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 V19-138

Retrieved Event
Retrieved Event

Direction: Switch to Client
Event: CSTARetrievedEvent
Service Parameters: monitorCrossRefID, retrievedConnection,
retrievingDevice, localConnectionInfo, cause

Functional Description:

The Retrieved Event Report indicates that the switch detects a previously held call
that has been retrieved.

Before After

It is generated when an on-PBX station connects to a call that has been
previously placed on hold. Retrieving to a held call can be done either manually
at the station by selecting the call appearance of the held call or by switch-hook
flash from an analog station, or via a cstaRetrieveCall Service request from a
client application.

D1 C1 D1 C1 D2D2 ch * *
Issue 1 — December 2001

9-139DEFPROG.PDF R10.1 V1

Event Report Service Group
Service Parameters:

Detailed Information:

See the ‘‘Event Report Detailed Information’’ section in this chapter.

monitorCrossRefID [mandatory] Contains the handle to the monitor request for
which this event is reported.

retrievedConnection [mandatory] Specifies the connection for which the call has
been taken off the hold state.

retrievingDevice [mandatory] Specifies the device that connected the call
from the hold state. This is the extension that has been
connected the call.

localConnectionInfo [optional — supported] Specifies the local connection state
as perceived by the monitored device on this call. This is
provided for cstaMonitorDevice requests only. A value of
CS_NONE indicates that the local connection state is
unknown.

cause [optional — supported] Specifies the cause for this event.
The following cause is supported:

■ EC_KEY_CONFERENCE — Indicates that the event
report occurred at a bridged device.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V19-140

Retrieved Event
Syntax

#include <acs.h>
#include <csta.h>

// CSTARetrievedEvent

typedef struct
{

ACSHandle_t acsHandle;
EventClass_teventClass; // CSTAUNSOLICITED
EventType_t eventType; // CSTA_RETRIEVED
} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_teventHeader;
union
{

struct
{

CSTAMonitorCrossRefID_t monitorCrossRefId;
union
{

CSTARetrievedEvent_t retrieved;
} u;

} cstaUnsolicited;
} event;
charheap[CSTA_MAX_HEAP];

} CSTAEvent_t;

typedef struct CSTARetrievedEvent_t
{

ConnectionID_t retrievedConnection;
SubjectDeviceID_t retrievingDevice;
LocalConnectionState_t localConnectionInfo;
CSTAEventCause_t cause;

} CSTARetrievedEvent_t;
Issue 1 — December 2001

9-141DEFPROG.PDF R10.1 V1

Event Report Service Group
Service Initiated Event

Direction: Switch to Client
Event: CSTAServiceInitiatedEvent
Private Data Event: ATTServiceInitiatedEvent
Service Parameters: monitorCrossRefID, initiatedConnection,
localConnectionInfo, cause
Private Parameters: ucid

Functional Description:

The Service Initiated Event Report indicates that telecommunication service is
initiated.

Before After

This event is generated as follows:

■ When a station begins to receive dial tone.

■ When a station is forced off-hook because a cstaMakeCall is requested on
that station.

■ When certain switch features that initiate a call (such as the abbreviated
dialing, etc.) are invoked.

D1 C1D1 i
Issue 1 — December 2001

DEFPROG.PDF R10.1 V19-142

Service Initiated Event
Service Parameters:

Private Parameters:

Detailed Information:

See the ‘‘Event Report Detailed Information’’ section in this chapter.

monitorCrossRefID [mandatory] Contains the handle to the monitor request for
which this event is reported.

initiatedConnection [mandatory] Specifies the connection for which the service
(dial tone) has been initiated.

localConnectionInfo [optional — supported] Specifies the local connection state
as perceived by the monitored device on this call. This is
provided for the cstaMonitorDevice requests only. A value
of CS_NONE indicates that the local connection state is
unknown.

cause [optional — supported] Specifies the cause for this event.
The following cause is supported:

■ EC_KEY_CONFERENCE — Indicates that the event
report occurred at a bridged device.

ucid [optional] Specifies the Universal Call ID (UCID) of the
resulting call. The UCID is a unique call identifier across
switches and the network. A valid UCID is a null-terminated
ASCII character string. If there is no UCID associated with
this call, the ucid contains the ATT_NULL_UCID (a
20-character string of all zeros). This parameter is
supported by private data version 5 and later only.
Issue 1 — December 2001

9-143DEFPROG.PDF R10.1 V1

Event Report Service Group
Syntax

#include <acs.h>
#include <csta.h>

// CSTAServiceInitiatedEvent

typedef struct
{

ACSHandle_t acsHandle;
EventClass_teventClass; // CSTAUNSOLICITED
EventType_t eventType; // CSTA_SERVICE_INITIATED

} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_teventHeader;
union
{

struct
{

CSTAMonitorCrossRefID_tmonitorCrossRefId;
union
{
CSTAServiceInitiatedEvent_t serviceInitiated;

} u;
} cstaUnsolicited;

} event;
charheap[CSTA_MAX_HEAP];

} CSTAEvent_t;

typedef struct CSTAServiceInitiatedEvent_t
{

ConnectionID_t initiatedConnection;
LocalConnectionState_t localConnectionInfo;
CSTAEventCause_t cause;

} CSTAServiceInitiatedEvent_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 V19-144

Service Initiated Event
Private Parameter Syntax

If private data accompanies a CSTAServiceInitiatedEvent,
then the private data would be stored in the location that
the application specified as the privateData parameter in
the acsGetEventBlock() or acsGetEventPoll() request. If
the privateData pointer is set to NULL in these requests,
then the CSTAServiceInitiatedEvent does not deliver
private data to the application. If the acsGetEventBlock()
or acsGetEventPoll() returns a Private Data length of 0,
then no private data is provided with this event.

#include <acs.h>
#include <csta.h>
#include <attpriv.h>

// ATTServiceInitiatedEvent - CSTA Unsolicited Event Private Data
// (supported by private data version 5 and later only)

typedef struct
{

ATTEventTypeeventType;// ATT_SERVICE_INITIATED
union
{

ATTServiceInitiatedEvent_tserviceInitiated;
} u;

} ATTEvent_t;

typedef struct ATTServiceInitiatedEvent_t
{

ATTUCID_t ucid;
} ATTServiceInitiatedEvent_t;

typedef char ATTUCID_t[64];
Issue 1 — December 2001

9-145DEFPROG.PDF R10.1 V1

Event Report Service Group
Transferred Event

Direction: Switch to Client
Event: CSTATransferredEvent
Private Data Event: ATTTransferredEvent (private data version 6),
ATTV5TransferredEvent (private data version 5), ATTV4TransferredEvent
(private data version 4), ATTV3TransferredEvent (private data versions 2
and 3)
Service Parameters: monitorCrossRefID, primaryOldCall, secondaryOldCall,
transferringDevice, transferredDevice, transferredConnections,
localConnectionInfo, cause
Private Parameters: originalCallInfo, distributingDevice, ucid, trunkList
(private data version 6)

Functional Description:

The Transferred Event Report indicates that an existing call was transferred to
another device and the device requesting the transfer has been dropped from the
call. The transferringDevice will not appear in any future feedback for the call.

Before After

The Transferred Event Report is generated for the following circumstances:

■ When an on-PBX station completes a transfer by pressing the “transfer”
button on the voice terminal.

■ When the on-PBX analog set (phone) user on a monitored call goes on
hook with one active call and one call on conference/transfer hold.

■ When the “call park” feature is used in conjunction with the “transfer” button
on the voice set.

■ When an adjunct successfully completes a cstaTransferCall request.

D1 C1 D2

D3C2

D1 D2

D3c

h

C3

*

**

*

Issue 1 — December 2001

DEFPROG.PDF R10.1 V19-146

Transferred Event
Service Parameters:

monitorCrossRefID [mandatory] Contains the handle to the monitor request for
which this event is reported.

primaryOldCall [mandatory] Specifies the callID of the call that was
transferred. This is usually the held call before the transfer.
This call ended as a result of the transfer.

secondaryOldCall [mandatory] Specifies the callID of the call that was
transferred. This is usually the active call before the transfer.
This call is retained by the switch after the transfer.

transferringDevice [mandatory] Specifies the device that is controlling the
transfer. This is the device that did the transfer.

transferredDevice [mandatory] Specifies the new transferred-to device.

■ If the device is an on-PBX station, the extension is
specified.

■ If the party is an off-PBX endpoint, then the
deviceIDStatus is ID_NOT_KNOWN.

There are call scenarios in which the transfer operation joins
multiple parties to a call. In such situations, the
transferredDevice will be the extension for the last party to
join the call.

transferredConnections [optional - supported] Specifies a count of the number of
devices and a list of connectionIDs and deviceIDs which
resulted from the transfer.

■ If a device is on-PBX, the extension is specified. The
extension consists of station or group extensions. Group
extensions are provided when the transfer is to a group
and the transfer completes before the call is answered
by one of the group members (TEG, PCOL, hunt group,
or VDN extension). It may contain alerting extensions.

■ The static deviceID of a queued endpoint is set to the
split extension of the queue.

■ If a party is off-PBX, then its static device identifier or its
previously assigned trunk identifier is specified.

localConnectionInfo [optional — supported] Specifies the local connection state
as perceived by the monitored device on this call. This is
provided for the cstaMonitorDevice requests only. A value
of CS_NONE indicates that the local connection state is
unknown.
Issue 1 — December 2001

9-147DEFPROG.PDF R10.1 V1

Event Report Service Group
[optional — supported] Specifies the cause for this event.
The following causes are supported:

■ EC_TRANSFER — A call transfer has occurred.

■ EC_PARK — A call transfer was performed for parking a
call rather than a true call transfer operation.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V19-148

Transferred Event
Private Parameters:

originalCallInfo [optional] Specifies the original call information. This
parameter is sent with this event for the resulting newCall of
a cstaTransferCall request or the retained call of a (manual)
transfer call operation. The calls being transferred must be
known to the G3PD via the Call Control Services or Monitor
Services.

NOTE:
For a cstaTransferCall, the originalCallInfo includes
the call information originally received by the heldCall
specified in the cstaTransferCall request. For a
manual call transfer, the originalCallInfo includes the
call information originally received by the
primaryOldCall specified in the event report.

■ reason — the reason for the originalCallInfo. The
following reasons are supported.

— OR_NONE — no originalCallInfo provided

— OR_CONFERENCED — call conferenced

— OR_CONSULTATION — consultation call

— OR_TRANSFERRED — call transferred

— OR_NEW_CALL — new call

■ callingDevice — The original callingDevice received by
the heldCall or the primaryOldCall. This parameter is
always provided.

■ calledDevice — The original calledDevice received by
the heldCall or the primaryOldCall. This parameter is
always provided.

■ trunk — The original trunk group received by the
heldCall or the primaryOldCall. This parameter is
supported by private data versions 2, 3, and 4.

■ trunkGroup — The original trunk group received by the
heldCall or the primaryOldCall. This parameter is
supported by private data version 5 and later only.

■ trunkMember (G3V4 switches and later) — The original
trunkMember received by the heldCall or the
primaryOldCall.

■ lookaheadInfo — The original lookaheadInfo received
by the heldCall or the primaryOldCall.

■ userEnteredCode — The original userEnteredCode
received by the heldCall or the primaryOldCall call.
Issue 1 — December 2001

9-149DEFPROG.PDF R10.1 V1

Event Report Service Group
■ userInfo — the original userInfo received by the
heldCall or the primaryOldCall call.

Prior to G3V8, the maximum length of userInfo was 32
bytes. Beginning with G3V8, the maximum length of
userInfo is increased to 96 bytes.

NOTE:
An application using private data version 5 and earlier
can only receive a maximum of 32-byte data for
userInfo, regardless of the size data that is sent by the
switch.

■ ucid — the original ucid of the call. This parameter is
supported by private data version 5 and later only.

■ callOriginatorInfo — the original callOriginatorInfo
received by the call. This parameter is supported by
private data version 5 and later only.

■ flexibleBilling — the original flexibleBilling information
of the call. This parameter is supported by private data
version 5 and later only.

See the ‘‘Delivered Event’’ section in this chapter for details
on these parameters.

distributingDevice [optional] specifies the original distributing device before the
call is transferred. See the ‘‘Delivered Event’’ section in this
chapter for details on the distributingDevice parameter. This
parameter is supported by private data version 4 and later.

ucid [optional] Specifies the Universal Call ID (UCID) of the call.
The UCID is a unique call identifier across switches and the
network. A valid UCID is a null-terminated ASCII character
string. If there is no UCID associated with this call, the ucid
contains the ATT_NULL_UCID (a 20-character string of all
zeros). This parameter is supported by private data version
5 and later only.

trunkList [optional] Specifies a list of up to 5 trunk groups and trunk
members. This parameter is supported by private data
version 6 and later only. The following options are
supported:

■ count — The count of the connected parties on the call.

■ trunks — An array of 5 trunk group and trunk member
IDs, one for each connected party. The following options
are supported:
Issue 1 — December 2001

DEFPROG.PDF R10.1 V19-150

Transferred Event
Detailed Information:

In addition to the information provided below, see the ‘‘Event Report Detailed
Information’’ section in this chapter.

The originalCallInfo includes the original call information originally received by the
call that is ended as the result of the transfer. The following special rules apply:

■ If the Transferred Event was a result of a cstaTransferCall request, the
originalCallInfo and the distributingDevice sent with this Transferred Event
is from the heldCall in the cstaTransferCall request. Thus the application
can control the originalCallInfo and the distributingDevice to be sent in a
Transferred Event by putting the original call on hold and specifying it as
the heldCall in the cstaTransferCall request. Although the primaryOldCall
that is the call ended as the result of the cstaTransferCall is the heldCall
most of the time, sometimes it can be the activeCall.

■ If the Transferred Event was a result of a manual transfer, the
originalCallInfo and the distributingDevice sent with this Transferred Event
is from the primaryOldCall of the event. Thus the application does not have
control of the originalCallInfo and distributingDevice to be sent in the
Transferred Event. Although the primaryOldCall that is the call ended as
the result of the manual transfer operation is the heldCall most of the time,
sometimes it can be the active call.

In addition, see the Established Event ‘‘Detailed Information:’’ section for Blind
Transfer and Consultation Transfer definitions; ‘‘Transferring or Conferencing a
Call Together with Screen Pop Information’’ in Chapter 3 for the recommended
design for applications that use caller information to populate a screen); and the
ANI Screen Pop Application Requirements in the ‘‘Event Report Detailed
Information’’ section in this chapter.

— connection — The connection ID of one of the parties
on the call.

— trunkGroup — The trunk group of the party
referenced by connection.

— trunkMember — The trunk member of the party
referenced by connection.
Issue 1 — December 2001

9-151DEFPROG.PDF R10.1 V1

Event Report Service Group
Syntax

#include <acs.h>
#include <csta.h>

// CSTATransferredEvent

typedef struct
{

ACSHandle_t acsHandle;
EventClass_t eventClass; // CSTAUNSOLICITED
EventType_t eventType; // CSTA_TRANSFERRED

} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_t eventHeader;
union
{

struct
{

CSTAMonitorCrossRefID_t monitorCrossRefId;
union
{

CSTATransferredEvent_t transferred;
} u;

} cstaUnsolicited;
} event;
char heap[CSTA_MAX_HEAP];

} CSTAEvent_t;

typedef struct CSTATransferredEvent_t
{

ConnectionID_t primaryOldCall;
ConnectionID_t secondaryOldCall;
SubjectDeviceID_t transferringDevice;
SubjectDeviceID_t transferredDevice;
ConnectionList_t transferredConnections;
LocalConnectionState_t localConnectionInfo;
CSTAEventCause_t cause;

} CSTATransferredEvent_t;

typedefExtendedDeviceID_tSubjectDeviceID_t;

typedef struct Connection_t {
ConnectionID_t party;
SubjectDeviceID_t staticDevice;

} Connection_t;

typedef struct ConnectionList_t {
int count;
Connection_t *connection;

} ConnectionList_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 V19-152

Transferred Event
Private Data Version 6 Syntax

If private data accompanies a CSTATransferredEvent, then
the private data would be stored in the location that the
application specified as the privateData parameter in the
acsGetEventBlock() or acsGetEventPoll() request. If the
privateData pointer is set to NULL in these requests, then
the CSTATransferredEvent does not deliver private data to
the application. If acsGetEventBlock() or
acsGetEventPoll() returns a Private Data length of 0, then
no private data is provided with this event.

#include <acs.h>
#include <csta.h>
#include <attpriv.h>

// ATTTransferredEvent - CSTA Unsolicited Event Private Data

typedef struct
{

ATTEventType_teventType;// ATT_TRANSFERRED
union
{

ATTTransferredEvent_ttransferredEvent;
} u;

} ATTEvent_t;

typedef struct ATTTransferredEvent_t
{

ATTOriginalCallInfo_t originalCallInfo;
CalledDeviceID_t distributingDevice;

ATTUCID_t ucid;
} ATTTransferredEvent_t;

typedef struct ATTOriginalCallInfo_t
{

ATTReasonForCallInfo_t reason;
CallingDeviceID_t callingDevice;
CalledDeviceID_t calledDevice;
DeviceID_t trunkGroup;
DeviceID_t trunkMember;
ATTLookaheadInfo_t lookaheadInfo;
ATTUserEnteredCode_t userEnteredCode;
ATTUserToUserInfo_t userInfo;
ATTUCID_t ucid;
ATTCallOriginatorInfo_t callOriginatorInfo;
Boolean flexibleBilling;

} ATTOriginalCallInfo_t;
Issue 1 — December 2001

9-153DEFPROG.PDF R10.1 V1

Event Report Service Group
Private Data Version 6 Syntax (Continued)

typedef enum ATTReasonForCallInfo_t
{

OR_NONE = 0,// indicates info not present
OR_CONSULTATION = 1,
OR_CONFERENCED = 2,
OR_TRANSFERRED = 3,
OR_NEW_CALL = 4

} ATTReasonForCallInfo_t;

typedef ExtendedDeviceID_tCallingDeviceID_t;

typedef ExtendedDeviceID_tCalledDeviceID_t;

typedef struct ATTLookaheadInfo_t
{

ATTInterflow_t type;
ATTPriority_t priority;
short hours;
short minutes;
short seconds;
DeviceID_t sourceVDN;
ATTUnicodeDeviceID_tuSourceVDN;

// sourceVDN in Unicode
} ATTLookaheadInfo_t;

typedef enum ATTInterflow_t
{

LAI_NO_INTERFLOW= -1,// indicates info not present
LAI_ALL_INTERFLOW= 0,
LAI_THRESHOLD_INTERFLOW= 1,
LAI_VECTORING_INTERFLOW= 2

} ATTInterflow_t;

typedef enum ATTPriority_t
{

LAI_NOT_IN_QUEUE= 0,
LAI_LOW = 1,
LAI_MEDIUM = 2,
LAI_HIGH = 3,
LAI_TOP = 4

} ATTPriority_t;

typedef struct ATTUnicodeDeviceID_t
{

short count;
unsigned short value[64];

} ATTUnicodeDeviceID_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 V19-154

Transferred Event
Private Data Version 6 Syntax (Continued)

typedef struct ATTUserEnteredCode_t
{

ATTUserEnteredCodeType_t type;
ATTUserEnteredCodeIndicator_t indicator;
char data[ATT_MAX_USER_CODE];
DeviceID_t collectVDN;

} ATTUserEnteredCode_t;

typedef enum ATTUserEnteredCodeType_t
{

UE_NONE = -1,// indicates not specified
UE_ANY = 0,
UE_LOGIN_DIGITS = 2,
UE_CALL_PROMPTER = 5,
UE_DATA_BASE_PROVIDED= 17,
UE_TONE_DETECTOR = 32

} ATTUserEnteredCodeType_t;

typedef enum ATTUserEnteredCodeIndicator_t
{

UE_COLLECT= 0,
UE_ENTERED= 1

} ATTUserEnteredCodeIndicator_t;

typedef struct ATTUserToUserInfo_t
{

ATTUUIProtocolType_t type;
struct {

short length;
// 0 indicates UUI not present

unsigned char value[ATT_MAX_USER_INFO];
} data;

} ATTUserToUserInfo_t;

typedef enum ATTUUIProtocolType_t
{

UUI_NONE = -1,// indicates not specified
UUI_USER_SPECIFIC = 0,// user-specific
UUI_IA5_ASCII = 4

// null terminated ascii character string
} ATTUUIProtocolType_t;

typedef char ATTUCID_t[64];

typedef struct ATTCallOriginatorInfo_t
{

Boolean hasInfo;// if FALSE, no callOriginatorType
short callOriginatorType;

} ATTCallOriginatorInfo_t;
Issue 1 — December 2001

9-155DEFPROG.PDF R10.1 V1

Event Report Service Group
Private Data Version 5 Syntax

If private data accompanies a CSTATransferredEvent, then
the private data would be stored in the location that the
application specified as the privateData parameter in the
acsGetEventBlock() or acsGetEventPoll() request. If the
privateData pointer is set to NULL in these requests, then
the CSTATransferredEvent does not deliver private data to
the application. If acsGetEventBlock() or
acsGetEventPoll() returns a Private Data length of 0, then
no private data is provided with this event.

#include <acs.h>
#include <csta.h>
#include <attpriv.h>

// ATTV5TransferredEvent - CSTA Unsolicited Event Private Data

typedef struct
{

ATTEventType_teventType;// ATT_TRANSFERRED
union
{

ATTV5TransferredEvent_ttransferredEvent;
} u;

} ATTEvent_t;

typedef struct ATTV5TransferredEvent_t
{

ATTV5OriginalCallInfo_t originalCallInfo;
CalledDeviceID_t distributingDevice;

ATTUCID_t ucid;
} ATTV5TransferredEvent_t;

typedef struct ATTV5OriginalCallInfo_t
{

ATTReasonForCallInfo_t reason;
CallingDeviceID_t callingDevice;
CalledDeviceID_t calledDevice;
DeviceID_t trunkGroup;
DeviceID_t trunkMember;
ATTLookaheadInfo_t lookaheadInfo;
ATTUserEnteredCode_t userEnteredCode;
ATTV5UserToUserInfo_t userInfo;
ATTUCID_t ucid;
ATTCallOriginatorInfo_t callOriginatorInfo;
Boolean flexibleBilling;

} ATTV5OriginalCallInfo_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 V19-156

Transferred Event
Private Data Version 5 Syntax (Continued)

typedef enum ATTReasonForCallInfo_t
{

OR_NONE = 0,// indicates info not present
OR_CONSULTATION = 1,
OR_CONFERENCED = 2,
OR_TRANSFERRED = 3,
OR_NEW_CALL = 4

} ATTReasonForCallInfo_t;

typedef ExtendedDeviceID_tCallingDeviceID_t;

typedef ExtendedDeviceID_tCalledDeviceID_t;

typedef struct ATTLookaheadInfo_t
{

ATTInterflow_t type;
ATTPriority_t priority;
short hours;
short minutes;
short seconds;
DeviceID_t sourceVDN;
ATTUnicodeDeviceID_tuSourceVDN;

// sourceVDN in Unicode
} ATTLookaheadInfo_t;

typedef enum ATTInterflow_t
{

LAI_NO_INTERFLOW= -1,// indicates info not present
LAI_ALL_INTERFLOW= 0,
LAI_THRESHOLD_INTERFLOW= 1,
LAI_VECTORING_INTERFLOW= 2

} ATTInterflow_t;

typedef enum ATTPriority_t
{

LAI_NOT_IN_QUEUE= 0,
LAI_LOW = 1,
LAI_MEDIUM = 2,
LAI_HIGH = 3,
LAI_TOP = 4

} ATTPriority_t;

typedef struct ATTUnicodeDeviceID_t
{

short count;
unsigned short value[64];

} ATTUnicodeDeviceID_t;
Issue 1 — December 2001

9-157DEFPROG.PDF R10.1 V1

Event Report Service Group
Private Data Version 5 Syntax (Continued)

typedef struct ATTUserEnteredCode_t
{

ATTUserEnteredCodeType_t type;
ATTUserEnteredCodeIndicator_t indicator;
char data[ATT_MAX_USER_CODE];
DeviceID_t collectVDN;

} ATTUserEnteredCode_t;

typedef enum ATTUserEnteredCodeType_t
{

UE_NONE = -1,// indicates not specified
UE_ANY = 0,
UE_LOGIN_DIGITS = 2,
UE_CALL_PROMPTER = 5,
UE_DATA_BASE_PROVIDED= 17,
UE_TONE_DETECTOR = 32

} ATTUserEnteredCodeType_t;

typedef enum ATTUserEnteredCodeIndicator_t
{

UE_COLLECT= 0,
UE_ENTERED= 1

} ATTUserEnteredCodeIndicator_t;

typedef struct ATTV5UserToUserInfo_t
{

ATTUUIProtocolType_t type;
struct {

short length;
// 0 indicates UUI not present

unsigned char value[33];
} data;

} ATTV5UserToUserInfo_t;

typedef enum ATTUUIProtocolType_t
{

UUI_NONE = -1,// indicates not specified
UUI_USER_SPECIFIC = 0,// user-specific
UUI_IA5_ASCII = 4

// null terminated ascii character string
} ATTUUIProtocolType_t;

typedef char ATTUCID_t[64];

typedef struct ATTCallOriginatorInfo_t
{

Boolean hasInfo;// if FALSE, no callOriginatorType
short callOriginatorType;

} ATTCallOriginatorInfo_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 V19-158

Transferred Event
Private Data Version 4 Syntax

#include <acs.h>
#include <csta.h>
#include <attpriv.h>

// ATTV4TransferredEvent - CSTA Unsolicited Event Private Data

typedef struct
{

ATTEventType_teventType;// ATTV4_TRANSFERRED
union
{

ATTV4TransferredEvent_tv4transferredEvent;
} u;

} ATTEvent_t;

typedef struct ATTV4TransferredEvent_t
{

ATTV4OriginalCallInfo_t originalCallInfo;
CalledDeviceID_t distributingDevice;

} ATTV4TransferredEvent_t;

typedef struct ATTV4OriginalCallInfo_t
{

ATTReasonForCallInfo_t reason;
CallingDeviceID_t callingDevice;
CalledDeviceID_t calledDevice;
DeviceID_t trunk;
DeviceID_t trunkMember;
ATTV4LookaheadInfo_t lookaheadInfo;
ATTUserEnteredCode_t userEnteredCode;
ATTV5UserToUserInfo_t userInfo;

} ATTV4OriginalCallInfo_t;

typedef enum ATTReasonForCallInfo_t
{

OR_NONE = 0,// indicates info not present
OR_CONSULTATION = 1,
OR_CONFERENCED = 2,
OR_TRANSFERRED = 3,
OR_NEW_CALL = 4

} ATTReasonForCallInfo_t;

typedef ExtendedDeviceID_tCallingDeviceID_t;

typedef ExtendedDeviceID_tCalledDeviceID_t;
Issue 1 — December 2001

9-159DEFPROG.PDF R10.1 V1

Event Report Service Group
Private Data Version 4 Syntax (Continued)

typedef struct ATTV4LookaheadInfo_t
{

ATTInterflow_t type;
ATTPriority_t priority;
short hours;
short minutes;
short seconds;
DeviceID_t sourceVDN;

} ATTV4LookaheadInfo_t;

typedef enum ATTInterflow_t
{

LAI_NO_INTERFLOW= -1,// indicates info not present
LAI_ALL_INTERFLOW= 0,
LAI_THRESHOLD_INTERFLOW= 1,
LAI_VECTORING_INTERFLOW= 2

} ATTInterflow_t;

typedef enum ATTPriority_t
{

LAI_NOT_IN_QUEUE= 0,
LAI_LOW = 1,
LAI_MEDIUM = 2,
LAI_HIGH = 3,
LAI_TOP = 4

} ATTPriority_t;

typedef struct ATTUserEnteredCode_t
{

ATTUserEnteredCodeType_t type;
ATTUserEnteredCodeIndicator_tindicator;
char data[ATT_MAX_USER_CODE];
DeviceID_t collectVDN;

} ATTUserEnteredCode_t;

typedef enum ATTUserEnteredCodeType_t
{

UE_NONE = -1,// indicates not specified
UE_ANY = 0,
UE_LOGIN_DIGITS = 2,
UE_CALL_PROMPTER = 5,
UE_DATA_BASE_PROVIDED= 17,
UE_TONE_DETECTOR = 32

} ATTUserEnteredCodeType_t;

typedef enum ATTUserEnteredCodeIndicator_t
{

UE_COLLECT= 0,
UE_ENTERED= 1

} ATTUserEnteredCodeIndicator_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 V19-160

Transferred Event
Private Data Version 4 Syntax (Continued)

typedef struct ATTV5UserToUserInfo_t
{

ATTUUIProtocolType_t type;
struct {

short length; // 0 indicates UUI not present
unsigned charvalue[33];

} data;
} ATTV5UserToUserInfo_t;

typedef enum ATTUUIProtocolType_t
{

UUI_NONE = -1,// indicates not specified
UUI_USER_SPECIFIC= 0,// user-specific
UUI_IA5_ASCII= 4 // null terminated ascii

// character string
} ATTUUIProtocolType_t;
Issue 1 — December 2001

9-161DEFPROG.PDF R10.1 V1

Event Report Service Group
Private Data Versions 2 and 3 Syntax

#include <acs.h>
#include <csta.h>
#include <attpriv.h>

// ATTV3TransferredEvent - CSTA Unsolicited Event Private Data

typedef struct
{

ATTEventType_teventType;// ATTV3_TRANSFERRED
union
{

ATTV3TransferredEvent_tv3transferredEvent;
} u;

} ATTEvent_t;

typedef struct ATTV3TransferredEvent_t
{

ATTV4OriginalCallInfo_toriginalCallInfo;
} ATTV3TransferredEvent_t;

typedef struct ATTV4OriginalCallInfo_t
{

ATTReasonForCallInfo_t reason;
CallingDeviceID_t callingDevice;
CalledDeviceID_t calledDevice;
DeviceID_t trunk;
DeviceID_t trunkMember;
ATTV4LookaheadInfo_t lookaheadInfo;
ATTUserEnteredCode_t userEnteredCode;
ATTV5UserToUserInfo_t userInfo;

} ATTV4OriginalCallInfo_t;

typedef enum ATTReasonForCallInfo_t
{

OR_NONE = 0,// indicates info not present
OR_CONSULTATION = 1,
OR_CONFERENCED = 2,
OR_TRANSFERRED = 3,
OR_NEW_CALL = 4

} ATTReasonForCallInfo_t;

typedef ExtendedDeviceID_tCallingDeviceID_t;

typedef ExtendedDeviceID_tCalledDeviceID_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 V19-162

Transferred Event
Private Data Versions 2 and 3 Syntax (Continued)

typedef struct ATTV4LookaheadInfo_t
{

ATTInterflow_t type;
ATTPriority_t priority;
short hours;
short minutes;
short seconds;
DeviceID_t sourceVDN;

} ATTV4LookaheadInfo_t;

typedef enum ATTInterflow_t
{

LAI_NO_INTERFLOW= -1,// indicates info not present
LAI_ALL_INTERFLOW= 0,
LAI_THRESHOLD_INTERFLOW= 1,
LAI_VECTORING_INTERFLOW= 2

} ATTInterflow_t;

typedef enum ATTPriority_t
{

LAI_NOT_IN_QUEUE = 0,
LAI_LOW = 1,
LAI_MEDIUM = 2,
LAI_HIGH = 3,
LAI_TOP = 4

} ATTPriority_t;

typedef struct ATTUserEnteredCode_t
{

ATTUserEnteredCodeType_t type;
ATTUserEnteredCodeIndicator_tindicator;
char data[ATT_MAX_USER_CODE];
DeviceID_t collectVDN;

} ATTUserEnteredCode_t;

typedef enum ATTUserEnteredCodeType_t
{

UE_NONE = -1,// indicates not specified
UE_ANY = 0,
UE_LOGIN_DIGITS = 2,
UE_CALL_PROMPTER = 5,
UE_DATA_BASE_PROVIDED= 17,
UE_TONE_DETECTOR= 32

} ATTUserEnteredCodeType_t;

typedef enum ATTUserEnteredCodeIndicator_t
{

UE_COLLECT= 0,
UE_ENTERED= 1

} ATTUserEnteredCodeIndicator_t;
Issue 1 — December 2001

9-163DEFPROG.PDF R10.1 V1

Event Report Service Group
Private Data Versions 2 and 3 Syntax (Continued)

typedef struct ATTV5UserToUserInfo_t
{

ATTUUIProtocolType_t type;
struct {

short length; // 0 indicates UUI not present
unsigned charvalue[33];

} data;
} ATTV5UserToUserInfo_t;

typedef enum ATTUUIProtocolType_t
{

UUI_NONE = -1,// indicates not specified
UUI_USER_SPECIFIC = 0,// user-specific
UUI_IA5_ASCII = 4 // null terminated ascii

// character string
} ATTUUIProtocolType_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 V19-164

Event Report Detailed Information
Event Report Detailed Information

Analog Sets

Redirection

Analog sets do not support temporary bridged appearances. When, in normal
circumstances, a call at a multifunction set would have been left on a simulated
bridge appearance, the call will move away from the analog set. Thus, any
monitor requests for the analog set will receive the Diverted Event Report.

Delivered Event Reports are not sent to SAC-activated analog sets receiving
calls.

Redirection on No Answer

Calls redirected by this feature generate the following event reports when a call is
redirected from a nonanswering station.

■ Diverted Event Report is provided over the cstaMonitorDevice monitor
requests when the call is redirected from a nonanswering agent. This
event is not provided if the call is queued again to the split or delivered to
another agent in the split.

■ Queued Event Report will be generated if the call queues after being
redirected.

■ Call Cleared Event Report — If the call cannot re-queue after the call has
been redirected from the nonanswering agent, then the call continues to
listen to ringback until the caller is dropped. In this case, a Call Cleared
Event Report is generated when the caller is dropped and the call
disconnected.

Direct Agent Calls always redirect to the agent’s coverage path instead of
queueing again to the servicing ACD split.

Switch Hook Operation

When an analog set goes on-hook with one or two calls on hold, the user is
audibly notified (the phone rings). This notification ring is not reported as a
Delivered event. When the user goes off-hook and is reconnected to the alerting
call, a Retrieved Event Report is generated.

When a user goes on hook with a soft-held call and an active call, both calls are
transferred away from the user’s set. It does not matter how the held call was
placed on soft hold.
Issue 1 — December 2001

9-165DEFPROG.PDF R10.1 V1

Event Report Service Group
If a monitored analog user flashes the switch hook to put a call on soft hold to start
a new call:

■ The Held Event Report is sent to all monitor requests.

■ A Service Initiated Event Report is returned to all cstaMonitorDevice
requests when the user receives the dial tone.

■ A Retrieved Event Report is returned to all monitor requests if the user
returns to the held call. If the held call is conferenced or transferred, the
Conferenced or Transferred Event Reports are sent to all monitor requests.

ANI Screen Pop Application Requirements

The list below summarizes the prerequisites for ANI screen pop at a station. Each
item is discussed in more detail below:

■ Incoming PRI provides ANI for incoming external calls. No other external
sources (such as “caller-id”) are supported. This is a typical G3 call center
configuration.

■ Local G3 PBX or DCS provides extension number as ANI for local or
private network incoming calls. This is a typical help desk configuration.

■ Chapter 3 gives design guidelines for transferring a call across G3PDs,
across CTI platforms, and across switches. If these guidelines are not
followed, then the transferring party and receiving party must be on the
same switch and monitored by the same G3PD. Transfers across a private
DCS network are not supported.

■ The receiving party may either manually answer the call or run an
application that uses cstaAnswerCall.

If the design considerations in Chapter 3 are not followed, then ANI screen pop on
blind transfer can only be done at the time the call is answered, not when it rings.
In this case, applications will find the ANI information in the CSTA Established
Event (which the driver sends when the call answers), not the CSTA Delivered
Event (which the driver sends when the call rings). For an application to do an
ANI screen pop on a blind transfer, it must look in the proper CSTA Event.

If the design considerations in Chapter 3 are not followed, then ANI screen pop on
consultation transfer is possible only at the time the call transfers, not when the
consultation call rings or is answered. In this case, applications will find the
information necessary to do the screen pop in the CSTA Transfer Event (which
the driver sends them when the call transfers), not in the CSTA Established or
Delivered events. For an application to do an ANI screen pop on a consultation
transfer, it must look in the proper CSTA Event.

If the design considerations in Chapter 3 are not followed, then ANI screen pop on
a consultation transfer requires that the transferring party must be monitored by
the same G3PD that is monitoring the receiving party.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V19-166

Event Report Detailed Information
Announcements

Automatic Call Distribution (ACD) split-forced announcements and vector
announcements do not generate event reports for the application. However,
nonsplit announcements generate events that are sent to other parties on the call.

Extensions assigned to integrated announcements may not be monitored.

Answer Supervision

The G3 PBX “answer supervision timeout” field determines how long the central
office trunk board waits before sending the (simulated) “answer” message to the
software. This is useful when the answer supervision is not available on a trunk.
This message is used to send call information to Station Message Detail
Recording (SMDR) and to trigger the bridging of a service observer onto an
outgoing trunk call. This message is ignored if the trunk is expected to receive
true answer supervision from the network (the switch uses the true answer
supervision whenever available). Client application monitored calls are treated
like regular calls. No Established Event Report will be generated for this
“simulated answer.”

With respect to cstaMakePredictiveCall calls, when the “answer supervision”’ field
is set to “no”, the switch relies entirely on the call classifier to determine when the
call was answered. When answer supervision on the trunk is set to “yes”, a
cstaMakePredictiveCall call is considered “answered” when the switch software
receives the “answer” message from the trunk board. In reality,
cstaMakePredictiveCall calls may receive either an “answer” message from the
trunk board or (if this never comes) an indication from the classifier that the far
end answered. In this case, the switch will act on the first indication received and
not act on any subsequent indications.

Attendants and Attendant Groups

An attendant group extension cannot be monitored as a station.

Individual attendants may be parties on monitored calls and are supported like
regular station users as far as the event reporting is concerned on monitors for
other station types.

An attendant group may be a party on a monitored call, but the Delivered,
Established, and Connection Cleared Event Reports do not apply.

An individual attendant extension member cannot be monitored by a
cstaMonitorDevice request; but it can be a destination for a call from a
cstaMonitorDevice monitored station. In this case, event reports are sent to the
cstaMonitorDevice request about the individual attendant that is receiving the call.
Issue 1 — December 2001

9-167DEFPROG.PDF R10.1 V1

Event Report Service Group
Attendant Specific Button Operation

This section clarifies what events are sent when an attendant uses buttons that
are specific to an attendant console.

■ Hold button — If an individual attendant presses the hold button and the
call is monitored, the Held Event Report will be sent to the corresponding
monitor request.

■ Call Appearance button — If an individual attendant has a call on hold, and
the call is monitored, then the Retrieved Event Report will be sent to the
corresponding monitor requests.

■ Start button — If a call is present at an attendant and the call is monitored,
and the attendant presses the start button, then the call will be put on hold
and a Held Event Report will be sent on the corresponding monitor
requests.

■ Cancel button — If a call is on hold at the attendant and the attendant
presses the start button, putting the previous call on hold, and then either
dials a number and then presses the cancel button or presses the cancel
button right away, the call that was originally put on hold will be
reconnected and a Retrieved Event Report will be sent to the monitor
request on the call.

■ Release button — If only one call is active and the attendant presses the
release button, the call will be dropped and the Connection Cleared Event
Report will be sent to the monitor request on the call. If two calls are active
at the attendant and the attendant then presses the release button, the
calls will be transferred away from the attendant and a Transferred Event
Report will be sent to the monitor request on the calls.

■ Split button — If two calls are active at the attendant and the attendant
presses the split button, the calls will be conferenced at the attendant and a
Conferenced Event Report will be sent to the monitor requests monitoring
the calls.

Attendant Auto-Manual Splitting

If an individual attendant receives a call with cstaMonitorDevice requests, then
activates the Attendant Auto-Manual Splitting feature, a Held Event Report is
returned to the monitor requests. The next event report sent depends on which
button the attendant presses on the set (CANCEL = Retrieved, SPLIT =
Conferenced, RELEASE = Transferred).

Attendant Call Waiting

Calls that provide event reports over cstaMonitorDevice requests and are
extended by an attendant to a local, busy, single-line voice terminal will generate
the following event reports:
Issue 1 — December 2001

DEFPROG.PDF R10.1 V19-168

Event Report Detailed Information
■ Held when the incoming call is split away by the attendant.

■ Established when the attendant returns to the call.

The following events are generated, if the busy station does not accept the
extended call and its returns:

■ Delivered when the call is returned to the attendant.

■ Established when the attendant returns to the call.

Attendant Control of Trunk Group Access

Calls that provide event reports over cstaMonitorDevice requests can access any
trunk group controlled by the attendant. The attendant is alerted and places the
call to its destination.

AUDIX

Calls that cover AUDIX do not maintain a simulated bridge appearance on the
principal’s station. The principal receives audible alerting followed by an interval
of coverage response followed by the call dropping from the principal’s set. When
the principal receives alerting, the Delivered Event Report is sent. When the call
is dropped from the principal’s set because the call went to AUDIX coverage, the
Diverted Event Report is sent.

Automatic Call Distribution (ACD)

Announcements

Announcements played while a monitored call is in a split queue, or as a result of
an announcement vector command, create no event reports. Calls made directly
to announcement extensions will have the same event report sent to the
application as calls made to station extensions. In either case, no Queued Event
Report is sent to the application.

Interflow

This occurs when a split redirects all calls to another split on another PBX by
activating off-premise call forwarding.

When a monitored call interflows, event reports will cease except for the Network
Reached (for non-PRI trunk) and trunk Connection Cleared Event Reports.
Issue 1 — December 2001

9-169DEFPROG.PDF R10.1 V1

Event Report Service Group
Night Service

The Delivered Event Report is sent when a call that is not being monitored enters
an ACD split (not adjunct-controlled) with monitor requests and also has night
service active.

Service Observing

A monitored call can be service observed provided that service observing is
originated from a voice terminal and the service observing criteria is met. An
Established Event Report is generated every time service observing is activated
for a monitored call. A Connection Cleared Event Report is generated when the
observer disconnects from the call.

For a cstaMakeCall call, the observer is bridged on the connection when the
destination answers. When the destination is a trunk with answer supervision
(includes PRI), the observer is bridged on when an actual far-end answer occurs.
When the destination is a trunk without answer supervision, the observer is
bridged on after the Network Reached (timeout) event.

Applicable events are “Established” (when the observer is bridged on) with the
observer’s extension and “Connection Cleared” when the observer drops from the
call. In addition, the observer may manipulate the call via Call Control requests to
the same extent as he or she can via the station set.

Auto-Available Split

An auto-available split can be monitored as an ACD split and members of
auto-available splits (agents) can be monitored as stations.

Bridged Call Appearance

A cstaMonitorDevice monitored station can have a bridged appearance(s) of its
primary extension number appear at other stations. For bridging, event reports
are provided based on the internal state of bridging parties with respect to the call.
A call to the primary extension number will alert both the principal and the bridged
appearance. Two or more Delivered Event Reports get triggered, one for the
principal, and one for each of the bridged appearances. Two or more Established
Event Reports may be triggered, if both the primary extension number and the
bridged appearance(s) pick up the call. When the principal or bridging user goes
on hook but the bridge itself does not drop from the call, no event report is sent
but the state of that party changes from the connected state to the bridged state.
When the principal or bridging user reconnects, another Established Event Report
will be sent. A Connection Cleared Event Report will be triggered for the principal
and each bridged appearance when the entire bridge drops from the call.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V19-170

Event Report Detailed Information
Members that are not connected to the call while the call is connected to another
bridge member are in the “bridged” state. When the only connected member of
the bridge transitions to the held state, the state for all members of the bridge
changes to the held state even if they were previously in the bridged state. There
is no event report sent to the bridged user monitor request for this transition.

Both the principal and bridging users may be individually monitored by a
cstaMonitorDevice. Each will receive appropriate events as applicable to the
monitored station. However, event reporting for a member of the bridge in the
held state will be dependent on whether the transition was from the connected
state or the bridged state.

CSTA Conference Call, Drop Call, Hold Call, Retrieve Call, and Transfer Call
services are not permitted for parties in the bridged state and may also be more
restrictive if the principal of the bridge has an analog set or if the exclusion option
is in effect from a station associated with the bridge.

A CSTA Make Call request will always originate at the primary extension number
of a user having a bridged appearance. For a call to originate at the bridged call
appearance of a primary extension, that user must be off hook at that bridged
appearance at the time the request is received.

NOTE:
A principal station with bridged call appearance can be single step
conferenced into a call. Stations with bridged call appearance to the
principal have the same bridged call appearance behavior, that is, if
monitored, the station will receive Established And Conferenced Events
when it joins the call. The station will not receive a Delivered Event.

Busy Verification of Terminals

A cstaMonitorDevice-monitored station may be busy-verified. An Established
Event Report is provided when the verifying user is bridged in on a connection in
which there is a cstaMonitorDevice-monitored station.

Call Coverage

If a call that goes to coverage is monitored by a monitor request on an ACD split
or a VDN, the monitor request will receive the Delivered and Established Event
reports.

For an alternate answering position that is monitored by a cstaMonitorDevice
request, the Delivered and Established Event Reports are returned to its
cstaMonitorDevice request.

The Diverted Event Report is sent to the principal’s cstaMonitorDevice request
when an analog principal’s call goes to coverage. The Connection Cleared Event
Issue 1 — December 2001

9-171DEFPROG.PDF R10.1 V1

Event Report Service Group
Report is sent for the coverage station’s monitor requests when the call that had
been alerting at both the principal and the coverage is picked up at the principal.

Call Coverage Path Containing VDNs

When a call is diverted to a station/split coverage path and the coverage path is a
VDN, the switch will provide the following event reports for the call:

■ Diverted Event Report — This event report is sent to a monitor request on
a station. A Diverted Event Report can also be sent to the diverted-from
VDN’s monitor request on the call, if the diverted-to VDN in the coverage
path has a monitor request. The diverted-to VDN’s monitor request
receives a Delivered (to an ACD device) Event Report. If the diverted-to
VDN in the coverage path has no active monitor request (not monitored),
then no Diverted Event Report is sent to the diverted-from VDN’s monitor
request for the call.

■ Delivered (to ACD device) Event Report — This report is only sent if the
diverted-to VDN in the call coverage path has a monitor request.

All other event reports associated with calls in a VDN (for example, Queued and
Delivered Event Reports) are provided to all monitor requests on the call.

Call Forwarding All Calls

No Diverted Event Report will be sent to a cstaMonitorDevice request for the
forwarding station, since the call does not alert the extension that has Call
Forwarding activated. This is only if the call was placed directly to “forwarded to
station.”

If a monitored call is forwarded off-PBX over a non-PRI facility, the Network
Reached Event Report will be generated.

Call Park

A cstaMonitorDevice-monitored station can activate Call Park.

A call may be parked manually at a station by use of the “call park” button (with or
without the conference and/or transfer buttons), or by use of the feature access
code and the conference and/or transfer buttons.

When a call is parked by using the “call park” button without either the conference
or the transfer buttons, there are no event reports generated. When the
conference or transfer buttons are used to park a call, the Conferenced or
Transferred Event Reports are generated. In this case, the “calling” and the
“called” number in the Conferenced or Transferred Event Reports will be the same
as that of the station on which the call was parked.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V19-172

Event Report Detailed Information
When the call is unparked, an Established Event Report is generated with the
“calling” and “called” numbers indicating the station on which the call had been
parked, and the “connected” number is that of the station unparking the call.

Call Pickup

A call alerting at a cstaMonitorDevice-monitored station may be picked up using
Call Pickup. The station picking up (either the principal or the pickup user or both)
may be monitored. An Established Event Report is sent to all monitor requests on
the call when this feature is used. When a pickup user picks up the principal’s
call, the principal’s set (if multifunction) retains a simulated bridge appearance and
is able to connect to the call at any time. No event report is sent for the principal
unless the principal connects in the call.

When a call has been queued first and then picked up by a pickup user, it is
possible for a client application to see an Established Event Report without having
seen any prior Delivered Event Reports.

Call Vectoring

A VDN can have a monitor request. Interactions between event reporting and call
vectoring are shown in the following table.

Table 9-2. Interactions Between Feedback and Call Vectoring

Vector Step or
Command Event Report When Sent Cause

Vector Initialization Delivered 881 (to ACD
device)

encountered

Queue to Main — Queued — successfully
queues

— Failed — queue full, no
agents logged in

— queue
full

Check Backup — Queued — successfully
queues

— Failed — queue full, no
agents logged in

— queue
full

Messaging Split — Queued — successfully
queues

— Failed — queue full, no
agents logged in

— queue
full

Announcement none
Issue 1 — December 2001

9-173DEFPROG.PDF R10.1 V1

Event Report Service Group
Wait none

GoTo none

Stop none

Busy — Failed — Encountered — busy

Disconnect — Connection
Cleared

— Facility Dropped — busy

Go To Vector none

Route to (internal) Delivered (to station
device)

Route To (external) Network Reached

Adjunct Routing route

Collected Digits none

Route To Digits
(internal)

Delivered (to station
device)

Route To Digits
(external)

Network Reached

Converse Vector
Command

— Queued Event — If the call queues
for the agent or
automated
attendant (VRU)

— Delivered Event — When the call is
delivered to an
agent or the
automated
attendant

— Established Event — When the call is
answered by the
agent oir
automated
attendant

— Connection
Cleared Event

— When the call
disconnects from
the agent or
automated
attendant

1. Only reported over a VCN/ACD split monitor association.

Table 9-2. Interactions Between Feedback and Call Vectoring

Vector Step or
Command Event Report When Sent Cause
Issue 1 — December 2001

DEFPROG.PDF R10.1 V19-174

Event Report Detailed Information
Call Prompting

Up to 16 digits collected from the last “collect digit” vector command will be
passed to the application in the Delivered Event Report 3.

Lookahead Interflow

This feature is activated by encountering a ’’route to’’ vector command, with the
route to destination being an off PBX number, and having the ISDN-PRI,
Vectoring (Basic), and Lookahead Interflow options enabled on the Customer
Options form.

For the originating PBX, the interactions are the same as with any call being
routed to an off-PBX destination by the ’’route to’’ vector command.

For the receiving PBX, the lookahead interflow information element is passed in
the ISDN message and will be included in all subsequent Delivered (to ACD
device) Event Report4 for the call, when the information exists, and when the call
is monitored.

Multiple Split Queueing

A Queued Event Report is sent for each split that the call queues to. Therefore,
multiple call queued events could be sent to a client application for one call.

If a call is in multiple queues and abandons (caller drops), one Connection
Cleared Event Report (cause normal) will be returned to the application followed
by a Call Cleared Event Report.

When the call is answered at a split, the call will be removed from the other split’s
queue. No other event reports for the queues will be provided in addition to the
Delivered and Established Event Reports.

Call Waiting

When an analog station is administered with this feature and a call comes in
while the

user is busy on another call, the Delivered Event Report is sent to the client
application.

3. The collected digits are sent in the private data.

4. Lookahead Interflow Information is supported in private data.
Issue 1 — December 2001

9-175DEFPROG.PDF R10.1 V1

Event Report Service Group
Conference

Report is Manual conference from a cstaMonitorDevice monitored station is
allowed, subject to the feature’s restrictions. The Held Event Report is provided
as a result of the first button push or first switch-hook flash. The Conferenced
Event Report is provided as a result of the second button push or second
switch-hook flash, and only if the conference is successfully completed. On a
manual conference or on a Conference Call Service request, the Conferenced
Event is sent to all the monitor requests for the resultant call.

Consult

When the covering user presses the Conference or Transfer feature button and
receives a dial tone, a Held Event Report is returned to monitor requests of the
call. A Service Initiated Event Report is then returned to the monitor requests on
the covering user. After the Consult button is pressed by the covering user,
Delivered and Established Event Reports are returned to monitor requests on the
principal and covering user. Then the covering user can conference or transfer the
call.

CTI Link Failure

When the connectivity of the CTI link between the G3 PBX and the G3PD is
interrupted or reset, information of all calls received by the G3PD before are not
reliable. When CTI link failure happens, all call records are destroyed and
information such as User To User Info, User Entered Code are deleted from the
G3PD. If the link is restored in time, the call events may resume for the new
monitor requests (note that when CTI link is re-initialized, all monitor associations
are aborted), but the Original Call Information for calls that exist before the link
went down are not available.

Data Calls

Analog ports equipped with modems can be monitored by the cstaMonitorDevice
Service and calls to and from ports can be monitored. However, Call Control
Service requests may cause the call to be dropped by the modem.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V19-176

Event Report Detailed Information
DCS

With respect to event reporting, calls made over a DCS network are treated as
off-PBX calls and only the Service Initiated, Network Reached, Call Cleared,
and/or Connection Cleared Event Reports are generated. DCS/UDP extensions
that are local to the PBX are treated as on-PBX stations. DCS/UDP extensions
connected to the remote nodes are treated as off-PBX numbers.

Incoming DCS calls will provide a calling party number.

Direct Agent Calling and Number of Calls In
Queue

Direct-agent calls will not be included in the calculation of number of calls queued
for the Queued Event Report.

Drop Button Operation

The operation of this button is not changed with G3 CSTA Services.

When the ’’Drop’’ button is pushed by one party in a two-party call, the Connection
Cleared Event Report is sent with the extension of the party that pushed the
button. The originating party receives dial tone and the Service Initiated Event
Report is reported on its cstaMonitorDevice requests.

When the ’’Drop’’ button is pushed by the controlling party in a conference, the
Connection Cleared Event Report is sent with the extension of the party who was
dropped off the call. This might be a station extension or a group extension. A
group extension is provided in situations when the last added party to a
conference was a group (for example, TEG, split, announcement, etc.) and the
’’Drop’’ button was used while the group extension was still alerting (or was busy).
Since the controlling party does not receive dial tone (it is still connected to the
conference), no Service Initiated Event Report is reported in this case.

Expert Agent Selection (EAS)

Logical Agents

Whenever logical agents are part of a monitored call, the following additional rules
apply to the event reports:

■ The callingDevice always contains the logical agent’s physical station
number (extension), even though a Make Call request might have
contained a logical agent’s login ID as the originating number
(callingDevice).
Issue 1 — December 2001

9-177DEFPROG.PDF R10.1 V1

Event Report Service Group
■ The answeringDevice and alertingDevice contain the logical agent’s station
extension and never contain the login ID. This is true regardless of
whether the call was routed through a skill hunt group, whether the
connected station has a logical agent currently logged in, or whether the
call is an application-initiated or voice terminal-initiated direct agent call.

■ The calledDevice contains the number that was dialed, regardless of the
station connected to the call. For example, a call may be alerting an agent
station, but the dialed number might have been a logical agent’s login ID, a
VDN, or another station.

■ The Conferenced and Transferred Event Reports are an exception to this
rule. In these events the addedParty contains the station extension of the
transferred to or conferenced party when a local extension is involved.
When an external extension is involved, the addedParty is unknown. If the
transferred to or conferenced party is a hunt group or login ID and the call
has not been delivered to a station, the addedParty contains the hunt group
or login ID extension. If the call has been delivered to a station, the
addedParty contains the station extension connected to the call.

■ The alertingDevice in the Delivered and the queue in the Queued Event
Report for logical direct agent calls contains a skill hunt group from the set
of skills associated with the logical agent. Note that the skill hunt group is
provided, even though an application-initiated, logical direct agent call
request did not contain a skill hunt group.

Hold

Manually holding a call (either by using the Hold, Conference, Transfer buttons, or
switch-hook flash) results in the Held Event Report being sent to all monitor
requests for this call, including the held device. A held party is considered on the
call for the purpose of receiving events relevant to that call.

Integrated Services Digital Network (ISDN)

The Make Call calls will follow Integrated Services Digital Network (ISDN) rules for
the originator’s name and number. The Service Initiated Event Report will not be
sent for en-bloc BRI sets.

Multiple Split Queueing

When a call is queued in multiple ACD splits and then removed from the queue,
the Delivered Event Report will provide the split extension of the alerting agent.
There will be no other events provided for the splits from which the call was
removed.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V19-178

Event Report Detailed Information
Personal Central Office Line (PCOL)

Members of a Personal Central Office Line (PCOL) may be monitored by the
cstaMonitorDevice Service. PCOL behaves like bridging for the purpose of event
reporting. When a call is placed to a PCOL group, the Delivered Event Report is
provided to each member’s cstaMonitorDevice requests. The calledDevice
information passed in the Delivered event will be the default station characters.
When one of the members answers the incoming call, the Established Event
Report provides the extension of the station that answered the call. If another
member connects to the call, another Established Event Report is provided.
When a member goes on hook but the PCOL itself does not drop from the call, no
event is sent but the state of that party changes from the connected state to the
bridged state. The Connection Cleared Event Report is not sent to each
member’s cstaMonitorDevice requests until the entire PCOL drops from the call
(as opposed to an individual member going on-hook). Members that are not
connected to the call while the call is connected to another PCOL member are in
the bridged state. When the only connected member of the PCOL transitions to
the held state, the state for all members of the PCOL changes to the held state
even if they were previously in bridged state. There is no event report sent to any
cstaMonitorDevice request(s) for bridged users for this transition.

All members of the PCOL may be individually monitored by the cstaMonitorDevice
Service. Each will receive appropriate events as applicable.

Primary Rate Interface (PRI)

Primary Rate Interface (PRI) facilities may be used for either inbound or outbound
application monitored calls.

An incoming call over a PRI facility will provide the callingDevice and calledDevice
information (CPN/BN/DNIS) which is passed on to the application in the Delivered
(to ACD device) and Established Event Reports.

An outgoing call over a PRI facility provides call feedback events from the
network.

A cstaMakePredictiveCall call will always use a call classifier on PRI facilities,
whether the call is interworked or not. Although these facilities are expected to
report call outcomes on the ’’D’’ channel, often interworking causes loss or delay
of such reports. Progress messages reporting ’’busy,’’ SITs, ’’alert,’’ and
’’drop/disconnect’’ will cause the corresponding event report to be sent to the
application. For cstaMakePredictiveCall calls, the ’’connected’’ number is
interpreted as ’’far end answer’’ and is reported to the application as the
Established Event Report when received before the call classifiers’ ’’answer’’
indication. When received after the call classifier has reported an outcome, it will
not be acted upon. A monitored outbound call over PRI facilities may generate
the Delivered, Established, Connection Cleared, and/or Call Cleared Event
Reports, if such a call goes ISDN end-to-end. If such a call interworks, the ISDN
Issue 1 — December 2001

9-179DEFPROG.PDF R10.1 V1

Event Report Service Group
PROGress message is mapped into a Network Reached Event Report. In this
case, only the Connection Cleared or Call Cleared Event Reports may follow.

Ringback Queueing

CstaMakePredictiveCall calls will be allowed to queue on busy trunks or stations.

When activated, the callback call will report events on the same callID as the
original call.

Send All Calls (SAC)

For incoming calls, the Delivered Event Report is sent only for multifunction sets
receiving calls while having SAC activated. The Delivered Event Report is not
generated for analog sets when the SAC feature is activated and the set is
receiving a call.

Service-Observing

CstaMonitorDevice monitored stations may be service-observed and observers.
When a monitored station is the observer, and it is bridged onto a call for the
purpose of service observing, the Established Event Report is sent to the
observer’s cstaMonitorDevice requests for as well as to all other monitor requests
for that call.

Temporary Bridged Appearances

The operation of this feature has not changed with G3 CSTA Services. There is
no event provided when a temporary bridged appearance is created at a
multifunction set. If the user is connected to the call (becomes active on such an
appearance), the Established Event Report is provided. If a user goes on hook
after having been connected on such an appearance, a Connection Cleared
Event Report (normal clearing) is generated for the disconnected extension
(bridged appearance).

If the call is dropped from the temporary bridged appearance by someone else, a
Connection Cleared Event Report is also provided.

Temporary bridged appearances are not supported with analog sets. Analog sets
get the Diverted Event Report when such an appearance would normally be
created for a multifunction set.

The call state provided to queries about extensions with temporary bridged
appearances will be ’’bridged’’ if the extension is not active on the call or it will be
’’connected’’ if the extension is active on the call.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V19-180

Event Report Detailed Information
Terminating Extension Group (TEG)

Members of a TEG may be monitored by the cstaMonitorDevice Service. A TEG
behaves similarly to bridging for the purpose of event reporting. If
cstaMonitorDevice monitored stations are members of a terminating group, an
incoming call to the group will cause a Delivered Event Report to be sent to all
cstaMonitorDevice requests for members of the terminating group. On the
cstaMonitorDevice request for the member of the group that answers the call, an
Established Event Report is returned to the answering member’s
cstaMonitorDevice request(s) which contains the station that answered the call.
All the cstaMonitorDevice requests for the other group members (nonanswering
members without TEG buttons) receive a Diverted Event Report. When a button
TEG member goes on hook but the TEG itself does not drop from the call, no
event is sent but the state of that party changes from the connected state to the
bridged state.

The Connection Cleared Event Report is not sent to each member’s
cstaMonitorDevice requests until the entire TEG drops from the call (as opposed
to an individual member going on hook).

Members that are not connected to the call while the call is connected to another
TEG member are in the bridged state. When the only connected member of the
TEG transitions to the held state, the state for all members of the TEG changes to
the held state even if they were previously in the bridged state. There is no event
report sent over the cstaMonitorDevice requests for the bridged user(s) for this
transition.

All members of the TEG may have individual cstaMonitorDevice request. Each
will receive appropriate events as applicable to the monitored station.

Transfer

Manual transfer from a station monitored by a cstaMonitorDevice request is
allowed subject to the feature’s restrictions. The Held Event Report is provided as
a result of the first button push (or switch-hook flash for analog sets). The
Transferred Event Report is provided as a result of the second button push (or
on-hook for analog sets), and only if the transfer is successfully completed. The
Transferred Event Report is sent to all monitor requests for the resultant call.

Trunk-to-Trunk Transfer

Existing rules for trunk-to-trunk transfer from a station user will remain unchanged
for monitored calls. In such cases, transfers requested via Transfer Call request
will be negatively acknowledged. When this feature is enabled, monitored calls
transferred from trunk-to-trunk will be allowed, but there will be no further
notification.
Issue 1 — December 2001

9-181DEFPROG.PDF R10.1 V1

Event Report Service Group
Issue 1 — December 2001

DEFPROG.PDF R10.1 V19-182

Issue 1 — December 2001

DEFPROG.PDF R10.1 V1
10

Routing Service Group
Overview

The Routing Services are Computing Function Services. The services in this
group allow the switch to request and receive routing instructions for a call. These
instructions, issued by a client routing server application, are based upon the
incoming call information provided by the switch.

The following Routing Services are available:

■ Route End Event

■ Route End Service (TSAPI Version 2)

■ Route End Service (TSAPI Version 1)

■ Route Register Abort Event

■ Route Register Cancel Service

■ Route Register Service

■ Route Request Service (TSAPI Version 2)

■ Route Request Service (TSAPI Version 1)

■ Route Select Service (TSAPI Version 2)

■ Route Select Service (TSAPI Version 1)

■ Route Used Event (TSAPI Version 2)

■ Route Used Event (TSAPI Version 1)
10-1

Routing Service Group
Route End Event

Direction: Switch to Client
Event: CSTARouteEndEvent
Service Parameters: routeRegisterReqID, routingCrossRefID, errorValue

Functional Description:

This event is sent by the switch to terminate a routing dialog for a call and to
inform the routing server application of the outcome of the call routing.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V110-2

Route End Event
Service Parameters:

routeRegisterReqID [mandatory] Contains the handle to the routing registration
session for which the application is providing routing
services. The application received this handle in a
CSTARouteRegisterReqConfEvent confirmation to a
cstaRouteRegisterReq() request.

routingCrossRefID [mandatory] Contains the handle to the CSTA call routing
dialog for a call. The application previously received this
handle in the CSTARouteRequestExtEvent for the call. This
is the routing dialog that the switch is ending.

errorValue [mandatory] Contains the cause code for the reason why
the switch is ending the routing dialog. One of the following
values will be returned:

■ GENERIC_UNSPECIFIED (0) (CS0/16) The call has
been routed successfully.

■ INVALID_CALLING_DEVICE (5) (CS3/15) Upon routing
to an agent (for a direct-agent call), the agent is not
logged in.

■ PRIVILEGE_VIOLATION_ON_SPECIFIED_DEVICE (8)
(CS3/43) Lack of calling permission; for example, for an
ARS call, there is an insufficient Facility Restriction
Level (FRL). For a direct-agent call, the originator’s
Class Of Restriction (COR) or the destination agent’s
COR does not allow a direct-agent call.

■ INVALID_DESTINATION (14) (CS0/28) The destination
address in the cstaRouteSelectInv() is invalid.

■ INVALID_OBJECT_TYPE (18) (CS3/11) Upon routing to
an agent (for direct-agent call), the agent is not a
member of the specified split.

■ INVALID_OBJECT_STATE (22) A Route Select request
was received by G3PD in wrong state. A second Route
Select request sent by the application before the routing
dialog is ended may cause this.

■ NO_ACTIVE_CALL (24) (CS0/86, CS3/86) The call was
dropped (for example, caller abandons, vector
disconnect timer times out, a non-queued call
encounters a "stop" step, or the application clears the
call) while waiting for a cstaRouteSelectInv() response.
Issue 1 — December 2001

10-3DEFPROG.PDF R10.1 V1

Routing Service Group
Detailed Information:

An application may receive one Route End Event and one Universal Failure for a
Route Select request for the same call in one of the following call scenarios:

■ Switch/G3PD sends a Route Request to application.

■ Caller drops the call.

■ Application sends a Route Select Request to G3PD.

■ Switch/G3PD sends a Route End Event (errorValue = NO_ACTIVE_CALL)
to application.

■ G3PD receives the Route Select Request, but call has been dropped.

■ G3PD sends Universal Failure for the Route Select request (errorValue =
INVALID_CROSS_REF_ID) to application.

■ NO_CALL_TO_ANSWER (28) (CS3/30) The call has
been redirected. The switch has canceled or terminated
any outstanding CSTARouteRequestExtEvent (s) for the
call after receiving the first valid cstaRouteSelectInv()
message. The switch sends a Route End Event with
this cause to all other outstanding
CSTARouteRequestExtEvent (s) for the call. Note that
this error can happen when Route Registers are
registered for the same routing device from two different
Tservers and the switch is set to send multiple Route
Requests for the same call.

■ RESOURCE_BUSY (33) (CS0/17) The destination is
busy and does not have coverage. The caller will hear
either a reorder or busy tone.

■ PERFORMANCE_LIMIT_EXCEEDED (52) (CS0/102)
Call vector processing encounters any steps other than
wait, announcement, goto, or stop after the
CSTARouteRequextExtEvent (adjunct routing
command) has been issued. This can also happen
when a wait step times out. When the switch sends
CSTARouteEndEvent with this cause, call vector
processing continues.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V110-4

Route End Event
Syntax

#include <acs.h>
#include <csta.h>

// CSTARouteEndEvent - Route Select Service Response

typedef struct
{

ACSHandle_t acsHandle;
EventClass_teventClass; // CSTAEVENTREPORT
EventType_t eventType; // CSTA_ROUTE_END

} ACSEventHeader_t;

typedef struct CSTARouteEndEvent_t {
RouteRegisterReqID_t routeRegisterReqID,
RoutingCrossRefID_t routingCrossRefID,
CSTAUniversalFailure_t errorValue,

} CSTARouteEndEvent_t;

typedef struct
{

ACSEventHeader_teventHeader;
union
{

struct
{

union
{
CSTARouteEndEvent_t routeEnd;
} u;

} cstaEventReport;
} event;

char heap[CSTA_MAX_HEAP];
} CSTAEvent_t;
Issue 1 — December 2001

10-5DEFPROG.PDF R10.1 V1

Routing Service Group
Route End Service (TSAPI Version 2)

Direction: Client to Switch
Function: cstaRouteEndInv()
Service Parameters: routeRegisterReqID, routingCrossRefID, errorValue
Ack Parameters: noData
Nak Parameter: universalFailure

Functional Description:

This service is sent by the routing server application to terminate a routing dialog
for a call. The service request includes a cause value giving the reason for the
routing dialog termination.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V110-6

Route End Service (TSAPI Version 2)
Service Parameters:

Ack Parameters:

routeRegisterReqID [mandatory] Contains the handle to the routing registration
session for which the application is providing routing
services. The routing server application received this
handle in a CSTARouteRegisterReqConfEvent confirmation
to a cstaRouteRegisterReq() request.

routingCrossRefID [mandatory] Contains the handle to the CSTA call routing
dialog for a call. The routing server application previously
received this handle in the CSTARouteRequestExtEvent for
the call. This is the routing dialog that the application is
terminating.

errorValue [mandatory] Contains the cause code for the reason why
the application is terminating the routing dialog. One of the
following values can be sent:

■ Any CSTA universalFailure error code

The errorValue is ignored by the G3 switch and has no
effect for the routed call, but it must be present in the API.
Suggested error codes that may be useful for error logging
purposes are:

■ GENERIC_UNSPECIFIED (0) Normal termination (for
example, application does not want to route the call or
does not know how to route the call).

■ INVALID_CSTA_DEVICE_IDENTIFIER (12) An invalid
routeRegisterReqID has been specified in the
RouteEndInv() request.

■ RESOURCE_BUSY (33) Routing server is too busy to
handle the route request.

■ RESOURCE_OUT_OF_SERVICE (34) Routing service
temporarily unavailable due to internal problem (for
example, the database is out of service).

noData None for this service.
Issue 1 — December 2001

10-7DEFPROG.PDF R10.1 V1

Routing Service Group
Nak Parameter:

Detailed Information:

■ If an application terminates a Route Request via a cstaRouteEndInv(), the
switch continues vector processing.

■ An application may receive one Route End Event and one Universal
Failure for a cstaRouteEndInv() request for the same call in the following
call scenario:

— Switch/G3PD sends a CSTARouteRequestEvent to application.

— Caller drops the call.

— Application sends a cstaRouteEndInv() request to G3PD.

— Switch/G3PD sends a CSTARouteEndEvent (errorValue = NO_
ACTIVE_CALL) to application.

— G3PD receives the cstaRouteEndInv() request, but call has been
dropped.

— G3PD sends universalFailure for the cstaRouteEndInv() request
(errorValue = INVALID_CROSS_REF_ID) to application.

universalFailure If the request is not successful, the application will receive a
CSTAUniversalFailureConfEvent. The error parameter in
this event may contain the following error value, or one of
the error values described in the
‘‘CSTAUniversalFailureConfEvent’’ section in Chapter 3:

■ INVALID_CROSS_REF_ID (17) An invalid
routeRegisterReqID or routeCrossRefID has been
specified in the Route Ended request.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V110-8

Route End Service (TSAPI Version 2)
Syntax

#include <acs.h>
#include <csta.h>

// cstaRouteEndInv() - Service Request

RetCode_t cstaRouteEndInv (
ACSHandle_t acsHandle,
InvokeID_t invokeID,
RouteRegisterReqID_t routeRegisterReqID,
RoutingCrossRefID_t routingCrossRefID,
CSTAUniversalFailure_t errorValue,
PrivateData_t *privateData);

typedef long RouteRegisterReqID_t;

typedef long RoutingCrossRefID_t;
Issue 1 — December 2001

10-9DEFPROG.PDF R10.1 V1

Routing Service Group
Route End Service (TSAPI Version 1)

Direction: Client to Switch
Function: cstaRouteEnd()
Service Parameters: routeRegisterReqID, routingCrossRefID, errorValue

Functional Description:

This service is sent by the routing server application to terminate a routing dialog
for a call. The service request includes a cause value giving the reason for the
routing dialog termination.

Detailed Information:

An application may receive two CSTARouteEndEvent(s) for the same call in one
of the following call scenarios:

■ Switch/G3PD sends a CSTARouteRequestEvent to application.

■ Caller drops the call.

■ Application sends a cstaRouteSelect() to G3PD.

■ Switch/G3PD sends a CSTARouteEndEvent (errorValue = NO_ACTIVE_
CALL) to application.

■ G3PD receives the cstaRouteSelect() Request, but call has been dropped.

■ G3PD sends CSTARouteEndEvent (errorValue = INVALID_CROSS_REF_
ID) to application.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V110-10

Route End Service (TSAPI Version 1)
Syntax

#include <acs.h>
#include <csta.h>

// cstaRouteEnd() - Service Request

RetCode_t cstaRouteEnd (
ACSHandle_t acsHandle,
RouteRegisterReqID_t routeRegisterReqID,
RoutingCrossRefID_t routingCrossRefID,
CSTAUniversalFailure_t errorValue,
PrivateData_t *privateData);

typedef long RouteRegisterReqID_t;

typedef long RoutingCrossRefID_t;
Issue 1 — December 2001

10-11DEFPROG.PDF R10.1 V1

Routing Service Group
Route Register Abort Event

Direction: Switch to Client
Event: CSTARouteRegisterAbortEvent
Service Parameters: routeRegisterReqID

Functional Description:

This event notifies the application that the G3PD or switch aborted a routing
registration session. After the abort occurs, the application receives no more
CSTARouteRequestExtEvent(s) from this routing registration session and the
routeRegisterReqID is no longer valid. The routing requests coming from the
routing device will be sent to the default routing server, if a default routing
registration is still active.

Service Parameters:

Detailed Information:

■ If no CTI link has ever received any CSTARouteRequestExtEvent(s) for the
registered routing device and all of the CTI links are down, this event is not
sent.

■ In a multi-link configuration, if at least one link that has received at least
one CSTARouteRequestExtEvent for the registered routing device is up,
this event is not sent. It is sent only when all of the CTI links that have
received at least one CSTARouteRequestExtEvent for the registered
routing device are down.

NOTE:
How the G3 switch sends the CSTARouteRequestExtEvent(s) for the
registered routing device, via which CTI links, is controlled by the call
vectoring administered on the switch. A routing device can receive
CSTARouteRequestExtEvent(s) from different CTI links. It is
possible that links are up and down without generating this event.

■ If the application wants to continue the routing service after the CTI link is
up, it must issue a cstaRouteRegisterReq() to re-establish a routing
registration session for the routing device.

routeRegisterReqID [mandatory] Contains the handle to the routing registration
session for which the application is providing routing
services. The application received this handle in a
CSTARouteRegisterReqConfEvent confirmation to a
cstaRouteRegisterReq() request.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V110-12

Route Register Abort Event
Syntax

#include <acs.h>
#include <csta.h>

// CSTARouteRegisterAbortEvent

typedef struct
{

ACSHandle_t acsHandle;
EventClass_teventClass; // CSTAEVENTREPORT
EventType_t eventType; // CSTA_ROUTE_REGISTER_ABORT

} ACSEventHeader_t;

typedef struct CSTARouteRegisterAbortEvent_t {
ACSEventHeader_t eventHeader;
union
{ struct

{
union
{

CSTARouteRegisterAbortEvent_trouteCancel;
} u;

} cstaEventReport;
} event;

} CSTAEvent_t;

typedef struct CSTARouteRegisterAbortEvent_t {
RouteRegisterReqID_t routeRegisterReqID,

} CSTARouteRegisterAbortEvent_t;

typedef long RouteRegisterReqID_t;
Issue 1 — December 2001

10-13DEFPROG.PDF R10.1 V1

Routing Service Group
Route Register Cancel Service

Direction: Client to Switch
Function: cstaRouteRegisterCancel()
Confirmation Event: CSTARouteRegisterCancelConfEvent
Service Parameters: routeRegisterReqID
Ack Parameters: noData
Nak Parameter: universalFailure

Functional Description:

Client applications use cstaRouteRegisterCancel() to cancel a previously
registered cstaRouteRegisterReq() session. When this service request is
positively acknowledged, the client application is no longer a routing server for the
specific routing device and the G3PD stops sending
CSTARoutingRequestEvent(s) from the specific routing device associated with
the routeRegisterReqID to the requesting client application. The G3PD will send
any further CSTARoutingRequestEvent(s) from the routing device to the default
routing server application, if there is one registered.

Service Parameters:

Ack Parameters:

Nak Parameter:

routeRegisterReqID [mandatory] Contains the handle to the routing registration
session for which the application is canceling. The routing
server application received this handle in a
CSTARouteRegisterReqConfEvent confirmation to a
cstaRouteRegisterReq() request.

noData None for this service.

universalFailure If the request is not successful, the application will receive a
CSTAUniversalFailureConfEvent. The error parameter in
this event may contain the following error value, or one of
the error values described in the
‘‘CSTAUniversalFailureConfEvent’’ section in Chapter 3:

■ INVALID_CSTA_DEVICE_IDENTIFIER (12) An invalid
routeRegisterReqID has been specified in the request.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V110-14

Route Register Cancel Service
Detailed Information:

An application may receive CSTARouteRequestExtEvent after a
cstaRouteRegisterCancel request is sent and before a
CSTARouteRegisterCancelConfEvent response is received. The application
should ignore the CSTARouteRequestExtEvent. If a cstaRouteSelectInv()
request is sent for the CSTARouteRequestExtEvent, a CSTARouteEndEvent
response will be received with error INVALID_CSTA_DEVICE_IDENTIFIER. If a
cstaRouteEndInv() request is sent for the CSTARouteRequestExtEvent, it will be
ignored. The outstanding CSTARouteRequestExtEvent will receive no response
and will be timed out eventually.
Issue 1 — December 2001

10-15DEFPROG.PDF R10.1 V1

Routing Service Group
Syntax

#include <acs.h>
#include <csta.h>

// cstaRouteRegisterCancel() - Service Request

RetCode_t cstaRouteRegisterCancel (
ACSHandle_t acsHandle,
InvokeID_t invokeID,
RouteRegisterReqID_t routeRegisterReqID,
PrivateData_t *privateData);

typedef long RouteRegisterReqID_t;

// CSTARouteRegisterCancelConfEvent - Service Response

typedef struct
{

ACSHandle_t acsHandle;
EventClass_teventClass; // CSTACONFIRMATION
EventType_t eventType; // CSTA_ROUTE_REGISTER_CANCEL_CONF

} ACSEventHeader_t;

typedef struct CSTARouteRegisterCancelConfEvent_t {
RouteRegisterReqID_t routeRegisterReqID;

} CSTARouteRegisterCancelConfEvent_t;

typedef struct
{

ACSEventHeader_teventHeader;
union
{

struct
{

InvokeID_t invokeID;
union
{

CSTARouteRegisterCancelConfEvent_trouteCancel;
} u;

} cstaConfirmation;
} event;
char heap[CSTA_MAX_HEAP];

} CSTAEvent_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 V110-16

Route Register Service
Route Register Service

Direction: Client to Switch
Function: cstaRouteRegisterReq()
Service Parameters: routingDevice
Ack Parameters: routeRegisterReqID
Nak Parameter: universalFailure

Functional Description:

Client applications use cstaRouteRegisterReq() to register as a routing server for
CSTARouteRequestExtEvent from a specific device. The application must
register for routing services before it can receive any
CSTARouteRequestExtEvent(s) from the routing device. An application may be a
routing server for more that one routing device. However, for a specific routing
device, the G3PD allows only one application registered as the routing server. If a
routing device already has a routing server registered, subsequent
cstaRouteRegisterReq() requests will be negatively acknowledged.
Issue 1 — December 2001

10-17DEFPROG.PDF R10.1 V1

Routing Service Group
Service Parameters:

Ack Parameters:

Nak Parameter:

Detailed Information:

■ The cstaRouteRegisterReq() is handled by the G3PD, not by the G3
switch. The Route Requests are sent from the switch to the G3PD through
call vector processing. From the perspective of the switch, the G3PD is the
routing server. The G3PD processes the Route Requests and sends the
CSTARouteRequestExtEvent(s) to the proper routing servers based on the
route registrations from applications.

■ If no routing server is registered for the G3 switch, all Route Requests from
the switch will be terminated by the G3PD with a Route End Request, as if
cstaRouteEndInv() requests were received from a routing server.

routingDevice [mandatory] Contains the device identifier of the routing
device for which the application requests to be the routing
server. A valid routing device on a G3 switch is a VDN
extension which has the proper routing vector step set up to
send the Route Requests to a G3PD. A NULL device
identifier indicates that the requesting application will be the
default routing server for the G3 switch. A default routing
server will receive CSTARouteRequestExtEvent(s) from
routing devices of the G3 switch that do not have a
registered routing server.

routeRegisterReqID [mandatory] Contains a handle to the routing registration
session for a specific routing device (or for the default
routing server). All routing dialogs (identified by
routingCrossRefID [s]) for a routing device occur over this
routing registration session.

universalFailure If the request is not successful, the application will receive a
CSTAUniversalFailureConfEvent. The error parameter in
this event may contain the following error value, or one of
the error values described in the
‘‘CSTAUniversalFailureConfEvent’’ section in Chapter 3:

■ OUTSTANDING_REQUEST_LIMIT_EXCEEDED (44)
The specified routing device already has a registered
routing server.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V110-18

Route Register Service
Syntax

#include <acs.h>
#include <csta.h>

// cstaRouteRegisterReq() - Service Request

RetCode_t cstaRouteRegisterReq (
ACSHandle_t acsHandle,
InvokeID_t invokeID,
DeviceID_t *routingDevice,
PrivateData_t *privateData);

typedef long RouteRegisterReqID_t;

// CSTARouteRegisterReqConfEvent - Service Response

typedef struct
{

ACSHandle_t acsHandle;
EventClass_t eventClass;
EventType_t eventType;

} ACSEventHeader_t;

typedef struct CSTARouteRegisterReqConfEvent_t {
RouteRegisterReqID_t registerReqID;

} CSTARouteRegisterReqConfEvent_t;

typedef struct
{

ACSEventHeader_teventHeader;
union
{

struct
{

InvokeID_t invokeID;
union
{

CSTARouteRegisterReqConfEvent_trouteRegister;
} u;

} cstaConfirmation;
} event;

char heap[CSTA_MAX_HEAP];
} CSTAEvent_t;
Issue 1 — December 2001

10-19DEFPROG.PDF R10.1 V1

Routing Service Group
Route Request Service (TSAPI Version
2)

Direction: Switch to Client
Event: CSTARouteRequestExtEvent
Private Data Event: ATTRouteRequestEvent (private data version 6),
ATTV5RouteRequestEvent (private data version 5),
ATTV4RouteRequestEvent (private data versions 2, 3, and 4)
Service Parameters: routeRegisterReqID, routingCrossRefID, currentRoute,
callingDevice, routedCall, routedSelAlgorithm, priority, setupInformation
Private Parameters: trunkGroup, trunkMember, lookaheadInfo,
userEnteredCode, userInfo, ucid, callOrigintorInfo, flexibleBilling
Ack Parameters: N/A; see cstaRouteSelectInv() (‘‘Route Select Service
(TSAPI Version 2)’’)
Nak Parameter: N/A; see cstaRouteEndInv() (‘‘Route End Service (TSAPI
Version 2)’’)

Functional Description:

The switch sends a CSTARouteRequestExtEvent to request a destination for a
call arrived on a routing device from a routing server application. The application
may have registered as the routing server for the routing device on the switch that
is making the request, or it may have registered as the default routing server. The
CSTARouteRequestExtEvent includes call-related information. A routing server
application typically uses the call-related information and a database to determine
the destination for the call. The routing server application responds to the
CSTARouteRequestExtEvent via a cstaRouteSelectInv() request that specifies a
destination for the call or a cstaRouteEndInv() request, if the application has no
destination for the call.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V110-20

Route Request Service (TSAPI Version 2)
Service Parameters:

routeRegisterReqID [mandatory] Contains a handle to the routing registration
session for which the application is providing routing
service. The routing server application received this handle
in a CSTARouteRegisterReqConfEvent confirmation to a
cstaRouteRegisterReq() request.

routingCrossRefID [mandatory] Contains the handle for the routing dialog of
this call. This identifier is unique within a routing session
identified by the routeRegisterReqID.

currentRoute [mandatory] Specifies the destination of the call. This is the
VDN extension number first entered by the call (see
‘‘Detailed Information:’’).

callingDevice [optional - supported] Specify the call origination device.
This is the calling device number for on-PBX originators or
incoming calls over PRI facilities. For incoming calls over
non-PRI facilities, the trunk identifier1 is provided.

1. The trunk identifier is a dynamic device identifier. It cannot be used to access a
trunk in the G3 switch

routedCall [optional - supported] Specifies the callID of the call that is
to be routed. This is the connectionID of the routed call at
the routing device.

routedSetAlgorithm [optional - partially supported] Indicates the type of routing
algorithm requested. Type is set to SV_NORMAL.

priority [optional - not supported] Indicates the priority of the call
and may affect selection of alternative routes.

setupInformation [optional - not supported] Contains an ISDN call setup
message if available.
Issue 1 — December 2001

10-21DEFPROG.PDF R10.1 V1

Routing Service Group
Private Parameters:

trunkGroup [optional] Specifies the trunk group number from which the
call is originated. The callingDevice and trunk parameters
are mutually exclusive. Beginning with G3V8, both the
calling device and trunk group may be present. Prior to
G3V8, one or the other will be present, but not both. This
parameter is supported by private data version 5 and later
only.

trunkMember [optional] This parameter is supported beginning with
G3V4. It specifies the trunk member number from which this
call originated.

Beginning with G3V8, trunk member number is provided
regardless of whether the calling device is available. Prior to
G3V8, trunkMember number is provided only if the calling
device is unavailable

trunk [optional] Specifies the trunk group number from which the
call is originated. The callingDevice and trunk parameters
are mutually exclusive. One or the other will be present, but
not both. This parameter is supported by private data
versions 2, 3, and 4.

lookaheadInfo [optional] Specifies the lookahead interflow information
received from the incoming call that is to be routed. The
lookahead interflow is a G3 switch feature that routes some
of the incoming calls from one switch to another so that they
can be handled more efficiently and will not be lost. The
switch that overflows the call provides the lookahead
interflow information. The routing server application may
use the lookahead interflow information to determine the
destination of the call. Please refer to the DEFINITY
Generic 3 Feature Description for more information about
lookahead interflow. If the lookahead interflow type is set to
"LAI_NO_INTERFLOW", no lookahead interflow private
data is provided with this event.

userEnteredCode [optional] Specifies the code/digits that may have been
entered by the caller through the G3 call prompting feature
or the collected digits feature. If the userEnteredCode code
is set to "UE_NONE", no userEnteredCode private data is
provided with this event.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V110-22

Route Request Service (TSAPI Version 2)
userInfo [optional] Contains user-to-user information. This
parameter allows the application to associate caller
information, up to 32 or 96 bytes, with a call. It may be a
customer number, credit card number, alphanumeric digits,
or a binary string.

Prior to G3V8, the maximum length of userInfo was 32
bytes. Beginning with G3V8, the maximum length of
userInfo was increased to 96 bytes.

NOTE:
An application using private data version 5 and earlier
can only receive a maximum of 32-byte data for
userInfo, regardless of the size data that is sent by the
switch.

The following UUI protocol types are supported:

■ UUI_NONE — There is no data provided in the data
parameter.

■ UUI_USER_SPECIFIC — The content of the data
parameter is a binary string. The correct size (maximum
of 32 or 96 bytes) of data must be specified in the size
parameter.

■ UUI_IA5_ASCII — The content of the data parameter
must be a null-terminated IA5 (ASCII) character string.
The correct size (maximum of 32 or 96 bytes excluding
the null terminator) of data must be specified in the size
parameter.
Issue 1 — December 2001

10-23DEFPROG.PDF R10.1 V1

Routing Service Group
Ack Parameters:

Nak Parameter:

Detailed Information:

■ The Routing Request Service can only be administered through the Basic
Call Vectoring feature. The switch initiates the Routing Request when the
Call Vectoring processing encounters the adjunct routing command in a
call vector. The vector command will specify a CTI link’s extension through
which the switch will send the Route Request to the G3PD.

■ Multiple adjunct routing commands are allowed in a call vector. In G3V3,
the Multiple Outstanding Route Requests feature allows 16 outstanding
Route Requests per call. The Route Requests can be over the same or
different CTI links. The requests are all made from the same vector. They
may be specified back-to-back, without intermediate (wait, announcement,
goto, or stop) steps. If the adjunct routing commands are not specified
back-to-back, pre-G3V3 adjunct routing functionality will apply. This
means that previous outstanding Route Requests are canceled when an
adjunct routing vector step is executed.

ucid [optional] Specifies the Universal Call ID (UCID) of the
routed call. The UCID is a unique call identifier across
switches and the network. A valid UCID is a null-terminated
ASCII character string. If there is no UCID associated with
this call, the ucid contains the ATT_NULL_UCID (a
20-character string of all zeros). This parameter is
supported by private data version 5 and later only.

callOriginator [optional] Specifies the callOriginatorInfo of the call
originator such as coin call, 800-service call, or cellular call.
This information is from the network, not from the DEFINITY
switch. The type is defined in Bellcore publication "Local
Exchange Routing Guide" (document number
TR-EOP-000085). A list of the currently defined codes, as of
June 1994, is in the Detailed Information sub-section of the
"Delivered Event" section. This parameter is supported by
private data version 5 and later only.

flexibleBilling [optional] Specifies whether the Flexible Billing feature is
allowed for this call and the Flexible Billing customer option
is assigned on the switch. If this parameter is set to TRUE,
the billing rate can be changed for the incoming 900-type
call using the Set Bill Rate Service. This parameter is
supported by private data version 5 and later only.

N/A See cstaRouteSelectInv().

N/A See cstaRouteEndInv().
Issue 1 — December 2001

DEFPROG.PDF R10.1 V110-24

Route Request Service (TSAPI Version 2)
■ The first Route Select response received by the switch is used as the route
for the call, and all other Route Requests for the call are canceled via
CSTARouteEndEvent(s).

■ If an application terminates the CSTARouteRequestExtEvent request via a
cstaRouteEndInv(), the switch continues vector processing.

■ A CSTARouteRequestExtEvent request will not affect the Call Event
Reports.

■ Like Delivered or Established Event, the Route Request currentRoute
parameter contains the called device. In release 1 and release 2, the
currentRoute in Route Request contains the originally called device if there
is no distributing device, or the distributing device if the call vectoring with
VDN override feature of the PBX is turned on. In the later case, the
originally called device is not reported. The distributingDevice feature is
not supported in the Route Request private data. See the "Delivered
Event" section for detailed information on the distributingDevice parameter.
Issue 1 — December 2001

10-25DEFPROG.PDF R10.1 V1

Routing Service Group
Syntax

#include <acs.h>
#include <csta.h>

// CSTARouteRequestExtEvent - CSTA Unsolicited Event

typedef struct
{

ACSHandle_t acsHandle;
EventClass_teventClass; // CSTAREQUEST
EventType_t eventType; // CSTA_ROUTE_REQUEST_EXT

} ACSEventHeader_t;

typedef long RouteRegisterReqID_t;

typedef long RoutingCrossRefID_t;

typedef char DeviceID_t[64];

typedef struct ExtendedDeviceID_t {
DeviceID_t deviceID;
DeviceIDType_t deviceIDType;
DeviceIDStatus_tdeviceIDStatus;

} ExtendedDeviceID_t;

typedef ExtendedDeviceID_t CallingDeviceID_t;

typedef ExtendedDeviceID_t CalledDeviceID_t;

typedef enum ConnectionID_Device_t {
STATIC_ID = 0,
DYNAMIC_ID = 1

} ConnectionID_Device_t;

typedef struct ConnectionID_t {
long callID;
DeviceID_t deviceID;
ConnectionID_Device_t devIDType;

} ConnectionID_t;

typedef enum SelectValue_t {
SV_NORMAL = 0,
SV_LEAST_COST = 1,
SV_EMERGENCY = 2,
SV_ACD = 3,
SV_USER_DEFINED = 4

} SelectValue_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 V110-26

Route Request Service (TSAPI Version 2)
Syntax (Continued)

typedef struct SetupValues_t {
int length;
unsigned char *value;

} SetupValues_t;

typedef struct CSTARouteRequestExtEvent_t {
RouteRegisterReqID_t routeRegisterReqID;
RoutingCrossRefID_t routingCrossRefID;

CalledDeviceID_tcurrentRoute;// TSAPI V1 and V2 are
// different

CallingDeviceID_tcallingDevice;// TSAPI V1 and V2 are
// different

ConnectionID_t routedCall;
SelectValue_t routedSelAlgorithm;
Boolean priority;
SetUpValues_t setupInformation;

} CSTARouteRequestExtEvent_t;

typedef struct
{

ACSEventHeader_teventHeader;
union
{

struct
{

InvokeID_t invokeID;// Unused for Route Request Event
union
{

CSTARouteRequestExtEvent_trouteRequestExt;
} u;

} cstaRequest;
} event;
char heap[CSTA_MAX_HEAP];

} CSTAEvent_t;
Issue 1 — December 2001

10-27DEFPROG.PDF R10.1 V1

Routing Service Group
Private Data Version 6 Syntax

If private data accompanies a CSTARouteRequestExtEvent, then the
private data would be stored in the location that the application
specified as the privateData parameter in the acsGetEventBlock() or
acsGetEventPoll() request. If the privateData pointer is set to
NULL in these requests, then the CSTARouteRequestExtEvent does not
deliver private data to the application.

If acsGetEventBlock() or acsGetEventPoll() returns a Private Data
length of 0, then no private data is provided with this Route
Request Event.

#include <acs.h>
#include <csta.h>
#include <attpriv.h>

// ATTRouteRequestEvent - CSTA Unsolicited Event Private Data

typedef struct
{

ATTEventTypeeventType; // ATTV6_ROUTE_REQUEST
union
{

ATTRouteRequestEvent_trouteRequest;
} u;

} ATTEvent_t;

typedef struct ATTRouteRequestEvent_t
{

DeviceID_t trunkGroup;
ATTLookaheadInfo_t lookaheadInfo;
ATTUserEnteredCode_t userEnteredCode;
ATTUserToUserInfo_t userInfo;
ATTUCID_t ucid;
ATTCallOriginatorInfo_t callOriginatorInfo;
Boolean flexibleBilling;
DeviceID_t trunkMember;

} ATTRouteRequestEvent_t;

typedef char ATTUCID_t[64];

typedef structATTLookaheadInfo_t
{

ATTInterflow_t type;
ATTPriority_t priority;
short hours;
short minutes;
short seconds;
DeviceID_t sourceVDN;
Issue 1 — December 2001

DEFPROG.PDF R10.1 V110-28

Route Request Service (TSAPI Version 2)
Private Data Version 6 Syntax (Continued)

ATTUnicodeDeviceID_tuSourceVDN; // sourceVDN in Unicode
} ATTLookaheadInfo_t;

typedef enum ATTInterflow_t
{

LAI_NO_INTERFLOW= -1, // indicates Info not present
LAI_ALL_INTERFLOW= 0,
LAI_THRESHOLD_INTERFLOW= 1,
LAI_VECTORING_INTERFLOW= 2

} ATTInterflow_t;

typedef enum ATTPriority_t
{

LAI_NOT_IN_QUEUE= 0,
LAI_LOW = 1,
LAI_MEDIUM = 2,
LAI_HIGH = 3,
LAI_TOP = 4

} ATTPriority_t;

typedef struct ATTUserEnteredCode_t
{

ATTUserEnteredCodeType_t type;
ATTUserEnteredCodeIndicator_t indicator;
char data[25];
DeviceID_t collectVDN;

} ATTUserEnteredCode_t;

typedef enum ATTUserEnteredCodeType_t
{

UE_NONE = -1,
UE_ANY = 0,
UE_LOGIN_DIGITS = 2,
UE_CALL_PROMPTER = 5,
UE_DATA_BASE_PROVIDED = 17,
UE_TONE_DETECTOR = 32

} ATTUserEnteredCodeType_t;

typedef enum ATTUserEnteredCodeIndicator_t
{

UE_COLLECT = 0,
UE_ENTERED = 1

} ATTUserEnteredCodeIndicator_t;
Issue 1 — December 2001

10-29DEFPROG.PDF R10.1 V1

Routing Service Group
Private Data Version 6 Syntax (Continued)

#define ATT_MAX_USER_INFO 129
#define ATT_MAX_UUI_SIZE 96
#define ATTV5_MAX_UUI_SIZE 32

typedef struct ATTUserToUserInfo_t {
ATTUUIProtocolType_t type;
struct {

short length; // 0 indicates UUI not present
unsigned char value[ATT_MAX_USER_INFO];

} data;
} ATTUserToUserInfo_t;

typedef enum ATTUUIProtocolType_t
{

UUI_NONE = -1, // indicates not specified
UUI_USER_SPECIFIC= 0, // user-specific
UUI_IA5_ASCII = 4 // null terminated ascii char string

} ATTUUIProtocolType_t;

typedef struct ATTCallOriginatorInfo_t
{

Boolean hasInfo; // if FALSE, no callOriginatorType

short callOriginatorType;
} ATTCallOriginatorInfo_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 V110-30

Route Request Service (TSAPI Version 2)
Private Data Version 5 Syntax

If private data accompanies a CSTARouteRequestExtEvent, then the private
data would be stored in the location that the application specified as the
privateData parameter in the acsGetEventBlock() or acsGetEventPoll()
request. If the privateData pointer is set to NULL in these requests,
then the CSTARouteRequestExtEvent does not deliver private data to the
application.

If acsGetEventBlock() or acsGetEventPoll() returns a Private Data length of
0, then no private data is provided with this Route Request Event.

#include <acs.h>
#include <csta.h>
#include <attpriv.h>

// ATTV5RouteRequestEvent - CSTA Unsolicited Event Private Data

typedef struct
{

ATTEventType eventType; // ATTV5_ROUTE_REQUEST
union
{

ATTV5RouteRequestEvent_tv5routeRequest;
} u;

} ATTEvent_t;

typedef struct ATTV5RouteRequestEvent_t
{

DeviceID_t trunkGroup;
ATTLookaheadInfo_t lookaheadInfo
ATTUserEnteredCode_t userEnteredCode;
ATTUserToUserInfo_t userInfo;
ATTUCID_t ucid;

ATTCallOriginatorInfo_t callOriginatorInfo;
Boolean flexibleBilling;

} ATTV5RouteRequestEvent_t;

typedef char ATTUCID_t[64];

typedef structATTLookaheadInfo_t
{

ATTInterflow_t type;
ATTPriority_t priority;
short hours;
short minutes;
short seconds;
DeviceID_t sourceVDN;
ATTUnicodeDeviceID_tuSourceVDN; // sourceVDN in Unicode

} ATTLookaheadInfo_t;
Issue 1 — December 2001

10-31DEFPROG.PDF R10.1 V1

Routing Service Group
Private Data Version 5 Syntax (Continued)

typedef enum ATTInterflow_t
{

LAI_NO_INTERFLOW= -1, // indicates Info not present
LAI_ALL_INTERFLOW = 0,
LAI_THRESHOLD_INTERFLOW = 1,
LAI_VECTORING_INTERFLOW = 2

} ATTInterflow_t;

typedef enum ATTPriority_t
{

LAI_NOT_IN_QUEUE = 0,
LAI_LOW = 1,
LAI_MEDIUM = 2,
LAI_HIGH = 3,
LAI_TOP = 4

} ATTPriority_t;

typedef struct ATTUserEnteredCode_t
{

ATTUserEnteredCodeType_t type;
ATTUserEnteredCodeIndicator_t indicator;
char data[25];
DeviceID_t collectVDN;

} ATTUserEnteredCode_t;

typedef enum ATTUserEnteredCodeType_t
{

UE_NONE = -1,
UE_ANY = 0,
UE_LOGIN_DIGITS = 2,
UE_CALL_PROMPTER = 5,
UE_DATA_BASE_PROVIDED = 17,
UE_TONE_DETECTOR = 32

} ATTUserEnteredCodeType_t;

typedef enum ATTUserEnteredCodeIndicator_t
{

UE_COLLECT = 0,
UE_ENTERED = 1

} ATTUserEnteredCodeIndicator_t;

typedef struct ATTV5UserToUserInfo_t
{

ATTUUIProtocolType_t type;
struct {
short length; // 0 indicates UUI not present
unsigned char value[33];
} data;

} ATTV5UserToUserInfo_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 V110-32

Route Request Service (TSAPI Version 2)
Private Data Version 5 Syntax (Continued)

typedef enum ATTUUIProtocolType_t
{

UUI_NONE = -1, // indicates not specified
UUI_USER_SPECIFIC= 0, // user-specific
UUI_IA5_ASCII= 4 // null terminated ascii char string

} ATTUUIProtocolType_t;

typedef struct ATTCallOriginatorInfo_t
{

Boolean hasInfo; // if FALSE, no callOriginatorType

short callOriginatorType;
} ATTCallOriginatorInfo_t;
Issue 1 — December 2001

10-33DEFPROG.PDF R10.1 V1

Routing Service Group
Private Data Versions 2-4 Syntax

#include <acs.h>
#include <csta.h>
#include <attpriv.h>

// ATTV4RouteRequestEvent - CSTA Unsolicited Event Private Data

typedef struct
{

ATTEventTypeeventType; // ATTV4_ROUTE_REQUEST
union
{

ATTV4RouteRequestEvent_tv4routeRequest;
} u;

} ATTEvent_t;

typedef struct ATTV4RouteRequestEvent_t
{

DeviceID_t trunk;
ATTV4LookaheadInfo_t lookaheadInfo
ATTUserEnteredCode_t userEnteredCode;
ATTUserToUserInfo_t userInfo;

} ATTV4RouteRequestEvent_t;

typedef structATTV4LookaheadInfo_t
{

ATTInterflow_t type;
ATTPriority_t priority;
short hours;
short minutes;
short seconds;
DeviceID_t sourceVDN;

} ATTLookaheadInfo_t;

typedef enum ATTInterflow_t
{

LAI_NO_INTERFLOW= -1, // indicates Info not present
LAI_ALL_INTERFLOW= 0,
LAI_THRESHOLD_INTERFLOW= 1,
LAI_VECTORING_INTERFLOW= 2

} ATTInterflow_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 V110-34

Route Request Service (TSAPI Version 2)
Private Data Versions 2-4 Syntax (Continued)

typedef enum ATTPriority_t
{

LAI_NOT_IN_QUEUE = 0,
LAI_LOW = 1,
LAI_MEDIUM = 2,
LAI_HIGH = 3,
LAI_TOP = 4

} ATTPriority_t;

typedef struct ATTUserEnteredCode_t
{

ATTUserEnteredCodeType_t type;
ATTUserEnteredCodeIndicator_t indicator;
char data[25];
DeviceID_t collectVDN;

} ATTUserEnteredCode_t;

typedef enum ATTUserEnteredCodeType_t
{

UE_NONE = -1,
UE_ANY = 0,
UE_LOGIN_DIGITS = 2,
UE_CALL_PROMPTER = 5,
UE_DATA_BASE_PROVIDED = 17,
UE_TONE_DETECTOR = 32

} ATTUserEnteredCodeType_t;

typedef enum ATTUserEnteredCodeIndicator_t
{

UE_COLLECT = 0,
UE_ENTERED = 1

} ATTUserEnteredCodeIndicator_t;

typedef struct ATTUserToUserInfo_t
{

ATTUUIProtocolType_t type;
struct {
short length; // 0 indicates UUI not present

unsigned char value[33];
} data;

} ATTUserToUserInfo_t;

typedef enum ATTUUIProtocolType_t
{

UUI_NONE = -1, // indicates not specified
UUI_USER_SPECIFIC= 0, // user-specific
UUI_IA5_ASCII = 4 // null terminated ascii char string

} ATTUUIProtocolType_t;
Issue 1 — December 2001

10-35DEFPROG.PDF R10.1 V1

Routing Service Group
Route Request Service (TSAPI Version
1)

Direction: Switch to Client
Event: CSTARouteRequestEvent
Service Parameters: routeRegisterReqID, routingCrossRefID, currentRoute,
callingDevice, routedCall, routedSelAlgorithm, priority, setupInformation

Functional Description:

The switch sends a CSTARouteRequestEvent to request a destination for a call
arrived on a routing device from a routing server application. The application may
have registered as the routing server for the routing device on the switch that is
making the request, or it may have registered as the default routing server. The
CSTARouteRequestEvent includes call-related information. A routing server
application typically uses the call-related information and a database to determine
the destination for the call. The routing server application responds to the
CSTARouteRequestExtEvent via a cstaRouteSelect () request that specifies a
destination for the call or a cstaRouteEnd () request, if the application has no
destination for the call.

Detailed Information:

■ The first cstaRouteSelect() response received by the switch is used as the
route for the call, and all other CSTARouteRequestEvents for the call are
canceled via CSTARouteEndEvents.

■ If application terminates the CSTARouteRequestEvent request via a
cstaRouteEnd(), the switch continues vector processing.

■ A CSTARouteRequestEvent request will not affect the Call Event Reports.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V110-36

Route Request Service (TSAPI Version 1)
Syntax

#include <acs.h>
#include <csta.h>

// CSTARouteRequestEvent - CSTA Unsolicited Event

typedef struct
{

ACSHandle_t acsHandle;
EventClass_teventClass; // CSTAREQUEST
EventType_t eventType; // CSTA_ROUTE_REQUEST

} ACSEventHeader_t;

typedef long RouteRegisterReqID_t;

typedef long RoutingCrossRefID_t;

typedef char DeviceID_t[64];

typedef struct ExtendedDeviceID_t {
DeviceID_t deviceID;
DeviceIDType_t deviceIDType;
DeviceIDStatus_t deviceIDStatus;

} ExtendedDeviceID_t;

typedef ExtendedDeviceID_t CallingDeviceID_t;

typedef ExtendedDeviceID_t CalledDeviceID_t;

typedef enum ConnectionID_Device_t {
STATIC_ID = 0,
DYNAMIC_ID = 1

} ConnectionID_Device_t;

typedef struct ConnectionID_t {
long callID;
DeviceID_t deviceID;
ConnectionID_Device_t devIDType;

} ConnectionID_t;

typedef enum SelectValue_t {
SV_NORMAL = 0,
SV_LEAST_COST = 1,
SV_EMERGENCY = 2,
SV_ACD = 3,
SV_USER_DEFINED = 4

} SelectValue_t;
Issue 1 — December 2001

10-37DEFPROG.PDF R10.1 V1

Routing Service Group
Syntax (Continued)

typedef struct SetupValues_t {
int length;
unsigned char *value;

} SetupValues_t;

typedef struct {
RouteRegisterReqID_t routeRegisterReqID;
RoutingCrossRefID_t routingCrossRefID;
CalledDeviceID_t currentRoute;

// TSAPI/cstadefs.h is wrong
CallingDeviceID_t callingDevice;

// TSAPI/cstadefs.h is wrong
ConnectionID_t routedCall;
SelectValue_t routedSelAlgorithm;
Boolean priority;
SetUpValues_t setupInformation;

} CSTARouteRequestEvent_t;

typedef struct
{

ACSEventHeader_teventHeader;
union
{

struct
{

InvokeID_t invokeID;// Unused for Route Request Event
union
{

CSTARouteRequestEvent_trouteRequest;
} u;

} cstaRequest;
} event;
char heap[CSTA_MAX_HEAP];

} CSTAEvent_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 V110-38

Route Select Service (TSAPI Version 2)
Route Select Service (TSAPI Version
2)

Direction: Client to Switch
Function: cstaRouteSelectInv()
Private Data Function: attV6RouteSelect() (private data version 6),
attRouteSelect() (private data version 2, 3, 4, and 5)
Service Parameters: routeRegisterReqID, routingCrossRefID,
routeSelected, remainRetry, setupInformation, routeUsedReq
Private Parameters: callingDevice, directAgentCallSplit, priorityCalling,
destRoute, collectCode, userProvidedCode, userInfo
Ack Parameters: noData
Nak Parameter: universalFailure

Functional Description:

The routing server application uses cstaRouteSelectInv() to provide a destination
to the switch in response to a CSTARouteRequestExtEvent for a call.
Issue 1 — December 2001

10-39DEFPROG.PDF R10.1 V1

Routing Service Group
Service Parameters:

Private Parameters:

routeRegisterReqID [mandatory] Contains a handle to the routing registration
session for which the application is providing routing
service. The routing server application received this handle
in a CSTARouteRegisterReqConfEvent confirmation to a
cstaRouteRegisterReq() request.

routingCrossRefID [mandatory] Contains the handle for the routing dialog of
this call. The application previously received this handle in
the CSTARouteRequestExtEvent for the call.

routeSelected [mandatory] Specifies a destination for the call. If the
destination is an off-PBX number, it can contain the
TAC/ARS/AAR information (see destRoute).

remainRetry [optional - not supported] Specifies the number of times that
the application is willing to receive a
CSTARouteRequestExtEvent for this call in case the switch
needs to request an alternate route.

setupInformation [optional - not supported] Contains a revised ISDN call
setup message that the switch will use to route the call.

routeUsedReq [optional - supported] Indicates a request to receive a
CSTARouteUsedExtEvent for the call.

NOTE:
If specified, the G3PD always returns the same
destination information that is specified in the
routeSelected and destRoute of this
cstaRouteSelectInv().

callingDevice [optional] Specifies the calling device. A NULL specifies
that this parameter is not present.

directAgentCallSplit [optional] Specifies the ACD agent’s split extension for a
Direct-Agent call routing. A Direct-Agent call is a special
type of ACD call that is directed to a specific agent rather
than to any available agent. The agent specified in the
routeSelected must be logged into this split. A NULL
parameter specifies that this is not a Direct-Agent call.

priorityCalling [mandatory] Specifies the priority of the call. Values are
"On" (TRUE) or "Off" (FALSE). When "On" is selected, a
priority call is placed if the routeSelected is an on-PBX
destination. When "On" is selected for an off-PBX
calledDevice, the call will be denied.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V110-40

Route Select Service (TSAPI Version 2)
destRoute [optional] Specifies the TAC/ARS/AAR information for
off-PBX destinations, if the information is not included in the
routeSelected. A NULL parameter specifies no
TAC/ARS/AAR information.

collectCode [optional] This parameter allows the application to request
that a DTMF tone detector (TN744) be connected to the
routed call and to detect and collect caller (call originator)
entered code/digits.

■ These digits are collected while the call is not in vector
processing. The switch handles these digits like
dial-ahead digits, and they may be used by Call
Prompting features. The code/digits collected are
passed to the application via event reports.

■ The collectParty parameter in collectCode indicates to
which party on the call the tone detector should listen.
Currently, the call originator is the only option supported.

■ The collectCode and userProvidedCode are mutually
exclusive. If collectCode is present, then
userProvidedCode cannot be present. A NULL
indicates this parameter is not specified. If the
collectCode type is set to "UC_NONE", it also indicates
that no collectCode is sent with this request.

userProvidedCode [optional] This parameter allows the application to send
code/digits (ASCII string with 0-9, *, and # only) with the
routed call. These code/digits are treated as dial-ahead
digits for the call, and are stored in a dial-ahead digit buffer.

■ They can be collected (one at a time or in a group) using
the collect digits vector command(s) on the switch.

■ The userProvidedCode and collectCode parameters are
mutually exclusive. If userProvidedCode is present,
then collectCode cannot be present.

■ A NULL indicates no user provided code. If the
userProvidedCode type is set to "UP_NONE", it also
indicates no userEnteredCode is sent with this request.

■ The # character terminates the G3 PBX collection of
user input so it is the last character present in the string
if it is sent.1
Issue 1 — December 2001

10-41DEFPROG.PDF R10.1 V1

Routing Service Group
■ Application designers must be aware that if a user
enters more digits than requested, the excess digits
remain in the G3 PBX prompting buffer and may
therefore interfere with any later digit collection or
reporting.

userInfo [optional] Contains user-to-user information. This
parameter allows the application to associate caller
information, up to 32 or 96 bytes, with a call. It may be a
customer number, credit card number, alphanumeric digits,
or a binary string.

It is propagated with the call whether the call is routed to a
destination on the local switch or to a destination on a
remote switch over PRI trunks. The switch sends the
user-to-user information (UUI) in the ISDN SETUP message
over the PRI trunk to establish the call. The local and the
remote switch include the UUI in the Delivered Event Report
and in the CSTARouteRequestExtEvent to the application.
A NULL indicates that this parameter is not present.

Prior to G3V8, the maximum length of userInfo was 32
bytes. Beginning with G3V8, the maximum length of
userInfo was increased to 96 bytes.

NOTE:
An application using private data version 5 and earlier
can only receive a maximum of 32-byte data for
userInfo, regardless of the size data that is sent by the
switch.

The following UUI protocol types are supported:

■ UUI_NONE — There is no data provided in the data
parameter.

■ UUI_USER_SPECIFIC — The content of the data
parameter is a binary string. The correct size (maximum
of 32 or 96 bytes) of data must be specified in the size
parameter.

■ UUI_IA5_ASCII — The content of the data parameter
must be a null-terminated IA5 (ASCII) character string.
The correct size (maximum of 32 or 96 bytes excluding
the null terminator) of data must be specified in the size
parameter.

1. The user-to-user code collection stops when the user enters the requested number of
digits or enters a # character to end the digit entry. If a user enters the # before entering
the requested number of digits, then the # appears in the character string.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V110-42

Route Select Service (TSAPI Version 2)
Ack Parameters:

Nak Parameter:

Detailed Information:

An application may receive one CSTARouteEndEvent and one universalFailure
for a cstaRouteSelectInv() request for the same call in one of the following call
scenarios:

■ Switch/G3PD sends a CSTARouteRequestExtEvent to application.

■ Caller drops the call.

■ Application sends a CSTARouteSelectInv() request to G3PD.

■ Switch/G3PD sends a CSTARouteEndEvent (errorValue = NO_ACTIVE_
CALL) to application.

■ G3PD receives the CSTARouteSelectInv() request, but call has been
dropped.

■ G3PD sends universalFailure for the CSTARouteSelectInv() request
(errorValue = INVALID_CROSS_REF_ID) to application.

noData None for this service.

universalFailure If the request is not successful, the application will receive a
CSTAUniversalFailureConfEvent. The error parameter in
this event may contain one of the following error values, or
one of the error values described in the
‘‘CSTAUniversalFailureConfEvent’’ section in Chapter 3:

■ INVALID_CSTA_DEVICE_IDENTIFIER (12) An invalid
routeRegisterReqID has been specified in the Route
Select request.

■ INVALID_CROSS_REF_ID (17) An invalid
routeCrossRefID has been specified in the Route Select
request.
Issue 1 — December 2001

10-43DEFPROG.PDF R10.1 V1

Routing Service Group
Syntax

#include <acs.h>
#include <csta.h>

// cstaRouteSelectInv() - Service Request

RetCode_t cstaRouteSelectInv(
ACSHandle_t acsHandle,
InvokeID_t invokeID, // V1 & V2 are different here
RouteRegisterReqID_trouteRegisterReqID,
RoutingCrossRefID_t routingCrossRefID,
DeviceID_t *routeSelected,
RetryValue_t remainRetry,
SetUpValues_t *setupInformation,
Boolean routeUsedReq,
PrivateData_t *privateData);

typedef long RouteRegisterReqID_t;

typedef long RoutingCrossRefID_t;

typedef char DeviceID_t[64];

typedef short RetryValue_t;

typedef struct SetUpValues_t {
int length;
unsigned char *value;

} SetUpValues_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 V110-44

Route Select Service (TSAPI Version 2)
Private Data Version 6 Syntax

#include <acs.h>
#include <csta.h>
#include <attpriv.h>

// attV6RouteSelect() - Service Request Private Data Setup Function

RetCode_t attV6RouteSelect(
ATTPrivateData_t*attPrivateData, // length must be

// set
DeviceID_t *callingDevice // not in use
DeviceID_t *directAgentCallSplit, // ACD Agents

// split
Boolean priorityCalling, // TRUE = On,

// FALSE = Off
// (or not
// specified)

DeviceID_t *destRoute, // TAC/ARS/AAR for
// off-PBX ext

ATTUserCollectCode_t*collectCode, // Request DTMF
// tone detector

ATTUserProvidedCode_t*userProvidedCode,// Code to send
// with routed
// call

ATTUserToUserInfo_t*userInfo); // user-to-user
// info with call

typedef struct ATTPrivateData_t {
char vendor[32];
ushort length;
char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

typedef struct ATTUserCollectCode_t {
ATTCollectCodeType_ttype;
short digitsToBeCollected; // must be 1 - 24 digits
short timeout; // must be 0 - 63 seconds
ConnectionID_tcollectParty; // reserved - not in use

// (defaults to call originator)
ATTSpecificEvent_tspecificEvent;// Ignored (Defaults to Far

// End Answer)
} ATTUserCollectCode_t;

typedef enum ATTCollectCodeType_t {
UC_NONE = 0,// indicates UCC not present
UC_TONE_DETECTOR = 32

} ATTCollectCodeType_t;

typedef enum ATTSpecificEvent_t {
SE_ANSWER = 11,
SE_DISCONNECT = 4

} ATTSpecificEvent_t;
Issue 1 — December 2001

10-45DEFPROG.PDF R10.1 V1

Routing Service Group
Private Data Version 6 Syntax (Continued)

typedef struct ATTUserProvidedCode_t {
ATTProvidedCodeType_t type;

char data[25];
} ATTUserProvidedCode_t;

typedef enum ATTProvidedCodeType_t {
UP_NONE = 0, // indicates UPC not present
UP_DATA_BASE_PROVIDED = 17

} ATTProvidedCodeType_t;

#define ATT_MAX_USER_INFO 129
#define ATT_MAX_UUI_SIZE 96
#define ATTV5_MAX_UUI_SIZE 32

typedef structATTUserToUserInfo_t {
ATTUUIProtocolType_t type;
struct {
short length; // 0 indicates UUI not present
unsigned char value[ATT_MAX_USER_INFO];
} data;

} ATTUserToUserInfo_t;

typedef enum ATTUUIProtocolType_t {
UUI_NONE= -1 // indicates not specified
UUI_USER_SPECIFIC= 0, // user-specific
UUI_IA5_ASCII= 4 // null terminated ascii

// character string
} ATTUUIProtocolType_t
Issue 1 — December 2001

DEFPROG.PDF R10.1 V110-46

Route Select Service (TSAPI Version 2)
Private Data Version 2-5 Syntax

#include <acs.h>
#include <csta.h>
#include <attpriv.h>

// attRouteSelect() - Service Request Private Data Setup Function

RetCode_t attRouteSelect(
ATTPrivateData_t*attPrivateData, // length must be

// set
DeviceID_t *callingDevice // not in use
DeviceID_t *directAgentCallSplit, // ACD Agents

// split
Boolean priorityCalling, // TRUE = On,

// FALSE = Off
// (or not
// specified)

DeviceID_t *destRoute, // TAC/ARS/AAR for
// off-PBX ext

ATTUserCollectCode_t*collectCode, // Request DTMF
// tone detector

ATTUserProvidedCode_t*userProvidedCode,// Code to send
// with routed
// call

ATTUserToUserInfo_t*userInfo); // user-to-user
// info with call

typedef struct ATTPrivateData_t {
char vendor[32];
ushort length;
char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

typedef struct ATTUserCollectCode_t {
ATTCollectCodeType_ttype;
short digitsToBeCollected; // must be 1 - 24 digits
short timeout; // must be 0 - 63 seconds
ConnectionID_tcollectParty; // reserved - not in use

// (defaults to call originator)
ATTSpecificEvent_tspecificEvent;// Ignored (Defaults to Far

// End Answer)
} ATTUserCollectCode_t;

typedef enum ATTCollectCodeType_t {
UC_NONE = 0,// indicates UCC not present
UC_TONE_DETECTOR = 32

} ATTCollectCodeType_t;

typedef enum ATTSpecificEvent_t {
SE_ANSWER = 11,
SE_DISCONNECT = 4

} ATTSpecificEvent_t;
Issue 1 — December 2001

10-47DEFPROG.PDF R10.1 V1

Routing Service Group
Private Data Version 2-5 Syntax (Continued)

typedef struct ATTUserProvidedCode_t {
ATTProvidedCodeType_t type;

char data[25];
} ATTUserProvidedCode_t;

typedef enum ATTProvidedCodeType_t {
UP_NONE = 0, // indicates UPC not present
UP_DATA_BASE_PROVIDED = 17

} ATTProvidedCodeType_t;

typedef structATTUserToUserInfo_t {
ATTUUIProtocolType_t type;
struct {
short length; // 0 indicates UUI not present
unsigned char value[32];
} data;

} ATTUserToUserInfo_t;

typedef enum ATTUUIProtocolType_t {
UUI_NONE= -1 // indicates not specified
UUI_USER_SPECIFIC= 0, // user-specific
UUI_IA5_ASCII= 4 // null terminated ascii

// character string
} ATTUUIProtocolType_t
Issue 1 — December 2001

DEFPROG.PDF R10.1 V110-48

Route Select Service (TSAPI Version 1)
Route Select Service (TSAPI Version
1)

Direction: Client to Switch
Function: cstaRouteSelect()
Service Parameters: routeRegisterReqID, routingCrossRefID,
routeSelected, remainRetry, setupInformation, routeUsedReq

Functional Description:

The routing server application uses cstaRouteSelect () to provide a destination to
the switch in response to a CSTARouteRequestEvent for a call.

Detailed Information:

An application may receive two CSTARouteEndEvent(s) for a cstaRouteSelect()
request for the same call in one of the following call scenarios:

■ Switch/G3PD sends a CSTARouteRequestEvent to application.

■ Caller drops the call.

■ Application sends a CSTARouteSelect() request to G3PD.

■ Switch/G3PD sends a CSTARouteEndEvent (errorValue = NO_ACTIVE_
CALL) to application.

■ G3PD receives the CSTARouteSelect() request, but call has been
dropped.

■ G3PD sends a CSTARouteEndEvent for the CSTARouteSelect() request
(errorValue = INVALID_CROSS_REF_ID) to application.
Issue 1 — December 2001

10-49DEFPROG.PDF R10.1 V1

Routing Service Group
Syntax

#include <acs.h>
#include <csta.h>

// cstaRouteSelect() - Service Request

RetCode_t cstaRouteSelect (
ACSHandle_t acsHandle,
RouteRegisterReqID_trouteRegisterReqID,
RoutingCrossRefID_t routingCrossRefID,
DeviceID_t *routeSelected,
RetryValue_t remainRetry,
SetUpValues_t *setupInformation,
Boolean routeUsedReq,
PrivateData_t *privateData);

typedef long RouteRegisterReqID_t;

typedef long RoutingCrossRefID_t;

typedef char DeviceID_t[64];

typedef short RetryValue_t;

typedef struct SetUpValues_t {
int length;
unsigned char*value;

} SetUpValues_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 V110-50

Route Used Event (TSAPI Version 2)
Route Used Event (TSAPI Version 2)

Direction: Switch to Client
Event: CSTARouteUsedExtEvent
Private Data Event: ATTRouteUsedEvent
Service Parameters: routeRegisterReqID, routingCrossRefID, routeUsed,
callingDevice, domain
Private Parameters: destRoute

Functional Description:

The switch uses a CSTARouteUsedExtEvent to provide a destination to the
routing server application with the actual destination of a call for which the
application previously sent a V containing a destination. The routeUsed and
destRoute parameters contain the same information specified in the
routeSelected and destRoute parameters of the previous cstaRouteSelectInv()
request of this call, respectively. The callingDevice parameter contains the same
calling device number provided in the previous CSTARouteRequestExtEvent of
this call.
Issue 1 — December 2001

10-51DEFPROG.PDF R10.1 V1

Routing Service Group
Service Parameters:

Private Parameters:

Detailed Information:

■ Note that the number provided in the routeUsed parameter is from the
routeSelected parameter of the previous cstaRouteSelectinv() request of
this call received by the G3PD. This information in routeUsed is not from
the G3 PBX and it may not represent the true route that the G3 PBX used.

■ Note that the number provided in the destRoute parameter is from the
destRoute parameter of the previous cstaRouteSelectinv() request of this
call received by the G3PD. This information in destRoute is not from the
G3 PBX and it may not represent the true route that the G3 PBX used.

■ The number provided in the callingDevice parameter is from the
callingDevice parameter of the previous CSTARouteRequestExtEvent of
this call sent by the G3PD.

routeRegisterReqID [mandatory] Contains a handle to the routing registration
session for which the application is providing routing
service. The routing server application received this handle
in a CSTARouteRegisterReqConfEvent confirmation to a
cstaRouteRegisterReq() request.

routingCrossRefID [mandatory] Contains the handle for the routing dialog of
this call. The application previously received this handle in
the CSTARouteRequestExtEvent for the call.

routeUsed [mandatory] Specifies the destination of the call. This
parameter has the same destination specified in the
routeSelected of the previous cstaRouteSelectInv() request
of this call.

callingDevice [optional - supported] Specifies the call origination device.
It contains the same calling device number provided in the
previous CSTARouteRequestExtEvent.

domain [optional - not supported] Indicates whether the call has left
the switching domain accessible to the G3PD. Typically, a
call leaves a switching domain when it is routed to a trunk
connected to another switch or to the public switch network.
This parameter is not supported and is always set to FALSE.
This does not mean that the call has (or has not) left the G3
switch. An application should ignore this parameter

destRoute [optional] Specifies the TAC/ARS/AAR information for
off-PBX destinations. This parameter contains the same
information specified in the destRoute of the previous
cstaRouteSelectInv() request of this call.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V110-52

Route Used Event (TSAPI Version 2)
Syntax

#include <acs.h>
#include <csta.h>

// CSTARouteUsedExtEvent - Route Select Service Response

typedef struct
{

ACSHandle_t acsHandle;
EventClass_teventClass; // CSTAEVENTREPORT
EventType_t eventType; // CSTA_ROUTE_USED_EXT

} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_teventHeader;
union
{

struct
{

union
{

CSTARouteUsedExtEvent_trouteUsed;
} u;

} cstaEventReport;
} event;
char heap[CSTA_MAX_HEAP];

} CSTAEvent_t;

typedef struct CSTARouteUsedExtEvent_t {
RouteRegisterReqID_t routeRegisterReqID;
RoutingCrossRefID_t routingCrossRefID;
DeviceID_t routeUsed;// V1 & V2 are different here

DeviceID_t callingDevice;// TSAPI V1 & V2 are different here

Boolean domain;
} CSTARouteUsedExtEvent_t;
Issue 1 — December 2001

10-53DEFPROG.PDF R10.1 V1

Routing Service Group
Route Used Event (TSAPI Version 1)

Direction: Switch to Client
Event: CSTARouteUsedEvent
Service Parameters: routeRegisterReqID, routingCrossRefID, routeUsed,
callingDevice, domain

Functional Description:

The switch uses a CSTARouteUsedExtEvent to provide a destination to the
routing server application with the actual destination of a call for which the
application previously sent a V containing a destination. The routeUsed and
destRoute parameters contain the same information specified in the
routeSelected and destRoute parameters of the previous cstaRouteSelectInv()
request of this call, respectively. The callingDevice parameter contains the same
calling device number provided in the previous CSTARouteRequestExtEvent of
this call.

Detailed Information:

■ The number provided in the routeUsed parameter is from the
routeSelected parameter of the previous cstaRouteSelect() request of this
call received by the G3PD.

■ The number provided in the callingDevice parameter is from the
callingDevice parameter of the previous CSTARouteRequestEvent of this
call sent by the G3PD.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V110-54

Route Used Event (TSAPI Version 1)
Syntax

#include <acs.h>
#include <csta.h>

// CSTARouteUsedEvent - Route Select Service Response

typedef struct
{

ACSHandle_t acsHandle;
EventClass_teventClass; // CSTAEVENTREPORT
EventType_t eventType; // CSTA_ROUTE_USED

} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_teventHeader;
union
{

struct
{

union
{

CSTARouteUsedEvent_trouteUsed;
} u;

} cstaEventReport;
} event;
char heap[CSTA_MAX_HEAP];

} CSTAEvent_t;

typedef struct CSTARouteUsedEvent_t {
RouteRegisterReqID_t routeRegisterReqID;
RoutingCrossRefID_t routingCrossRefID;
DeviceID_t routeUsed;
DeviceID_t callingDevice;
Boolean domain;

} CSTARouteUsedEvent_t;
Issue 1 — December 2001

10-55DEFPROG.PDF R10.1 V1

Routing Service Group
Private Parameter Syntax

If private data accompanies a CSTARouteUsedExtEvent, then the
private data would be stored in the location that the application
specified as the privateData parameter in the acsGetEventBlock() or
acsGetEventPoll() request. If the privateData pointer is set to
NULL in these requests, then CSTARouteUsedExtEvent does not deliver
private data to the application.

If the acsGetEventBlock() or acsGetEventPoll() returns Private Data
length of 0, then no private data is provided with this Route
Request.

#include <acs.h>
#include <csta.h>
#include <attpriv.h>

// ATTRouteUsedEvent - Service Response Private Data
typedef struct
{

ATTEventTypeeventType; // ATT_ROUTE_USED
union
{

ATTRouteUsedEvent_tdestRoute;
}u;

} ATTEvent_t;

typedef struct ATTRouteUsedEvent_t
{

DeviceID_t destRoute;
} ATTRouteUsedEvent_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 V110-56

Issue 1 — December 2001

DEFPROG.PDF R10.1 V1
11

System Status Service Group
Overview

The System Status Services allow an application to receive reports on the status
of the switching system. (System Status services with the driver/switch as the
client are not supported.)

The following System Status Services and Events are available:

System Status Request Service —
cstaSysStatReq()

This service is used by a client application to request system status information
from the driver/switch domain.

System Status Start Service — cstaSysStatStart()

This service allows an application to register for System Status event reporting.

System Status Stop Service — cstaSysStatStop()

This service allows an application to cancel a previously registered request for
System Status event reporting.
11-1

System Status Service Group
Change System Status Filter Service —
cstaChangeSysStatFilter()

This service allows an application to request a change in the filter options for
System Status event reporting.

System Status Event — CSTASysStatEvent

This unsolicited event informs the application of changes in the system status of
the driver/switch.

System Status Events — Not Supported

The following System Status Events are not supported:

■ System Status Request Event – CSTASysStatReqEvent

■ System Status Request Confirmation – cstaSysStatReqConf()

■ System Status Event Send – cstaSysStatEventSend()
Issue 1 — December 2001

DEFPROG.PDF R10.1 V111-2

System Status Request Service
System Status Request Service

Direction: Client to Switch
Function: cstaSysStatReq()
Confirmation Event: CSTASysStatReqConfEvent
Service Parameters: none
Ack Parameters: systemStatus
Ack Private Parameters: count, plinkStatus (private data version 5),
linkStatus (private data versions 2, 3, and 4)
Nak Parameter: universalFailure

Functional Description:

This service is used by a client application to request system status information
from the driver/switch.
Issue 1 — December 2001

11-3DEFPROG.PDF R10.1 V1

System Status Service Group
Service Parameters:

Ack Parameters:

Ack Private Parameters:

noData None for this service.

systemStatus [mandatory — partially supported] Provides the application
with a cause code defining the overall system status as
follows:

■ NORMAL — This status indication indicates that at least
one CTI link to the switch is available. The system status
is normal, and TSAPI requests and responses are
enabled.

■ DISABLED — This system status indicates that there is
no available CTI link to the switch. The DISABLED
status implies that there are no active Monitor requests
or Route Register sessions. TSAPI requests and
responses are disabled and reject responses should be
provided for each request or response.

count Identifies the number of CTI links described in the
plinkStatus private ack parameter.

plinkStatus Specifies the status of each CTI link to the switch. The
G3PD driver supports multiple CTI links between the
Telephony Server and the switch for enhanced throughput
and redundancy. The routing of TSAPI service requests
and responses over the individual CTI links by the G3PD is
hidden from the application.

(The TSAPI application programmer does not need to
consider the individual CTI links to a switch when
sending/receiving TSAPI service requests/responses.) The
plinkStatus private data parameter may be used to check
the availability of each administered CTI link to which the G3
switch the application is connected. The status of each link
identified by linkID will be set to one of the following values
in the linkState field:

■ LS_LINK_UP — The link is able to support telephony
services to the switch.

■ LS_LINK_DOWN — The link is unable to support
telephony services to the switch.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V111-4

System Status Request Service
Nak Parameter:

Detailed Information:

■ Multiple CTI Links — If multiple CTI links are connected and administered
to a specific switch, the systemStatus parameter will indicate the aggregate
link status. If at least one CTI link is available to support TSAPI requests
and responses, the systemStatus will be set to NORMAL. If there are no
CTI links to a switch able to support TSAPI requests and responses, the
systemStatus will be set to DISABLED.

■ If multiple CTI links are connected and administered to a specific switch,
Private Data must be used to determine if the switching system is
performing as administered. The plinkStatus private parameter can be
used to check the status of each individual CTI link.

■ LS_LINK_UNAVAIL — The link has been disabled
(busied-out) via the OA&M interface and will not support
new CSTA requests. Existing telephony service
requests maintained by this link will continue.

This parameter is supported by private data version 5 and
later only.

linkStatus Specifies the status of each CTI link to the switch. For
details, see the description for the plinkStatus private ack
parameter. This parameter is supported by private data
versions 2, 3, and 4.

universalFailure If the request is not successful, the application will receive a
CSTAUniversalFailureConfEvent. The error parameter in
this event may contain one of the error values described in
the ‘‘CSTAUniversalFailureConfEvent’’ section in Chapter 3:
Issue 1 — December 2001

11-5DEFPROG.PDF R10.1 V1

System Status Service Group
Syntax

#include <acs.h>
#include <csta.h>

// cstaSysStatReq() - Request for system status

RetCode_t cstaSysStatReq (
ACSHandle_t acsHandle,
InvokeID_t invokeID,
PrivateData_t FAR *privateData);

// CSTASysStatReqConfEvent - System status confirmation event

typedef struct
{

ACSHandle_t acsHandle;
EventClass_t eventClass; // CSTACONFIRMATION
EventType_t eventType; // CSTA_SYS_STAT_REQ_CONF

} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_teventHeader;
union
{

struct
{
union
{
CSTASysStatReqConfEvent_t sysStatReq;
} u;
} cstaEventReport;

} event;
char heap[CSTA_MAX_HEAP];

} CSTAEvent_t;

typedef struct CSTASysStatReqConfEvent_t {
SystemStatus_t systemStatus;

} CSTASysStatReqConfEvent_t;

typedef enum SystemStatus_t {
SS_INITIALIZING = 0, // Not supported
SS_ENABLED = 1, // Not supported
SS_NORMAL = 2, // Supported
SS_MESSAGES_LOST = 3, // Not supported
SS_DISABLED = 4, // Supported

SS_OVERLOAD_IMMINENT = 5, // Not supported
SS_OVERLOAD_REACHED = 6, // Not supported
SS_OVERLOAD_RELIEVED = 7 // Not supported

} SystemStatus_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 V111-6

System Status Request Service
Private Data Version 5 Syntax

#include <acs.h>
#include <csta.h>
#include <attpriv.h>

// ATTLinkStatusEvent - Service Response Private Data

typedef struct
{

ATTEventType_teventType;// ATT_LINK_STATUS
union
{

ATTLinkStatusEvent_tlinkStatus;
} u;

} ATTEvent_t;

typedef struct ATTLinkStatusEvent_t
{

int count;
ATTLinkStatus_tFAR *pLinkStatus;

} ATTLinkStatusEvent_t;

typedef struct ATTLinkStatus_t
{

short linkID;
ATTLinkState_t linkState;

} ATTLinkStatus_t;

typedef enum ATTLinkState_t {
LS_LINK_UNAVAIL= 0, // the link is disabled
LS_LINK_UP = 1, // the link is up
LS_LINK_DOWN= 2 // the link is down

} ATTLinkState_t;
Issue 1 — December 2001

11-7DEFPROG.PDF R10.1 V1

System Status Service Group
Private Data Version 4 Syntax

#include <acs.h>
#include <csta.h>
#include <attpriv.h>

// ATTV4LinkStatusEvent - Service Response Private Data

typedef struct
{

ATTEventType_teventType;// ATTV4_LINK_STATUS
union
{

ATTV4LinkStatusEvent_tv4linkStatus;
} u;

} ATTEvent_t;

typedef struct ATTV4LinkStatusEvent_t
{

short count;
ATTLinkStatus_t linkStatus[8];

} ATTV4LinkStatusEvent_t;

typedef struct ATTLinkStatus_t
{

short linkID;
ATTLinkState_t linkState;

} ATTLinkStatus_t;

typedef enum ATTLinkState_t {
LS_LINK_UNAVAIL= 0, // the link is disabled
LS_LINK_UP = 1, // the link is up
LS_LINK_DOWN= 2 // the link is down

} ATTLinkState_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 V111-8

System Status Request Service
Private Data Versions 2 and 3 Syntax

#include <acs.h>
#include <csta.h>
#include <attpriv.h>

// ATTV3LinkStatusEvent - Service Response Private Data

typedef struct
{

ATTEventType_teventType;// ATTV3_LINK_STATUS
union
{

ATTV3LinkStatusEvent_tv3linkStatus;
} u;

} ATTEvent_t;

typedef struct ATTV3LinkStatusEvent_t
{

short count;
ATTLinkStatus_t linkStatus[4];

} ATTV3LinkStatusEvent_t;

typedef struct ATTLinkStatus_t
{

short linkID;
ATTLinkState_t linkState;

} ATTLinkStatus_t;

typedef enum ATTLinkState_t {
LS_LINK_UNAVAIL= 0, // the link is disabled
LS_LINK_UP = 1, // the link is up
LS_LINK_DOWN= 2 // the link is down

} ATTLinkState_t;
Issue 1 — December 2001

11-9DEFPROG.PDF R10.1 V1

System Status Service Group
System Status Start Service

Direction: Client to Switch
Function: cstaSysStatStart()
Confirmation Event: CSTASysStatStartConfEvent
Private Data Function: attSysStat()
Service Parameters: statusFilter
Private Parameters: linkStatReq
Ack Parameters: statusFilter
Ack Private Parameters: count, plinkStatus (private data version 5),
linkStatus (private data versions 2, 3, and 4)
Nak Parameter: universalFailure

Functional Description:

This service allows the application to register for System Status event reporting
from the driver/switch. The application can register to receive a
CSTASysStatEvent each time the status of the driver/switch changes. The
service request includes a filter so the application can filter those status events
that are not of interest to the application. Only one cstaSysStatStart() request is
allowed for an acsOpenStream() request. If one exists, the second one will be
rejected.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V111-10

System Status Start Service
Service Parameters:

Private Parameters:

Ack Parameters:

statusFilter [mandatory — partially supported] A filter used to specify
the system status events that are not of interest to the
application. If a bit in statusFilter is set to TRUE (1), the
corresponding event will not be sent to the application. The
only System Status events that will be reported are SS_
ENABLED, SS_NORMAL and SS_DISABLED. A request to
filter any other System Status events will be ignored.

linkStatReq [optional] The application can use the linkStatReq private
parameter to request System Status events for changes in
the state of individual G3 switch CTI links. The linkStatReq
private parameter is only useful for multilink configurations.

■ If linkStatReq is set to TRUE (ON), System Status Event
Reports will be sent for changes in the states of each
individual CTI link. When a CTI link changes between up
(LS_LINK_UP), down (LS_LINK_DOWN), or
unavailable/busied-out (LS_LINK_UNAVAIL), a System
Status Event Report will be sent to the application. The
private data in the System Status Event Report will
include the link ID and state for each CTI link to the G3
switch, and not just the link ID and state of the CTI link
that experienced a state transition.

■ If the linkStatReq private parameter was not specified or
set to FALSE, changes in the states of individual G3 CTI
links will not result in System Status Event Reports
unless all links are down, or the first link is established.
(The System Status Event Report is always sent when
all links are down, or when the first link is established
from an “all CTI links down” state.)

statusFilter [optional — partially supported] Specifies the System
Status Event Reports that are to be filtered before they
reach the application. The statusFilter may not be the same
as the statusFilter specified in the service request, because
filters for System Status Events that are not supported are
always turned on (TRUE) in systemFilter.

The following filters will always be set to ON, meaning that
there are no reports supported for these events:

■ SF_INITIALIZING

■ SF_MESSAGES_LOST
Issue 1 — December 2001

11-11DEFPROG.PDF R10.1 V1

System Status Service Group
Ack Private Parameters:

Nak Parameter:

■ SF_OVERLOAD_IMMINENT

■ SF_OVERLOAD_REACHED

■ SF_OVERLOAD_RELIEVED

count Identifies the number of CTI links described in the
plinkStatus private ack parameter. This parameter is only
provided when the linkStatusReq private parameter was set
to TRUE.

plinkStatus Specifies the status of each CTI link to the switch. This
parameter is only provided when the linkStatusReq private
parameter was set to TRUE. The plinkStatus private data
parameter will indicate the availability of each administered
CTI link to the G3 switch to which the application is
connected.

The status of each link identified by linkID will be set to one
of the following values in the linkState field:

■ LS_LINK_UP — The link is able to support telephony
services to the switch.

■ LS_LINK_DOWN — The link is unable to support
telephony services to the switch.

■ LS_LINK_UNAVAIL —The link has been disabled
(busied-out) via the OA&M interface and will not support
new CSTA requests. Existing telephony service
requests maintained by this link will continue.

This parameter is supported by private data version 5 and
later only.

linkStatus Specifies the status of each CTI link to the switch. For
details, see the description for the plinkStatus private ack
parameter. This parameter is supported by private data
versions 2, 3, and 4.

universalFailure If the request is not successful, the application will receive a
CSTAUniversalFailureConfEvent. The error parameter in
this event may contain the following error value, or one of
the error values described in the
‘‘CSTAUniversalFailureConfEvent’’ section in Chapter 3:

■ GENERIC_OPERATION_REJECTION (71)Only one
cstaSysStatStart() request is allowed for an
acsOpenStream() request. If one exists, the second
one will be rejected.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V111-12

System Status Start Service
Detailed Information:

■ The linkStatReq private parameter is only useful in multilink configurations.

■ Only one cstaSysStatStart() request is allowed for an acsOpenStream()
request. If one exists, the second one will be rejected. An application can
cancel a request for System Status event reporting via
cstaSysStatusStop(), and then issue a subsequent cstaSysStatStart()
request.

■ If the application requests System Status Event Reports for changes in
specific CTI link states (up/down/unavailable), it must examine the private
data included in the CSTASysStatEvent Event Report to determine the
changes in the individual CTI links.

■ The count and plinkStatus private ack parameters will only be provided
when the linkStatReq parameter was set to TRUE in the System Status
Start service request.

■ A CSTASysStatEvent event report will be sent with the systemStatus set to
SS_DISABLED when the last CTI link to the G3 switch has failed. The
application can examine the private data portion of the event report, but it
will always indicate that all CTI links are down (LS_LINK_DOWN) or
unavailable (LS_LINK_UNAVAILABLE). All Call and Device Monitors will
be terminated, all Routing Sessions will be aborted, and all outstanding
CSTA requests should be negatively acknowledged.

■ A CSTASysStatEvent Event Report will be sent with the systemStatus set
to SS_ENABLED when the first CTI link to the G3 switch has been
established from an “all CTI links down” state. The application can
examine the private data portion of the Event Report to determine which
CTI links are up (LS_LINK_UP), which CTI links are down (LS_LINK_
DOWN), and which CTI links are disabled via the Telephony Services
Administrator interface (LS_LINK_UNAVAIL). No Call or Device Monitors,
or Routing Sessions should exist at this point.

■ A CSTASysStatEvent Event Report will be sent with the systemStatus set
to SS_NORMAL when the application has requested event reports for
changes in specific CTI link states (via the linkStatusReq private
parameter) and a CTI link changes state to up, (LS_LINK_UP) down (LS_
LINK_DOWN), or unavailable/busied-out via OA&M(LS_LINK_UNAVAIL).

Note that the systemStatus is set to SS_NORMAL, indicating that at least
one CTI link to the switch is available. The application can examine the
private data portion of the event report to determine which CTI links are up,
down, or unavailable/busied-out. Call or

Device Monitors, and Routing Sessions may have been terminated when
the CTI link state changed to down (LS_LINK_DOWN).
Issue 1 — December 2001

11-13DEFPROG.PDF R10.1 V1

System Status Service Group
Syntax

#include <acs.h>
#include <csta.h>

// cstaSysStatStart() - Service Request

RetCode_t cstaSysStatStart(
ACSHandle_t acsHandle,
InvokeID_t invokeID,
SystemStatusFilter_t statusFilter,
PrivateData_tFAR *privateData);

typedef unsignedSystemStatusFilter_t;

#define SF_INITIALIZING 0x80 // Not supported
#define SF_ENABLED 0x40 // Supported
#define SF_NORMAL 0x20 // Supported
#define SF_MESSAGES_LOST 0x10 // Not supported
#define SF_DISABLED 0x08 // Supported
#define SF_OVERLOAD_IMMINENT 0x04 // Not supported
#define SF_OVERLOAD_REACHED 0x02 // Not supported
#define SF_OVERLOAD_RELIEVED 0x01 // Not supported

// CSTASysStatStartConfEvent - Service Response

typedef struct
{

ACSHandle_t acsHandle;
EventClass_teventClass; // CSTACONFIRMATION
EventType_t eventType; // CSTA_SYS_STAT_START_CONF

} ACSEventHeader_t;

typedef struct CSTASysStatStartConfEvent_t {
SystemStatusFilter_t statusFilter;

} CSTASysStatStartConfEvent_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 V111-14

System Status Start Service
Syntax (Continued)

typedef struct
{

ACSEventHeader_teventHeader;
union
{

struct
{
InvokeID_t invokeID;
union

{
CSTASysStatStartConfEvent_t

sysStatStart;
} u;

} cstaConfirmation;
} event;
char heap[CSTA_MAX_HEAP];

} CSTAEvent_t;
Issue 1 — December 2001

11-15DEFPROG.PDF R10.1 V1

System Status Service Group
Private Data Version 5 Syntax

#include <acs.h>
#include <csta.h>
#include <attpriv.h>

// attSysStat() - Service Request Private Data Setup Function

RetCode_t attSysStat(
ATTPrivateData_tFAR *attPrivateData,// length must be set

Boolean linkStatusReq);// send event reports for CTI
// link state changes

typedef struct ATTPrivateData_t
{

char vendor[32];
unsigned short length;
char data[ATT_MAX_PRIVATE_DATA];

}

// ATTLinkStatusEvent - Service Response Private Data

typedef struct
{

ATTEventTypeeventType; // ATT_LINK_STATUS
union
{

ATTLinkStatusEvent_tlinkStatus;
} u;

} ATTEvent_t;

typedef struct ATTLinkStatusEvent_t
{

short count;
ATTLinkStatus_tFAR *pLinkStatus;

} ATTLinkStatusEvent_t;

typedef struct ATTLinkStatus_t
{

short linkID;
ATTLinkState_t linkState;

} ATTLinkStatus_t;

typedef enum ATTLinkState_t {
LS_LINK_UNAVAIL= 0, // the link is disabled
LS_LINK_UP = 1, // the link is up
LS_LINK_DOWN= 2 // the link is down

} ATTLinkState_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 V111-16

System Status Start Service
Private Data Version 4 Syntax

#include <acs.h>
#include <csta.h>
#include <attpriv.h>

// attSysStat() - Service Request Private Data Setup Function

RetCode_t attSysStat(
ATTPrivateData_t *attPrivateData,// length must be set

Boolean linkStatusReq);// send event reports for CTI
// link state changes

typedef struct ATTPrivateData_t
{

char vendor[32];
unsigned short length;
char data[ATT_MAX_PRIVATE_DATA];

}

// ATTV4LinkStatusEvent - Service Response Private Data

typedef struct
{

ATTEventTypeeventType; // ATTV4_LINK_STATUS
union
{

ATTV4LinkStatusEvent_tv4linkStatus;
} u;

} ATTEvent_t;

typedef struct ATTV4LinkStatusEvent_t
{

short count;
ATTLinkStatus_t linkStatus[8];

} ATTV4LinkStatusEvent_t;

typedef struct ATTLinkStatus_t
{

short linkID;
ATTLinkState_t linkState;

} ATTLinkStatus_t;

typedef enum ATTLinkState_t {
LS_LINK_UNAVAIL= 0, // the link is disabled
LS_LINK_UP = 1, // the link is up
LS_LINK_DOWN= 2 // the link is down

} ATTLinkState_t;
Issue 1 — December 2001

11-17DEFPROG.PDF R10.1 V1

System Status Service Group
Private Data Versions 2 and 3 Syntax

#include <acs.h>
#include <csta.h>
#include <attpriv.h>

// attSysStat() - Service Request Private Data Setup Function

RetCode_t attSysStat(
ATTPrivateData_t *attPrivateData,// length must be set

Boolean linkStatusReq);// send event reports for CTI
// link state changes

typedef struct ATTPrivateData_t
{

char vendor[32];
unsigned short length;
char data[ATT_MAX_PRIVATE_DATA];

}

// ATTV3LinkStatusEvent - Service Response Private Data

typedef struct
{

ATTEventTypeeventType; // ATTV3_LINK_STATUS
union
{

ATTV3LinkStatusEvent_tv3linkStatus;
} u;

} ATTEvent_t;

typedef struct ATTV3LinkStatusEvent_t
{

short count;
ATTLinkStatus_t linkStatus[4];

} ATTV3LinkStatusEvent_t;

typedef struct ATTLinkStatus_t
{

short linkID;
ATTLinkState_t linkState;

} ATTLinkStatus_t;

typedef enum ATTLinkState_t {
LS_LINK_UNAVAIL= 0, // the link is disabled
LS_LINK_UP = 1, // the link is up
LS_LINK_DOWN= 2 // the link is down

} ATTLinkState_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 V111-18

System Status Stop Service
System Status Stop Service

Direction: Client to Switch
Function: cstaSysStatStop()
Confirmation Event: CSTASysStatStopConfEvent
Service Parameters: none
Ack Parameters: none
Nak Parameter: universalFailure

Functional Description:

This service allows the application to cancel a previously registered monitor for
System Status event reporting from the driver/switch domain

Service Parameters:

Ack Parameters:

Nak Parameter:

Detailed Information:

■ An application may receive CSTASysStatEvents from the driver/switch until
the CSTASysStatStopConfEvent response is received. The application
should check the confirmation event to verify that the System Status
monitor has been deactivated.

After the G3 PBX driver has issued the CSTASysStatStopConfEvent,
automatic notification of System Status Events will be terminated.

noData None for this service.

noData None for this service.

universalFailure If the request is not successful, the application will receive a
CSTAUniversalFailureConfEvent. The error parameter in
this event may contain one of the error values described in
the ‘‘CSTAUniversalFailureConfEvent’’ section in Chapter 3:
Issue 1 — December 2001

11-19DEFPROG.PDF R10.1 V1

System Status Service Group
Syntax

#include <acs.h>
#include <csta.h>

// cstaSysStatStop() - Service Request

RetCode_t cstaSysStatStop (
ACSHandle_t acsHandle,
InvokeID_t invokeID,
PrivateData_t *privateData);

// CSTASysStatStopConfEvent - Service Response

typedef struct
{

ACSHandle_t acsHandle;
EventClass_teventClass; // CSTACONFIRMATION
EventType_t eventType; // CSTA_SYS_STAT_STOP_CONF

} ACSEventHeader_t;

typedef char Nulltype;

typedef struct CSTASysStatStopConfEvent_t {
Nulltype null;

} CSTASysStatStopConfEvent_t;

typedef struct
{

ACSEventHeader_teventHeader;
union
{

struct
{

InvokeID_t invokeID;
union
{

CSTASysStatStopConfEvent_tsysStatStop;
} u;

} cstaConfirmation;
} event;
char heap[CSTA_MAX_HEAP];

} CSTAEvent_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 V111-20

Change System Status Filter Service
Change System Status Filter Service

Direction: Client to Switch
Function: cstaChangeSysStatFilter()
Confirmation Event: CSTAChangeSysStatFilterConfEvent
Private Data Function: attSysStat()
Service Parameters: statusFilter
Private Parameters: linkStatReq
Ack Parameters: statusFilterSelected, statusFilterActive
Ack Private Parameters: count, plinkStatus (private data version 5),
linkStatus (private data versions 2, 3, and 4)
Nak Parameter: universalFailure

Functional Description:

This service allows the application to modify the filter used for System Status
event reporting from the driver/switch domain. The application can filter those
System Status events that it does not wish to receive. A CSTASysStatEvent will
be sent to the application if the event occurs and the application has not specified
a filter for that System Status Event. The application must have previously
requested System Status Event reports via the cstaSysStatStart() request, else
the cstaChangeSysStatFilter() will be rejected.
Issue 1 — December 2001

11-21DEFPROG.PDF R10.1 V1

System Status Service Group
Service Parameters:

Private Parameters:

statusFilter [mandatory — partially supported] A filter used to specify the
System Status Events that are not of interest to the
application. If a bit in statusFilter is set to TRUE (1), the
corresponding event will not be sent to the application. The
only System Status Events that will be reported are SS_
ENABLED, SS_NORMAL and SS_DISABLED. A request to
filter any other System Status Events will be ignored.

linkStatReq [optional] The application can use the linkStatReq private
parameter to request System Status Events for changes in
the state of individual G3 switch CTI links.

■ If linkStatReq is set to TRUE (ON), System Status Event
Reports will be sent for changes in the states of each
individual CTI link. When a CTI link changes between
up (LS_LINK_UP), down (LS_LINK_DOWN), or
unavailable/busied-out (LS_LINK_UNAVAIL), a System
Status Event Report will be sent to the application. The
private data in the System Status Event Report will
include the link ID and state for each CTI link to the G3
switch, and not just the link ID and state of the CTI link
that experienced a state transition.

■ If the linkStatReq private parameter was set to FALSE,
changes in the states of individual G3 CTI links will not
result in System Status Event Reports unless all links
are down, or the first link is established. (The System
Status Event Report is always sent when all links are
down, or when the first link is established from an “all
links down” state.)

■ If the linkStatReq private parameter was not specified,
there will be no change in the reporting changes in the
state of individual G3 CTI links. (If System Status Event
Reports were sent for changes in individual G3 CTI links
before a cstaChangeStatFilter() service request with no
private data, the System Status Event Reports will
continue to be sent after the
CSTAChangeSysStatFilterConfEvent service response
is received, and vice-versa.)
Issue 1 — December 2001

DEFPROG.PDF R10.1 V111-22

Change System Status Filter Service
Ack Parameters:

Ack Private Parameters:

statusFilterSelected [mandatory — partially supported] specifies the System
Status Event Reports that are to be filtered before they
reach the application. The statusFilterSelected may not be
the same as the statusFilter specified in the service request,
because filters for System Status Events that are not
supported are always turned on in statusFilterSelected. The
following filters will always be set to ON, meaning that there
are no reports supported for these events:

■ SF_INITIALIZING

■ SF_MESSAGES_LOST

■ SF_OVERLOAD_IMMINENT

■ SF_OVERLOAD_REACHED

■ SF_OVERLOAD_RELIEVED

statusFilterActive [mandatory — partially supported] Specifies the System
Status Event Reports that were already active before the
CSTAChangeSysStatConfEvent was issued by the driver.
The following filters will always be set to ON, meaning that
there are no reports supported for these events:

■ SF_INITIALIZING

■ SF_MESSAGES_LOST

■ SF_OVERLOAD_IMMINENT

■ SF_OVERLOAD_REACHED

■ SF_OVERLOAD_RELIEVED

count Identifies the number of CTI links described in the
plinkStatus private ack parameter. This parameter is only
provided when the linkStatusReq private parameter was set
to TRUE.

plinkStatus Specifies the status of each CTI link to the switch. This
parameter is only provided when the linkStatusReq private
parameter was set to TRUE. The plinkStatus private data
parameter will indicate the availability of each administered
CTI link to the G3 to which the application is connected.
The status of each link identified by linkID will be set to one
of the following values in the linkState field:

■ LS_LINK_UP — The link is able to support traffic.

■ LS_LINK_DOWN — The link is unable to support traffic.
Issue 1 — December 2001

11-23DEFPROG.PDF R10.1 V1

System Status Service Group
Nak Parameter:

Detailed Information:

■ The linkStatReq private parameter is only useful in multilink configurations.

■ If the application requests System Status Event Reports for changes in
specific CTI link states (up/down/unavailable), they must examine the
private data included in the CSTASysStatEvent event report to determine
the changes in the individual CTI links.

■ The count and plinkStatus private ack parameters will only be provided
when the linkStatReq parameter was set to TRUE in the Change System
Status Start service request.

■ If the linkStatReq private parameter was not specified, there will be no
changes in the reporting of System Status events for changes in the state
of individual G3 CTI links.

For more information, refer to ‘‘System Status Event’’ in this chapter.

■ LS_LINK_UNAVAIL — The link has been disabled
(busied-out) via the OA&M interface and will not support
new CSTA requests. Existing telephony service
requests maintained by this link will continue.

This parameter is supported by private data version 5 and
later only.

linkStatus Specifies the status of each CTI link to the switch. For
details, see the description for the plinkStatus private ack
parameter. This parameter is supported by private data
versions 2, 3, and 4.

universalFailure If the request is not successful, the application will receive a
CSTAUniversalFailureConfEvent. The error parameter in
this event may contain the following error value, or one of
the error values described in the
‘‘CSTAUniversalFailureConfEvent’’ section in Chapter 3:

■ GENERIC_OPERATION_REJECTION (71) If the
application has not registered to receive System Status
Event reports, the cstaChangeSysStatFilter() request
will be rejected.
Issue 1 — December 2001

DEFPROG.PDF R10.1 V111-24

Change System Status Filter Service
Syntax

#include <acs.h>
#include <csta.h>

// cstaChangeSysStatFilter() - Service Request

RetCode_t cstaChangeSysStatFilter (
ACSHandle_t acsHandle,
InvokeID_t invokeID,
SystemStatusFilter_t statusFilter,
PrivateData_t *privateData);

typedef unsigned char SystemStatusFilter_t;

#define SF_INITIALIZING 0x80
#define SF_ENABLED 0x40
#define SF_NORMAL 0x20
#define SF_MESSAGES_LOST 0x10
#define SF_DISABLED 0x08
#define SF_OVERLOAD_IMMINENT 0x04
#define SF_OVERLOAD_REACHED 0x02
#define SF_OVERLOAD_RELIEVED 0x01

// CSTAChangeSysStatFilterConfEvent - Service Response

typedef struct
{

ACSHandle_t acsHandle;
EventClass_t eventClass; // CSTACONFIRMATION
EventType_t eventType; // CSTA_CHANGE_SYS_STAT_FILTER_CONF

} ACSEventHeader_t;

typedef struct CSTAChangeSysStatFilterConfEvent_t {
SystemStatusFilter_t statusFilterSelected;
SystemStatusFilter_t statusFilterActive;

} CSTAChangeSysStatFilterConfEvent_t;

typedef struct
{

ACSEventHeader_teventHeader;
union
{

struct
{

InvokeID_t invokeID;
union
{

CSTAChangeSysStatFilterConfEvent_tchangeSysStatFilter;
} u;

} cstaConfirmation;
} event;
char heap[CSTA_MAX_HEAP];

} CSTAEvent_t;
Issue 1 — December 2001

11-25DEFPROG.PDF R10.1 V1

System Status Service Group
Private Data Version 5 Syntax

#include <acs.h>
#include <csta.h>
#include <attpriv.h>

// attSysStat() - Service Request Private Data Setup Function

RetCode_t attSysStat(
ATTPrivateData_t*attPrivateData, // length must be set
Boolean linkStatusReq); // send event reports for

// CTI link state changes

typedef struct ATTPrivateData_t
{

char vendor[32];
unsigned short length;
char data[ATT_MAX_PRIVATE_DATA];

}

// ATTLinkStatusEvent - Service Response Private Data

typedef struct
{

ATTEventType_teventType;// ATT_LINK_STATUS
union
{

ATTLinkStatusEvent_tlinkStatus;
} u;

} ATTEvent_t;

typedef struct ATTLinkStatusEvent_t
{

short count;
ATTLinkStatus_t *pLinkStatus;

} ATTLinkStatusEvent_t;

typedef struct ATTLinkStatus_t
{

short linkID;
ATTLinkState_t linkState;

} ATTLinkStatus_t;

typedef enum ATTLinkState_t {
LS_LINK_UNAVAIL= 0, // the link is disabled
LS_LINK_UP = 1, // the link is up
LS_LINK_DOWN= 2 // the link is down

} ATTLinkState_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 V111-26

Change System Status Filter Service
Private Data Version 4 Syntax

#include <acs.h>
#include <csta.h>
#include <attpriv.h>

// attSysStat() - Service Request Private Data Setup Function

RetCode_t attSysStat(
ATTPrivateData_t*attPrivateData, // length must be set
Boolean linkStatusReq); // send event reports for

// CTI link state changes

typedef struct ATTPrivateData_t
{

char vendor[32];
unsigned short length;
char data[ATT_MAX_PRIVATE_DATA];

}

// ATTV4LinkStatusEvent - Service Response Private Data

typedef struct
{

ATTEventType_teventType;// ATTV4_LINK_STATUS
union
{

ATTV4LinkStatusEvent_tv4linkStatus;
} u;

} ATTEvent_t;

typedef struct ATTV4LinkStatusEvent_t
{

short count;
ATTLinkStatus_t linkStatus[8];

} ATTV4LinkStatusEvent_t;

typedef struct ATTLinkStatus_t
{

short linkID;
ATTLinkState_t linkState;

} ATTLinkStatus_t;

typedef enum ATTLinkState_t {
LS_LINK_UNAVAIL= 0, // the link is disabled
LS_LINK_UP = 1, // the link is up
LS_LINK_DOWN= 2 // the link is down

} ATTLinkState_t;
Issue 1 — December 2001

11-27DEFPROG.PDF R10.1 V1

System Status Service Group
Private Data Versions 2 and 3 Syntax

#include <acs.h>
#include <csta.h>
#include <attpriv.h>

// attSysStat() - Service Request Private Data Setup Function

RetCode_t attSysStat(
ATTPrivateData_t*attPrivateData, // length must be set
Boolean linkStatusReq); // send event reports for

// CTI link state changes

typedef struct ATTPrivateData_t
{

char vendor[32];
unsigned short length;
char data[ATT_MAX_PRIVATE_DATA];

}

// ATTV3LinkStatusEvent - Service Response Private Data

typedef struct
{

ATTEventType_teventType;// ATTV3_LINK_STATUS
union
{

ATTV3LinkStatusEvent_tv3linkStatus;
} u;

} ATTEvent_t;

typedef struct ATTV3LinkStatusEvent_t
{

short count;
ATTLinkStatus_t linkStatus[4];

} ATTV3LinkStatusEvent_t;

typedef struct ATTLinkStatus_t
{

short linkID;
ATTLinkState_t linkState;

} ATTLinkStatus_t;

typedef enum ATTLinkState_t {
LS_LINK_UNAVAIL= 0, // the link is disabled
LS_LINK_UP = 1, // the link is up
LS_LINK_DOWN= 2 // the link is down

} ATTLinkState_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 V111-28

System Status Event
System Status Event

Direction: Switch to Client
Event: CSTASysStatEvent
Service Parameters: systemStatus
Private Parameters: count, plinkStatus (private data version 5), linkStatus
(private data versions 2, 3, and 4)

Functional Description:

This unsolicited event is sent by the G3 driver to inform the application of changes
in system status. The application must have previously registered to receive
System Status Events via the cstaSysStatStart() service request. The System
Status Event Reports will be sent for those events that have not been filtered by
the application via the cstaSysStatStart() and cstaChangeSysStatFilter() service
requests.
Issue 1 — December 2001

11-29DEFPROG.PDF R10.1 V1

System Status Service Group
Service Parameters:

systemStatus [mandatory — partially supported] This parameter contains
a value that identifies the change in overall system status
detected by the G3 PBX driver. The following System
Status events will be sent to the application by the G3
driver/switch if the application has not filtered the event:

■ SS_ENABLED — A CSTASysStatEvent event report will
be sent with the systemStatus set to SS_ENABLED
when the first CTI link to the G3 switch has been
established from an “all CTI links down” state. The
application can examine the private data portion of the
event report to determine which CTI links are up (LS_
LINK_UP), which CTI links are down (LS_LINK_
DOWN), and which CTI links are disabled via the OA&M
interface (LS_LINK_UNAVAIL). No Call or Device
Monitors, or Routing Sessions should exist at this point.

■ SS_DISABLED — A CSTASysStatEvent event report
will be sent with the systemStatus set to SS_DISABLED
when the last CTI link to the G3 switch has failed. The
application can examine the private data portion of the
event report, but it will always indicate that all CTI links
are down (LS_LINK_DOWN) or unavailable (LS_LINK_
UNAVAILABLE). All Call and Device Monitors will be
terminated, all Routing Sessions will be aborted, and all
outstanding CSTA requests should be negatively
acknowledged.

■ SS_NORMAL— A CSTASysStatEvent event report will
be sent with the systemStatus set to SS_NORMAL
when the application has requested event reports for
changes in specific CTI link states (via the
linkStatusReq private parameter in the
cstaSysStatStart() or cstaChangeSysStatFilter()) and a
CTI link changes state to up, (LS_LINK_UP) down (LS_
LINK_DOWN), or unavailable/busied-out via OA&M
(LS_LINK_UNAVAIL). The systemStatus normal (SS_
NORMAL) indicates that at least one CTI link to the
switch is available. The application can examine the
private data portion of the event report to determine
which CTI links are up, down, or unavailable/busied-out.
Call or Device Monitors, and Routing Sessions may
have been terminated when the CTI link state changed
to down (LS_LINK_DOWN).
Issue 1 — December 2001

DEFPROG.PDF R10.1 V111-30

System Status Event
Private Parameters:

Detailed Information:

■ If multiple CTI links are connected and administered to a specific switch,
the systemStatus parameter will indicate the aggregate link status. When
the first CTI link is established from an “all CTI links down” state, a System
Status Event Report will be sent to the application with the systemStatus
set to SS_ENABLED. When the last CTI fails (a transition to the “all CTI
links down” state), a System Status Event Report will be sent to the
application with the systemStatus set to SS_DISABLED.

■ If multiple CTI links are connected and administered to a specific switch,
Private Data must be used to determine if the switching system is
performing as administered. The plinkStatus private parameter can be
used to check the status of each individual CTI link.

count Identifies the number of CTI links described in the
plinkStatus private ack parameter. This parameter is only
provided when the linkStatusReq private parameter was set
to TRUE.

plinkStatus Specifies the status of each CTI link to the switch. This
parameter is only provided when the linkStatusReq private
parameter was set to TRUE. The plinkStatus private data
parameter will indicate the availability of each administered
CTI link to the G3 switch to which the application is
connected.

The status of each link identified by linkID will be set to one
of the following values in the linkState field:

■ LS_LINK_UP — The link is able to support telephony
services to the switch.

■ LS_LINK_DOWN — The link is unable to support
telephony services to the switch.

■ LS_LINK_UNAVAIL —The link has been disabled
(busied-out) via the OA&M interface and will not support
new CSTA requests. Existing telephony service
requests maintained by this link will continue.

This parameter is supported by private data version 5 and
later only.

linkStatus Specifies the status of each CTI link to the switch. For
details, see the description for the plinkStatus private ack
parameter. This parameter is supported by private data
versions 2, 3, and 4.
Issue 1 — December 2001

11-31DEFPROG.PDF R10.1 V1

System Status Service Group
Syntax

#include <acs.h>
#include <csta.h>

// CSTASysStatEvent - System Status Event

typedef struct
{

ACSHandle_t acsHandle;
EventClass_teventClass; // CSTAEVENTREPORT
EventType_t eventType; // CSTA_SYS_STAT

} ACSEventHeader_t;

typedef struct
{

ACSEventHeader_teventHeader;
union
{

struct
{

union
{
CSTASysStatEvent_tsysStat;
} u;

} cstaEventReport;
} event;
char heap[CSTA_MAX_HEAP];

} CSTAEvent_t;

typedef struct CSTASysStatEvent_t {
SystemStatus_t systemStatus;

} CSTASysStatEvent_t;

typedef enum SystemStatus_t {
SS_INITIALIZING = 0, // Not supported
SS_ENABLED = 1, // Supported
SS_NORMAL = 2, // Supported
SS_MESSAGES_LOST = 3, // Not supported
SS_DISABLED = 4, // Supported
SS_OVERLOAD_IMMINENT= 5, // Not supported
SS_OVERLOAD_REACHED = 6, // Not supported
SS_OVERLOAD_RELIEVED= 7 // Not supported

} SystemStatus_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 V111-32

System Status Event
Private Data Version 5 Syntax

#include <acs.h>
#include <csta.h>
#include <attpriv.h>

// ATTLinkStatusEvent - System Status Event Private Data

typedef struct
{

ATTEventType_teventType;// ATT_LINK_STATUS
union
{

ATTLinkStatusEvent_tlinkStatus;
} u;

} ATTEvent_t;

typedef struct ATTLinkStatusEvent_t
{

short count;
ATTLinkStatus_t *pLinkStatus;

} ATTLinkStatusEvent_t;

typedef struct ATTLinkStatus_t
{

short linkID;
ATTLinkState_t linkState;

} ATTLinkStatus_t;

typedef enum ATTLinkState_t {
LS_LINK_UNAVAIL= 0, // the link is disabled
LS_LINK_UP = 1, // the link is up
LS_LINK_DOWN= 2 // the link is down

} ATTLinkState_t;
Issue 1 — December 2001

11-33DEFPROG.PDF R10.1 V1

System Status Service Group
Private Data Version 4 Syntax

#include <acs.h>
#include <csta.h>
#include <attpriv.h>

// ATTV4LinkStatusEvent - System Status Event Private Data

typedef struct
{

ATTEventType_teventType;// ATTV4_LINK_STATUS
union
{

ATTV4LinkStatusEvent_tv4linkStatus;
} u;

} ATTEvent_t;

typedef struct ATTV4LinkStatusEvent_t
{

short count;
ATTLinkStatus_t linkStatus[8];

} ATTV4LinkStatusEvent_t;

typedef struct ATTLinkStatus_t
{

short linkID;
ATTLinkState_t linkState;

} ATTLinkStatus_t;

typedef enum ATTLinkState_t {
LS_LINK_UNAVAIL= 0, // the link is disabled
LS_LINK_UP = 1, // the link is up
LS_LINK_DOWN= 2 // the link is down

} ATTLinkState_t;
Issue 1 — December 2001

DEFPROG.PDF R10.1 V111-34

System Status Event
Private Data Versions 2 and 3 Syntax

#include <acs.h>
#include <csta.h>
#include <attpriv.h>

// ATTV3LinkStatusEvent - System Status Event Private Data

typedef struct
{

ATTEventType_teventType;// ATTV3_LINK_STATUS
union
{

ATTV3LinkStatusEvent_tv3linkStatus;
} u;

} ATTEvent_t;

typedef struct ATTV3LinkStatusEvent_t
{

short count;
ATTLinkStatus_t linkStatus[4];

} ATTV3LinkStatusEvent_t;

typedef struct ATTLinkStatus_t
{

short linkID;
ATTLinkState_t linkState;

} ATTLinkStatus_t;

typedef enum ATTLinkState_t {
LS_LINK_UNAVAIL= 0, // the link is disabled
LS_LINK_UP = 1, // the link is up
LS_LINK_DOWN= 2 // the link is down

} ATTLinkState_t;
Issue 1 — December 2001

11-35DEFPROG.PDF R10.1 V1

System Status Service Group
Issue 1 — December 2001

DEFPROG.PDF R10.1 V111-36

DEFPROG.PDF Issue 1 — Decem
A

Enhanced Voice Terminal Display
Feature Description

The following details on the Enhanced Voice Terminal Display feature are taken
from the DEFINITY Enterprise Communication Server Feature Description,
Release 5.

Considerations

After the feature is turned on at the system parameter level, you must still enter
the display field values on the appropriate forms and submit those forms before
the enhanced character set will display. The reverse is also true, in that if you turn
the feature off at the system level after Group 2 display has been administered,
you must change the display field values back to the appropriate Group 1
characters.

Interactions

Internal Feature interactions

■ Directory

The Enhanced Voice Terminal Display feature will interact with the
Directory feature to include names administered with enhanced display
characters in the Directory. Terminal users can select directory entries
displayed in the Group 2 character set by using the “Directory” and “Next”
buttons on their display terminals, and can use the “*” to indicate special
characters in a directory search. However, they cannot input directory
entries using the voice terminal because of the special characters used.
ber 2001 A-1

Enhanced Voice Terminal Display
■ ISDN

Enhanced display characters are supported for ISDN calls, and will display
correctly for calls between properly administered DEFINITY switches with
the same terminal types at both ends.

■ Data Call Setup Dialing

Not supported.

■ Message Retrieval - Print Messages (Demand Print)

Not supported.

■ Leave Word Calling - Adjunct

Not supported.

■ OSSI

Displays the literal value of the display field, not the Group 2 characters.

■ Features with Display Interactions

All features that display administered data are supported for enhanced
display, provided the terminal hardware is compatible.

External Feature Interfaces

■ Adjunct Switch Applications Interface (ASAI)

The information sent from the DEFINITY ECS to any adjunct is the literal
value of the field as administered, not the enhanced display format. Since
the adjunct has no way to interpret this into special fonts, the resulting
display appears as a string of random characters, for example, as “2<@^.“

The ASAI-Query Names Database feature also will also receive names as
mentioned above. The same is true of the ASAI-Accessed BCMS Data
feature.

■ AUDIX

The following AUDIX products operate normally with Enhanced Voice
Terminal Display enabled:

■ Basic R1 AUDIX

■ Embedded DCIU Audix

■ Embedded DCP Audix (requires R3.2 or greater)

■ AUDIX Voice Power/Audix Voice Power Lodging

Not supported.

■ CentreVu Direct Connect

Not supported.
A-2 DEFPROG.PDF Issue 1 — December 2001

Feature Description
■ Novell Telephony Services

Not supported.

■ Look Ahead Interflow

This feature can use the enhanced character set, but terminal types must
match the administered display group.

■ VUStats

If this feature is used with non-supported terminals, the enhanced
character set may cause screens to be cleared or display false information.

■ DCS Networking

This feature is supported in a DCS environment. All switches in the network
must have the enhanced character set enabled and the same software
load must be installed on each server.

■ Monitor 1 and One Vision

Monitor 1 and One Vision will receive the ASCII characters as
administered.

■ ECMA QSIG Networking

If two DEFINITY servers are administered for enhanced display for
terminals using the same character group, this feature is supported. It is
not supported between a DEFINITY ECS and a non-DEFINITY switch.

Administration

System administrators can activate this feature by setting the value of the
Enhanced 84XX Display Character Set? field on the System-Parameters
Country-Options form to y. Once this value is set, the administrator can enter the
Roman characters that produce the corresponding Group 2 characters on the
terminal display.

This feature is activated on a system-wide basis using the System-Parameters
County-Options form. Once activated, the administrator must update those forms
that determine the contents of display fields. Users can administer name fields
and soft key labels to display in the character set of choice.

The following forms contain fields that will accept the enhanced display
characters:

■ Access-endpoint

■ Agent-loginID

■ Announcements

■ Attendant

■ Bcms-vustats loginIDs
A-3 DEFPROG.PDF Issue 1 — December 2001

Enhanced Voice Terminal Display
■ Console-parameters

■ Data-module

■ Display-messages

■ Display-messages auto-wakeup-dn-dst

■ Display-messages call-identifiers

■ Display-messages date-time

■ Display-messages leave-word-calling

■ Display-messages malicious-call-trace

■ Display-messages miscellaneous-features

■ Display-messages property-management

■ Display-messages softkey-labels

■ Display-messages time-of-day-routing

■ Display-messages vustats

■ Hunt-group

■ Listed-directory-numbers

■ Paging loudspeaker

■ Personal-CO-line

■ Pri-endpoint

■ Station

■ System-parameters-hospitality

■ Term-ext-group

■ Trunk-group

■ Vdn

■ Vustats-display-format
A-4 DEFPROG.PDF Issue 1 — December 2001

Implementation of Enhanced Voice Terminal Display
Implementation of Enhanced Voice
Terminal Display

The sections below describe how to implement the Enhanced Voice Terminal
Display feature. For additional information, refer to DEFINITY Enterprise
Communications Server Implementation, Volume 1 or 2, Release 5.

Description

The Enhanced Voice Terminal Display feature allows users to administer the
switch to display information and soft key labels on display terminals, using either
the Katakana alphabet or various European characters, In addition to the Roman
alphabet. The system accepts entries as Roman characters preceded by a tilde
(~), and maps them to corresponding Katakana or European characters.

The character set that displays on supported voice terminals can be divided into
two different groups.

■ Group 1 contains the Roman alphabet, numerals and special characters
found on the standard US English keyboard.

■ Group 2 contains one of two alternate character sets:

— Group 2a contains Katakana characters, as well as some European
characters and other symbols.

— Group 2b contains characters required to display most European
languages.

The enhanced display feature allows users to administer the system to display
either Group 1 or one of the Group 2 character sets. Whether your system
displays group 2a or 2b depends on the terminal types attached to the ECS (see
the table below).

Administration

To administer voice terminal displays in Group 2 characters, first update the
following form.

Form Field

Form
Instructions

(Page)

System-Parameters
Country-Options

Enhanced 84xx Terminal
Display?

5-300
A-5 DEFPROG.PDF Issue 1 — December 2001

Enhanced Voice Terminal Display
Hardware Requirements

Each character set for Enhanced Voice Terminal Display requires a specific type
of terminal, based on which Group 2 character set you want to display.

NOTE:
It is very important to make sure that you use the same terminal type across
your entire system, that is, use only Group 2a or Group 2b terminals.
Otherwise, it is impossible to guarantee that the displays will appear as
indicated. Your Lucent Technologies representative can make sure you have
the appropriate terminal types.

Feature Implementation

Execute the following steps to implement this feature:

1. Activate the feature by changing the value of the Enhanced 84xx Display
Character Set? field to “y” on the System-Parameters Country-Options
form.

2. Enter the appropriate values in the display fields of the forms that you want
to use. See "Update display fields" below for detailed procedures.

3. Submit all forms after you modify them.

NOTE:
To display Roman characters once you have activated this feature, simply
enter the values of the display fields as you normally would.

Screen A-1. The System Parameters Country Options form

 SYSTEM PARAMETERS COUNTRY-OPTIONS

Companding Mode: Mu Law Base Tone Generation Set: 1
440Hz PBX-dial Tone? n 440Hz Secondary-dial Tone? n

Digital Loss Plan: 1 Version of Digital Loss Plan: 1
Analog Ringing Cadence: 1 Set Layer 1 timer T1 to 30 seconds? n

Analog Line Transmission: 1 Enhanced 84xx Display Character Set? n

TONE DETECTION PARAMETERS
Tone Detection Mode: 6 Dial Tone Validation Timer:

Interdigit Pause: short
A-6 DEFPROG.PDF Issue 1 — December 2001

Implementation of Enhanced Voice Terminal Display
Update display fields

Once you have activated the feature, you can add or update the fields that you
want to display using the Group 2 character set. To do this:

1. Retrieve the appropriate form.

2. Move to the display field you want to add or change.

3. At the point where you want to start the display in Group 2 characters,
enter a tilde (~).

4. Use the character map on the following pages to determine the Roman
characters that correspond to the Group 2 characters you want.

5. Type the Roman characters in the display field.

6. If you want to end the display of Group 2 characters and continue with
Roman characters, type another tilde, then continue using the Roman set.
If you want the entire field to display in Group 2 characters, you can omit
the tilde from the end of the field.

7. Submit the form.

NOTE:
The Katakana characters that combine symbols do not appear as single
characters in the terminal display set. To display these characters, you must
use a combination. See the example below.

Also, the characters will appear on the display terminal in the order that you
enter them. If you want the display to read right to left, you must enter the
characters in reverse order on the form.

Examples

Table A-1 shows a few examples of what you would need to enter in a display
value field in order for the Group 2 characters to appear.

Table A-1. Characters to Enter for Group 2 Character Display

Enter this: To display this:

~2<@^ À jÏ
~2<@^~, Max À jÏ_Ì!@ß

~N_ �v�
Pe~n~a Peña

Fr~a~ulein Fräulein
A-7 DEFPROG.PDF Issue 1 — December 2001

Enhanced Voice Terminal Display
Table A-2. Character Map, Group 1 to Group 2a

Group 2a Group 1 Group 2a Group 1

space space � 8

� ! Ã 9

Î “ Á :

Ð # · ;

� $ <

� % c =

� & µ >

d ' b ?

¹ (j @

e) i A

¶ * k B

¸ + m C

½ , l D

º - n E

» . � F

¼ / o G

Ë 0 q H

f 1 p I

À 2 r J

¾ 3 s K

¿ 4 u L

¡ 5 t M

g 6 v N

Ò 7 w O
A-8 DEFPROG.PDF Issue 1 — December 2001

Implementation of Enhanced Voice Terminal Display
Table A-3. Character Map, Group 1 to Group 2a, continued

NOTE:
For Group 2a, the z and { characters map to Kanji characters as follows:

z - symbol for 1,000

{ - symbol for 10,000

Group 2a Group 1 Group 2a Group 1

Ì P µ d

x Q σ e

z R ρ f

y S √ h

{ T -1 i

} U ∗ k

| V ¢ l

ª W £ m

� X ñ n

� Y ö o

~ Z θ r

Â [∞ s

h \ Ω t

Í] ü u

Ï ^ Σ v

� _ π w

α ‘ x x

ä a ÷ }

Ä b � |
A-9 DEFPROG.PDF Issue 1 — December 2001

Enhanced Voice Terminal Display
Group 2b character map

The following pages contain the character map for Group 2b.

NOTE:
Some of the characters in the following map appear in only upper or lower
case, for example, Ú, Ë, ¤, and others. These display the same for both upper
and lower case.
 A-10 DEFPROG.PDF Issue 1 — December 2001

Implementation of Enhanced Voice Terminal Display
Table A-4. Character Map, Group 1 to Group 2b

Group 2b Group 1 Group 2b Group 1

 Ò space 8

 Ô ! Í 9

È “ � :

Æ # Õ ;

Å $ Â <

ß % Ý =

Þ & Ë >

Î ' ¸ ?

Í (Ó @

Ë) Ê A

� * � B

´ + Ç C

â , à D

z� - Þ E

Ú . Ï F

× / � G

² 0 Ï H

 ´ 1 ¬ I

¨ 2 Ý J

¦ 3 µ K

¥ 4 ÿ L

¿ 5 Ö M

¾ 6 « N

® 7 Ú O
A-11 DEFPROG.PDF Issue 1 — December 2001

Enhanced Voice Terminal Display
Table A-5. Character Map, Group 1 to Group 2b, continued

Group 2b Group 1 Group 2b Group 1

³ P Õ h

ª Q ç i

� R Ã j

§ S ¤ k

À T z� l

¾ U × m

¯ V Ö n

� W Û o

¯ X ± p

å Y © q

½ Z È r

� [¨ s

Ÿ \ À t

¶] á u

¶ ^ ± v

¹ _ ° w

Ñ ` µ x

É a � y

Ä b � z

à d ã {

Á e ¤ |

Ñ f · }

Ð g
A-12 DEFPROG.PDF Issue 1 — December 2001

Implementation of Enhanced Voice Terminal Display
Table A-6. Troubleshooting tips

Problem Cause/Solution

The characters that display are not
what you thought you entered.

This feature is case sensitive. Check
the table to make sure you entered the
right case.

You entered a lower case “c”, and “*”
appears on the display instead.

The lower case “c” has a specific
meaning in the DEFINITY system, and
therefore cannot be mapped to any
other character. An asterisk “*”
appears in its place.

You entered “->” or “<-” and nothing
appears on the display.

These characters do not exist as
single keys on the standard
US-English keyboard. Therefore the
system is not programmed to handle
them.

Enhanced display characters appear
in fields that you did not update.

If an existing display field contains a
tilde (~) followed by Roman
characters, and you update and
submit that form after this feature is
activated, that field will display the
enhanced character set.

Nothing displays on the terminal at all. Some non-supported terminals do not
display anything if a special character
is presented. Check the model of
display terminal you are using.

You entered a character with a
descender and part of it appears cut
off in the display.

Some of the characters in Group 2a
have descenders that do not appear
entirely within the display area. These
characters are not included in the
character map. For these characters
(g,j,p,q,y), use Group 1 equivalents.
A-13 DEFPROG.PDF Issue 1 — December 2001

INIndex
Symbols

* and # characters
send DTMF tone, 4-132

A

AAR/ARS
make call, 4-74

Abbreviated dialing
originated event, 9-131

Account codes
originated event, 9-131

ACD destination
make call, 4-74

ACD group
device type, 3-28

ACD originator
make call, 4-74

ACD split
monitor calls via device, 8-25
monitor device, 8-34

Ack parameters
alternate call, 4-10
answer call, 4-14
change monitor filter, 8-7
change system status filter, 11-23
clear call, 4-18
clear connection, 4-21
conference call, 4-28
consultation call, 4-36
consultation direct-agent call, 4-45
consultation supervisor-assist call, 4-53
conventions, 3-45
deflect call, 4-61
hold call, 4-66
make call, 4-73
make direct-agent call, 4-84
make predictive call, 4-95
make supervisor-assist call, 4-105
monitor call, 8-15
monitor calls via device, 8-24
monitor device, 8-33
monitor stop, 8-46
monitor stop on call, 8-42
pickup call, 4-114
query agent login, 6-7
query agent state, 6-14
reconnect call, 4-120
retrieve call, 4-127
route end service (TSAPI v2), 10-7
Issue 1 — Dec

DEFPROG.PDF R10.1 V1
route register, 10-18
route register cancel, 10-14
route request (TSAPI v2), 10-24
route select (TSAPI v2), 10-43
selective listening hold, 4-138
selective listening retrieve, 4-144
send DTMF tone, 4-131, 4-132
set advice of charge, 5-3
set agent state, 5-11
set billing rate, 5-19
set do not disturb feature, 5-23
set forwarding feature, 5-27
set MWI feature, 5-31
single step conference call, 4-151
system status request, 11-4
system status start, 11-11
system status stop, 11-19
transfer call, 4-158

Ack private parameters
change monitor filter, 8-8
change system status filter, 11-23
conference call, 4-28
consultation call, 4-36
consultation direct-agent call, 4-45
consultation supervisor-assist call, 4-54
conventions, 3-45
make call, 4-73
make direct-agent call, 4-85
make predictive call, 4-95
make supervisor-assist call, 4-106
monitor call, 8-15
monitor calls via device, 8-24
monitor device, 8-33
monitor stop on call, 8-42
query ACD split, 6-3
query agent login, 6-7
query agent state, 6-14
set advice of charge, 5-3
set agent state, 5-11
single step conference call, 4-151
system status request, 11-4
system status start, 11-12
transfer call, 4-158

ACS parameter syntax, 3-48
ACS stream

set advice of charge, 5-3
Activation

set forwarding feature, 5-28
Active call

reconnect call, 4-127
Active state

retrieve call, 4-127
Adjunct messages

set MWI feature, 5-31
Adjunct-controlled splits

monitor calls via device, 8-25
Administration without hardware

deflect call, 4-62
monitor device, 8-34
pickup call, 4-115
ember 2001

IN-1

Index
Advice of charge event report
monitor call, 8-17

Agent activity
mapped to agent state, 6-16
mapped to talk state, 6-16

Agent event filters, 8-4
Agent state

mapped to agent activity, 6-16
Agent state, mapped to agent work mode, 6-16
Agent work mode, mapped to agent state, 6-16
AgentMode service parameter, 5-12
Alternate call

ack parameters, 4-10
description, 4-9
detailed information, 4-11
overview, 4-2
service parameters, 4-10
syntax, 4-12

Analog ports
monitor device, 8-34

Analog sets, 9-165
Analog station operation

alternate call, 4-15
answer call, 4-15
reconnect call, 4-15

Analog stations
alternate call, 4-67
clear connection, 4-22
conference call, 4-30
consultation call, 4-67
hold call, 4-67
make call, 4-74
reconnect call, 4-22
transfer call, 4-159

ANI screen pop application requirements, 9-166
Announcement destination

make call, 4-75
Announcements, 9-167, 9-169

selective listening hold, 4-139
selective listening retrieve, 4-139

Answer call, 4-13
ack parameters, 4-14
analog station operation, 4-15
detailed information, 4-14
nak parameters, 4-14
overview, 4-2
service parameters, 4-14
syntax, 4-17

Answer supervision timeout, 9-167
Applications

designing using original call info, 3-9
designing with private data, 3-13
designing, with screen pop information, 3-7
migration from private data v5 to v6, 3-19
remote, passing UUI, 3-10

AT&T MultiQuest 900 Vari-A-Bill, 5-18
Attendant auto-manual splitting, 9-168
Attendant call waiting, 9-168
Attendant control of trunk group access, 9-169

Attendant groups, 9-167
monitor device, 8-34

Attendant specific button operation, 9-168
Attendants, 9-167

deflect call, 4-62
make call, 4-75
monitor device, 8-34
pickup call, 4-115
selective listening hold, 4-139
selective listening retrieve, 4-139

Attributes, of parameters, 3-45
AUDIX, 9-169

send DTMF tone, 4-132
Authorization codes

make call, 4-75
originated event, 9-131

Auto call back
deflect call, 4-62
pickup call, 4-115

Auto-available split, 9-170
Automatic Call Distribution (ACD), 9-167, 9-169
Automatic callback

originated event, 9-131

B

Blind transfer
established event, 9-90

Bridged call appearance, 9-170
alternate call, 4-67
clear connection, 4-22
conference call, 4-30
consultation call, 4-67
deflect call, 4-62
hold call, 4-67
make call, 4-75
originated event, 9-131
pickup call, 4-115
reconnect call, 4-22, 4-128
retrieve call, 4-128
single step conference call, 4-153
transfer call, 4-160

Bridged state, 7-8
Busy Hour Call Completions (BHCC), 5-3
Busy verification of terminals, 9-171

alternate call, 4-67
consultation call, 4-67
hold call, 4-67

C

Call appearance button, 9-168
Call classification

established event, 9-89
Issue 1 — December 2001

DEFPROG.PDF R10.1 V1IN-2

Index
make call, 4-75
Call cleared event

description, 9-3
detailed information, 9-5
monitor device, 8-31
private parameter syntax, 9-7
private parameters, 9-4
redirection on no answer, 9-165
report, 9-3, 9-32
service parameters, 9-4
syntax, 9-6

Call clearing state
charge advice event, 9-10

Call control service group
supported services, 3-2
unsupported services, 3-5

Call coverage, 9-171
Call coverage path containing VDNs, 9-172

make call, 4-75
Call delivered

to ACD device, 9-40
to ACD split, 9-41
to station device, 9-39
to VDN, 9-40

Call destination
make call, 4-75

Call event filters, 8-3
Call event reports

Monitor stop on call, 8-43
Call forwarding

pickup call, 4-115
Call forwarding all calls, 9-172

make call, 4-75
set forwarding feature, 5-27

Call identifier, 3-35
syntax, 3-35

Call monitoring event sequences
single step conference call, 4-153

Call objects, 3-35
Call originator type, 9-56
Call park, 9-172

originated event, 9-131
Call pickup, 9-173
Call prompting, 9-175

for screen pop, 3-7
Call state, 3-35

send DTMF tone, 4-132
single step conference call, 4-153

Call states, 7-8
Call vectoring, 9-173

selective listening hold, 4-139
selective listening retrieve, 4-139

Call vectoring, interactions with feedback, 9-173
Call waiting, 9-175

deflect call, 4-62
pickup call, 4-115

Called number
for screen pop, 3-7

Calling number
for screen pop, 3-7

Calls
phantom, 3-28

Calls In queue, number, 9-177
Cancel button, 9-168
Cancel requested service, 8-3
Capacity, system, 3-40
Change monitor filter, 8-1

ack parameters, 8-7
ack private parameters, 8-8
description, 8-6
detailed information, 8-8
nak parameters, 8-8
private data v2-4 syntax, 8-12
private data v5 syntax, 8-11
private parameters, 8-7
service parameters, 8-7
syntax, 8-9

Change system status filter
ack parameters, 11-23
ack private parameters, 11-23
description, 11-21
detailed information, 11-24
nak parameters, 11-24
overview, 11-2
private data v2-3 syntax, 11-28
private data v4 syntax, 11-27
private data v5 syntax, 11-26
private parameters, 11-22
service parameters, 11-22
syntax, 11-25

Charge advice event
description, 9-8
detailed information, 9-10
private parameter syntax, 9-12
private parameters, 9-9
report, 9-8
service parameters, 9-9
syntax, 9-11

Charge advice events, 8-31
Class of Restrictions (COR)

make call, 4-75
Class of Service (COS)

make call, 4-76
Clear call

ack parameters, 4-18
description, 4-18
detailed information, 4-18
nak parameters, 4-18
overview, 4-3
service parameters, 4-18
syntax, 4-19

Clear connection
ack parameters, 4-21
description, 4-20
detailed information, 4-22
nak parameters, 4-22
Issue 1 — December 2001

IN-3DEFPROG.PDF R10.1 V1

Index
overview, 4-3
private data v2-5 syntax, 4-26
private data v6 syntax, 4-25
private parameters, 4-21
service parameters, 4-21
syntax, 4-24
userInfo parameter, 4-21

Conference, 9-176
Conference call

ack parameters, 4-28
ack private parameters, 4-28
detailed information, 4-30
nak parameters, 4-29
overview, 4-3
private data v5 syntax, 4-32
selective listening hold, 4-139
selective listening retrieve, 4-139
service parameters, 4-28
syntax, 4-31

Conference event
report, 9-13

Conferenced event
description, 9-13
detailed information, 9-18
private data v2-3 syntax, 9-29
private data v4 syntax, 9-26
private data v5 syntax, 9-23
private data v6 syntax, 9-20
private parameters, 9-16
service parameters, 9-14
syntax, 9-19
trunkList parameter, 9-17
userInfo parameter, 9-17

Conferencing call, with screen pop information, 3-7
Conferencing calls

CSTA services used, 3-8
Confirmation event

format, 3-45
Confirmation interface structures

private data v4 syntax, 3-15
private data v5-6 syntax, 3-14

Connection cleared event
description, 9-32
detailed information, 9-35
private data v2-5 syntax, 9-38
private parameter syntax, 9-37
private parameters, 9-35
report, 9-32
service parameters, 9-34
syntax, 9-36
userInfo parameter, 9-35

Connection identifier, 3-36
syntax, 3-36

Connection identifier conflict, 3-36
Connection object, 3-35
Connection state, 3-37

send DTMF tone, 4-132
syntax, 3-39

Connection state definitions, 3-38

Consult, 9-176
Consultation call

ack parameters, 4-36
ack private parameters, 4-36
description, 4-33
detailed information, 4-37, 4-96
nak parameters, 4-36
overview, 4-4
private data v2-5 syntax, 4-41
private data v6 syntax, 4-39
private parameters, 4-35
service parameters, 4-34
syntax, 4-38
userInfo parameter, 4-35

Consultation direct-agent call
ack parameters, 4-45
ack private parameters, 4-45
description, 4-42
detailed information, 4-46
nak parameters, 4-45
overview, 4-4
private data v2-5 syntax, 4-50
private data v6 syntax, 4-48
private parameters, 4-44
service parameters, 4-43
syntax, 4-47
userInfo parameter, 4-44

Consultation supervisor-assist call
ack parameters, 4-53
ack private parameters, 4-54
description, 4-51
detailed information, 4-55
nak parameters, 4-54
overview, 4-5
private data v2-5 syntax, 4-59
private data v6 syntax, 4-57
private parameters, 4-53
service parameters, 4-52
syntax, 4-56
userInfo parameter, 4-53

Consultation transfer
established event, 9-90

Conventions
ack parameters, 3-45
ack private parameters, 3-45
confirmation event, 3-45
for G3 CSTA services, 3-45
for private data, 3-19
format, 3-45
function, 3-45
functional description, 3-45
nak parameters, 3-45
private data, 3-45
private parameters, 3-45
service parameters, 3-45

Converse agent
selective listening hold, 4-140
selective listening retrieve, 4-140

Cover all
Issue 1 — December 2001

DEFPROG.PDF R10.1 V1IN-4

Index
pickup call, 4-115
CSTA local call state, mapped to G3 local call state, 7-8
CSTA objects

call, 3-35
device, 3-28
device type, 3-28

CSTA services
snapshot call, 7-2
snapshot device, 7-6
supported, 3-2
unsupported, 3-5

cstaDeflectCall
pickup call, 4-115

CSTAEventCause, definitions, 9-1
cstaMakePredictiveCall

originated event, 9-131
CSTAUniversalFailureConfEvent, 3-49
CTI link failure, 9-176
CTI links

multiple, considerations for, 3-43
Customer support

for DEFINITY G3 PBX Driver, 1-6
for Telephony Services, 1-6
for Tserver operation, 1-6

D

Data calls, 9-176
make call, 4-76

Data structures, 9-1
DCS

make call, 4-76
set do not disturb feature, 5-23
set forwarding feature, 5-27

DCS network, event reporting, 9-177
Deactivation

set forwarding feature, 5-28
Deflect call

ack parameters, 4-61
description, 4-60
detailed information, 4-62
nak parameters, 4-61
overview, 4-5
service parameters, 4-61
syntax, 4-64

Deflect from queue
deflect call, 4-62
pickup call, 4-115

Delivered event
call coverage path to ACD device, 9-172
call scenarios, 9-51
deflect call, 4-62
description, 9-39
detailed information, 9-50
distributing device, 9-50
last redirection device, 9-50

pickup call, 4-115
private data v2-3 syntax, 9-70
private data v4 syntax, 9-67
private data v5 syntax, 9-63
private data v6 syntax, 9-59
private parameters, 9-45
redirection, 9-165
redirection on no answer, 9-165
report, 9-39
reports, consecutive, 9-40
service parameters, 9-42
syntax, 9-58
userInfo parameter, 9-46, 9-48

Designing applications, with screen pop information, 3-7
Device

with bridged state, 7-8
Device class, 3-29
Device groups

trunk group, 3-29
Device ID type

private data v2-4, 3-32
Device identifier, 3-29
Device identifiers

dynamic, 3-30
static, 3-29
syntax, 3-31

Device monitoring event sequences
single step conference call, 4-153

Device type, 3-28
ACD group, 3-28
definitions, 3-28

Device type ID
private data v5-6, 3-32

Device types
station, 3-28
trunks, 3-29

Dialing, abbreviated, 9-131
Digits collected

for screen pop, 3-7
Direct agent calls

redirection on no answer, 9-165
Direction

format, 3-45
Display

make call, 4-76
make direct-agent call, 4-86

Distributing device
delivered event, 9-50

Diverted event
call coverage path (VDNs), 9-172
deflect call, 4-63
description, 9-73
detailed information, 9-75
pickup call, 4-115
redirection on no answer, 9-165
report, 9-73, 9-165
service parameters, 9-75
syntax, 9-76
Issue 1 — December 2001

IN-5DEFPROG.PDF R10.1 V1

Index
Drop button
single step conference call, 4-153

Drop button operation, 9-177
clear connection, 4-22
reconnect call, 4-22

DTMF receiver
selective listening hold, 4-140
selective listening retrieve, 4-140
send DTMF tone, 4-133

DTMF sender
send DTMF tone, 4-133

DTMF tones, unsupported, 4-133
Dynamic device identifier, 3-30

E

EnablePending private parameter, 5-10, 5-12
En-bloc sets, service initiated event, 9-178
Entered digits event

description, 9-77
detailed information, 9-77
private parameter syntax, 9-79
private parameters, 9-77
service parameters, 9-77
syntax, 9-78

Errors
common CSTA, 3-49

Escape service group
supported services, 3-5
unsupported services, 3-6

Established event
description, 9-80
detailed information, 9-89
private data v2-3 syntax, 9-105
private data v4 syntax, 9-101
private data v5 syntax, 9-97
private data v6 syntax, 9-93
private parameters, 9-85
report, 9-80
report, multiple, 9-81
service parameters, 9-82
syntax, 9-92
userInfo parameter, 9-86, 9-88

Event filters, 8-3
agent, 8-4
call, 8-3
feature, 8-4
maintenance, 8-4

Event minimization feature, on G3 PBX, 9-2
Event report service group, 9-1

supported services, 3-4
unsupported services, 3-6

Event reports
detailed information, 9-165
monitor ended, 8-40

Events

advice of charge, 8-31
call cleared, 9-3
charge advice, 9-8
conferenced, 9-13
connection cleared, 9-32
delivered, 9-39
diverted, 9-73
entered digits, 9-77
established, 9-80
failed, 9-109
held, 9-114
logged off, 9-116
logged on, 9-119
monitor ended, 8-2
network reached, 9-122
originated, 9-129
queued, 9-135
retrieved, 9-139
route end, 10-2
route register abort, 10-12
route used (TSAPI v1), 10-54
route used (TSAPI v2), 10-51
service initiated, 9-142
system status, 11-29
system status, overview, 11-2
transferred, 9-146

Expert Agent Selection (EAS), 9-177

F

Failed event
description, 9-109
detailed information, 9-112
report, 9-109
service parameters, 9-111
syntax, 9-113

Feature access monitoring
monitor device, 8-34

Feature availability
charge advice event, 9-10
single step conference call, 4-154

Feature event filters, 8-4
Feature summary

for private data, 3-15
Feedback, interactions with call vectoring, 9-173
Filters

agent event, 8-4
call event, 8-3
event feature, 8-4
maintenance event, 8-4
private, 8-4

Forced entry of account codes
make call, 4-76

Format
for G3 CSTA services, 3-45

Formats, 3-45
Issue 1 — December 2001

DEFPROG.PDF R10.1 V1IN-6

Index
ack parameters, 3-45
ack private parameters, 3-45
confirmation event, 3-45
direction, 3-45
function, 3-45
nak parameters, 3-45
private data, 3-45
private parameters, 3-45
service parameters, 3-45

Forwarded calls
deflect call, 4-63
pickup call, 4-116

Functional description
conventions, 3-45

functional description, 3-45

G

G3 CSTA system capacity, 3-40
G3 local call state, mapped to CSTA local call state, 7-8
G3 PBX

event minimization feature, 9-2

H

Held event
description, 9-114
detailed information, 9-114
report, 9-114
report, generating, 9-178
service parameters, 9-114
switch hook operation, 9-166
syntax, 9-115

Held state
alternate call, 4-67
consultation call, 4-67
hold call, 4-67

Hold button, 9-168
Hold call

ack parameters, 4-66
description, 4-65
detailed information, 4-67
nak parameters, 4-66
overview, 4-5
reconnect call, 4-128
selective listening hold, 4-140
selective listening retrieve, 4-140
service parameters, 4-66
syntax, 4-68

Hold state
retrieve call, 4-128

Holding calls, generating held event report, 9-178
Hot line

make call, 4-76

I

Integrated Services Digital Network (ISDN), 9-178
Interactions, between feedback and call vectoring, 9-173
Interface structures

private data v4 syntax, 3-15
private data v5-6 syntax, 3-14

Interflow, 9-169
ISDN BRI station, single step conference call, 4-148

L

Last added party
single step conference, 4-153

Last number dialed
make call, 4-76

Last redirection device
delivered event, 9-50
established event, 9-90
queued event, 9-137

Links
multiple, considerations for, 3-43

Local call states, 7-8
LocalConnectionInfo parameter, for monitor services, 8-5
LocalConnectionState, definitions, 9-1
Logged off event

description, 9-116
detailed information, 9-116
private parameter syntax, 9-118
private parameters, 9-116
report, 9-116
service parameters, 9-116
syntax, 9-117

Logged on event
description, 9-119
detailed information, 9-119
private parameter syntax, 9-121
private parameters, 9-119
report, 9-119
service parameters, 9-119
syntax, 9-120

Logical agents, 9-177
make call, 4-76
make direct agent call, 4-86
monitor device, 8-34
set do not disturb feature, 5-23
set forwarding feature, 5-27

Lookahead interflow, 9-175
Lookahead interflow info

for screen pop, 3-7
Loop back

deflect call, 4-63
pickup call, 4-115
Issue 1 — December 2001

IN-7DEFPROG.PDF R10.1 V1

Index
M

Maintenance event filters, 8-4
Maintenance service group

supported services, 3-5
unsupported services, 3-6

Make call
ack parameters, 4-73
ack private parameters, 4-73
detailed information, 4-74
nak parameters, 4-73
overview, 4-6
private data v2-5 syntax, 4-81
private data v6 syntax, 4-79
private parameters, 4-72
service parameters, 4-71
syntax, 4-78
userInfo parameter, 4-72

Make call service
description, 4-69

Make direct-agent call
ack parameters, 4-84
ack private parameters, 4-85
description, 4-82
detailed information, 4-86
nak parameters, 4-85
overview, 4-6
private data v2-5 syntax, 4-90
private data v6 syntax, 4-88
private parameters, 4-84
service parameters, 4-83
syntax, 4-87
userInfo parameter, 4-94

Make predictive call
ack parameters, 4-95
ack private parameters, 4-95
description, 4-91
detailed information, 4-96
nak parameters, 4-95
overview, 4-7
private data v2-5 syntax, 4-101
private data v6 syntax, 4-99
private parameters, 4-92
service parameters, 4-92
syntax, 4-98

Make supervisor-assist call
ack parameters, 4-105
ack private parameters, 4-106
description, 4-103
detailed information, 4-107
nak parameters, 4-106
overview, 4-7
private data v2-5 syntax, 4-111
private data v6 syntax, 4-109
private parameters, 4-105
service parameters, 4-104

syntax, 4-108
userInfo parameter, 4-105

Mandatory attributes, 3-45
Manual transfer

established event, 9-90
Maximum number of objects to monitor

monitor calls via device, 8-25
Maximum requests from multiple G3PDs

monitor call, 8-16
Monitor call

ack parameters, 8-15
ack private parameters, 8-15
description, 8-1, 8-13
detailed information, 8-16
nak parameters, 8-16
private data v2-4 syntax, 8-21
private data v5 syntax, 8-20
private parameters, 8-14
service parameters, 8-14
syntax, 8-18

Monitor calls via device
ack parameters, 8-24
ack private parameters, 8-24
description, 8-2, 8-22
detailed information, 8-25
nak parameters, 8-25
private data v2-4 syntax, 8-30
private data v5 syntax, 8-29
private parameters, 8-23
service parameters, 8-23
syntax, 8-27

Monitor device
ack parameters, 8-33
ack private parameters, 8-33
description, 8-2, 8-31
detailed information, 8-34
nak parameters, 8-34
private data v2-4 syntax, 8-39
private data v5 syntax, 8-38
private parameters, 8-33
service parameters, 8-32
syntax, 8-36

Monitor ended event, 8-2
Monitor ended event report, 8-40

detailed information, 8-40
monitor call, 8-16
service parameters, 8-40
syntax, 8-41

Monitor service group
overview, 8-1
supported services, 3-4

Monitor services, 8-3
localConnectionInfo parameter, 8-5

Monitor stop
ack parameters, 8-46
description, 8-3, 8-46
detailed information, 8-46
nak parameters, 8-46
private parameters, 8-46
Issue 1 — December 2001

DEFPROG.PDF R10.1 V1IN-8

Index
syntax, 8-47
Monitor stop on call, 8-42

ack parameters, 8-42
ack private parameters, 8-42
description, 8-2
detailed information, 8-43
nak parameters, 8-43
private parameters, 8-42
private parameters syntax, 8-45
syntax, 8-44

Monitor stop on call service
monitor call, 8-16

Multifunction
reconnect call, 4-14

Multifunction station operation
alternate call, 4-14
answer call, 4-14

Multiple application requests
monitor call, 8-17

Multiple links
system status request, 11-5

Multiple requests
monitor calls via device, 8-25
monitor device, 8-34

Multiple split queueing, 9-175, 9-178
Multiple telephony servers, 3-43
Music on hold

alternate call, 4-67
consultation call, 4-67
hold call, 4-67
selective listening hold, 4-140
selective listening retrieve, 4-140

MWI status sync
set MWI feature, 5-31

N

Nak parameters
alternate call, 4-10
answer call, 4-14
change monitor filter, 8-8
change system status filter, 11-24
clear call, 4-18
clear connection, 4-22
conference call, 4-29
consultation call, 4-36
consultation direct-agent call, 4-45
consultation supervisor-assist call, 4-54
conventions, 3-45
deflect call, 4-61
hold call, 4-66
make call, 4-73
make direct-agent call, 4-85
make predictive call, 4-95
make supervisor-assist call, 4-106
monitor call, 8-16

monitor calls via device, 8-25
monitor device, 8-34
monitor stop, 8-46
monitor stop on call, 8-43
pickup call, 4-114
query ACD split, 6-3
query agent login, 6-7
query agent state, 6-15
reconnect call, 4-121
retrieve call, 4-127
route end service (TSAPI v2), 10-8
route register, 10-18
route register cancel, 10-14
route request (TSAPI v2), 10-24
route select (TSAPI v2), 10-43
selective listening hold, 4-139
selective listening retrieve, 4-145
set advice of charge, 5-3
set agent state, 5-11
set billing rate, 5-19
set do not disturb feature, 5-23
set forwarding feature, 5-27
set MWI feature, 5-31
single step conference call, 4-152
system status request, 11-5
system status start, 11-12
system status stop, 11-19
transfer call, 4-159

Naming conventions
for structure members, 3-19
private data library, 3-19

Naming conventions, for private data, 3-19
Network reached event

description, 9-122
detailed information, 9-124
private data v2-4 syntax, 9-128
private data v5 syntax, 9-126
private parameters, 9-123
report, 9-122
service parameters, 9-123
syntax, 9-125

Night service, 9-170
make call, 4-76

O

Objects
connection, 3-35
device, 3-28
device type, 3-28

Off-PBX destination
deflect call, 4-63
pickup call, 4-116

Optional attributes, 3-45
Original call info

to pop screen, 3-9
Issue 1 — December 2001

IN-9DEFPROG.PDF R10.1 V1

Index
Originated event
description, 9-129
detailed information, 9-131
private data v2-5 syntax, 9-134
private data v6 syntax, 9-133
private parameters, 9-130
report, 9-129
service parameters, 9-130
syntax, 9-132
userInfo parameter, 9-130

P

Parameters
mandatory/optional attributes, 3-45

Park/unpark call
selective listening hold, 4-140
selective listening retrieve, 4-140

Party, last added
single step conference call, 4-153

PDU naming conventions, 3-19
Personal Central Office Line (PCOL), 9-179

make call, 4-76
monitor calls via device, 8-25
monitor device, 8-35

Phantom calls, 3-28
make call, 4-71
make direct-agent call, 4-83
make predictive call, 4-92
make supervisor-assist call, 4-104

Pickup call
ack parameters, 4-114
description, 4-113
detailed information, 4-115
nak parameters, 4-114
overview, 4-7
service parameters, 4-114
syntax, 4-117

PRI
make call, 4-76

Primary old call in conferenced event
single step conference call, 4-154

Primary Rate Interface (PRI), 9-179
Priority calling

make call, 4-77
Priority calls

deflect call, 4-63
pickup call, 4-116

Private data
conventions, 3-19
feature summary, 3-15
version control, 3-12
version feature support, 3-13

Private data features
initial DEFINITY release, 3-16
initial G3PD release, 3-16

initial private data version, 3-16
list of, 3-16

Private data function
convention, 3-45
format, 3-45

Private data interface structures
v4 syntax, 3-15
v5-6, 3-14

Private data v5 to v6 migration, 3-19
Private data v5, changes for private data v6, 3-19
Private event parameters

query agent login, 6-7
Private filter, 8-4
Private filter, set to on, 8-3
Private parameters

call cleared event, 9-4
change monitor filter, 8-7
change system status filter, 11-22
charge advice event, 9-9
clear connection, 4-21
conferenced event, 9-16
connection cleared event, 9-35
consultation call, 4-35
consultation direct-agent call, 4-44
consultation supervisor-assist call, 4-53
conventions, 3-45
delivered event, 9-45
entered digits event, 9-77
established event, 9-85
logged off event, 9-116
logged on event, 9-119
make call, 4-72
make direct-agent call, 4-84
make predictive call, 4-92
make supervisor-assist call, 4-105
monitor call, 8-14
monitor calls via device, 8-23
monitor device, 8-33
monitor stop, 8-46
monitor stop on call, 8-42
network reached event, 9-123
originated event, 9-130
query ACD split, 6-3
query agent login, 6-7
query agent state, 6-14
reconnect call, 4-120
route request (TSAPI v2), 10-22
route select (TSAPI v2), 10-40
route used event (TSAPI v2), 10-52
selective listening hold, 4-138
selective listening retrieve, 4-144
send DTMF tone, 4-131
service initiated event, 9-143
set advice of charge, 5-3
set agent state, 5-9
set billing rate, 5-19
single step conference call, 4-149
system status event, 11-31
system status start, 11-11
Issue 1 — December 2001

DEFPROG.PDF R10.1 V1IN-10

Index
transferred event, 9-149

Q

Query ACD split
ack private parameters, 6-3
description, 6-2
nak parameters, 6-3
private parameter syntax, 6-5
private parameters, 6-3
service parameters, 6-3
syntax, 6-4

Query agent login
ack parameters, 6-7
ack private parameters, 6-7
description, 6-6
nak parameters, 6-7
private event parameters, 6-7
private parameter syntax, 6-11
private parameters, 6-7
service parameters, 6-7
syntax, 6-9

Query agent state
ack parameters, 6-14
ack private parameters, 6-14
description, 6-13
detailed information, 6-15
nak parameters, 6-15
private data v2-4 syntax, 6-21
private data v5 syntax, 6-20
private data v6 syntax, 6-18
private parameters, 6-14
service parameters, 6-14
syntax, 6-17

Query service group
supported services, 3-3
unsupported services, 3-5

Query trunk group
overview, 6-1

Queued event
description, 9-135
detailed information, 9-136
redirection on no answer, 9-165
report, 9-135
service parameters, 9-136
syntax, 9-138

Queued event reports, multiple, 9-135

R

ReasonCode private parameter, 5-12
Reconnect call

ack parameters, 4-120
description, 4-118

detailed information, 4-122
nak parameters, 4-121
overview, 4-8
private data v2-5 syntax, 4-125
private data v6 syntax, 4-124
private parameters, 4-120
service parameters, 4-119
syntax, 4-123
userInfo parameter, 4-120

Recording device, dropping
single step conference call, 4-153

Release button, 9-168
Remote agent trunk

single step conference call, 4-154
Remote applications, designing for, 3-10
Reports

call cleared event, 9-3, 9-32
charge advice event, 9-8
conference event, 9-13
connection cleared event, 9-32
delivered event, 9-39
delivered event, consecutive, 9-40
diverted event, 9-73, 9-165
established event, 9-80
established event, multiple, 9-81
failed event, 9-109
held event, 9-114
logged off event, 9-116
logged on event, 9-119
monitor ended event, 8-40
network reached event, 9-122
originated event, 9-129
queued event, 9-135
retrieved event, 9-139
service initiated event, 9-142
transferred event, 9-146

Requests, multiple
monitor calls via device, 8-25
monitor device, 8-34

Retrieve call, 4-27
ack parameters, 4-127
description, 4-126
detailed information, 4-127
nak parameters, 4-127
overview, 4-8
selective listening hold, 4-140
selective listening retrieve, 4-140
service parameters, 4-127
syntax, 4-129

Retrieved event
description, 9-139
detailed information, 9-140
report, 9-139
service parameters, 9-140
switch hook operation, 9-166
syntax, 9-141

Ringback queueing, 9-180
Route end event
Issue 1 — December 2001

IN-11DEFPROG.PDF R10.1 V1

Index
description, 10-2
detailed information, 10-4
service parameters, 10-3
syntax, 10-5

Route end service (TSAPI v1)
description, 10-10
detailed information, 10-10
syntax, 10-11

Route end service (TSAPI v2)
ack parameters, 10-7
description, 10-6
detailed information, 10-8
nak parameters, 10-8
service parameters, 10-7
syntax, 10-9

Route register
ack parameters, 10-18
description, 10-17
detailed information, 10-18
nak parameters, 10-18
service parameters, 10-18
syntax, 10-19

Route register abort event
description, 10-12
detailed information, 10-12
service parameters, 10-12
syntax, 10-13

Route register cancel
ack parameters, 10-14
description, 10-14
detailed information, 10-15
nak parameters, 10-14
service parameters, 10-14
syntax, 10-16

Route request (TSAPI v1)
description, 10-36
detailed information, 10-36
syntax, 10-37

Route request (TSAPI v2)
ack parameters, 10-24
description, 10-20
detailed information, 10-24
nak parameters, 10-24
private data v2-4 syntax, 10-34
private data v5 syntax, 10-31
private data v6 syntax, 10-28
private parameters, 10-22
service parameters, 10-21
syntax, 10-26

Route select (TSAPI v1)
description, 10-49
detailed information, 10-49
syntax, 10-50

Route select (TSAPI v2)
ack parameters, 10-43
description, 10-39
detailed information, 10-43
nak parameters, 10-43
private data v2-5 syntax, 10-45, 10-47

private parameters, 10-40
service parameters, 10-40
syntax, 10-44

Route used event (TSAPI v1)
description, 10-54
detailed information, 10-54
private parameter syntax, 10-56
syntax, 10-55

Route used event (TSAPI v2)
description, 10-51
detailed information, 10-52
private parameters, 10-52
service parameters, 10-52
syntax, 10-53

Routing service group
supported services, 3-5
unsupported services, 3-6

Routing service group, overview, 10-1

S

Screen pop info
using original call info, 3-9

Screen pop information
called number, 3-7
calling number, 3-7
conferencing call, 3-7
digits collected by call prompting, 3-7
lookahead interflow information, 3-7
transferring call, 3-7
user-to-user information (UUI), 3-7

Security
single step conference call, 4-154

Selective listening hold
ack parameters, 4-138
description, 4-137
detailed information, 4-139
nak parameters, 4-139
private data v5 syntax, 4-142
private parameters, 4-138
service parameters, 4-138
syntax, 4-141

Selective listening retrieve
ack parameters, 4-144
description, 4-143
detailed information, 4-145
nak parameters, 4-145
private data v5 syntax, 4-147
private parameters, 4-144
service parameters, 4-144
syntax, 4-146

Send all call
pickup call, 4-115

Send All Calls (SAC), 9-180
make call, 4-77
set do not disturb feature, 5-24
Issue 1 — December 2001

DEFPROG.PDF R10.1 V1IN-12

Index
Send DTMF tone
ack parameters, 4-131, 4-132
description, 4-130
detailed information, 4-132
private data v4 syntax, 4-136
private data v5 syntax, 4-135
private parameters, 4-131
service parameters, 4-131
syntax, 4-134

Send DTMF tone requests, multiple, 4-133
Service availability

deflect call, 4-63
logged on event, 9-119
originated event, 9-131
pickup call, 4-116
send DTMF tone, 4-133

Service groups
call control, 3-2
escape, 3-5
event report, 3-4
maintenance, 3-5
monitor, 3-4
query, 3-3
routing, 3-5
set feature, 3-3
snapshot, 3-3
supported, 3-1
system status, 3-5

Service initiated event
description, 9-142
detailed information, 9-143
not sent with en-bloc sets, 9-178
private parameter syntax, 9-145
private parameters, 9-143
report, 9-142
service parameters, 9-143
switch hook operation, 9-166
syntax, 9-144

Service observing, 9-170
Service parameters, 10-12

alternate call, 4-10
answer call, 4-14
call cleared event, 9-4
change monitor filter, 8-7
change system status filter, 11-22
charge advice event, 9-9
clear call, 4-18
clear connection, 4-21
conference call, 4-28
conferenced event, 9-14
connection cleared event, 9-34
consultation call, 4-34
consultation direct-agent call, 4-43
consultation supervisor-assist call, 4-52
deflect call, 4-61
delivered event, 9-42
diverted event, 9-75
entered digits event, 9-77

established event, 9-82
failed event, 9-111
format, 3-45
held event, 9-114
hold call, 4-66
logged off event, 9-116
logged on event, 9-119
make call, 4-71
make direct-agent call, 4-83
make predictive call, 4-92
make supervisor-assist call, 4-104
monitor call, 8-14
monitor calls via device, 8-23
monitor device, 8-32
monitor ended event report, 8-40
network reached event, 9-123
originated event, 9-130
pickup call, 4-114
query ACD split, 6-3
query agent login, 6-7
query agent state, 6-14
queued event, 9-136
reconnect call, 4-119
retrieve call, 4-127
retrieved event, 9-140
route end event, 10-3
route end service (TSAPI v2), 10-7
route register, 10-18
route register cancel, 10-14
route request (TSAPI v2), 10-21
route select (TSAPI v2), 10-40
route used event (TSAPI v2), 10-52
selective listening hold, 4-138
selective listening retrieve, 4-144
send DTMF tone, 4-131
service initiated event, 9-143
set advice of charge, 5-3
set agent state, 5-7
set billing rate, 5-19
set do not disturb feature, 5-23
set forwarding feature, 5-27
set MWI feature, 5-31
single step conference call, 4-149
system status event, 11-30
system status request, 11-4
system status start, 11-11
system status stop, 11-19
transfer call, 4-158
transferred event, 9-147

Service-observing, 9-180
Services

alternate call, 4-9
alternate call, overview, 4-2
answer call, 4-13
answer call, overview, 4-2
change monitor filter, 8-1, 8-6
change system status filter, 11-21
change system status filter, overview, 11-2
Issue 1 — December 2001

IN-13DEFPROG.PDF R10.1 V1

Index
clear call, 4-18
clear call, overview, 4-3
clear connection, 4-20
clear connection, overview, 4-3
common errors, 3-49
conference call, overview, 4-3
consultation call, 4-33
consultation call, overview, 4-4
consultation direct-agent call, 4-42
consultation direct-agent call, overview, 4-4
consultation supervisor-assist call, 4-51
consultation supervisor-assist call, overview, 4-5
conventions for, 3-45
deflect call, 4-60
deflect call, overview, 4-5
format for, 3-45
hold call, 4-65
hold call, overview, 4-5
make call, 4-69
make call, overview, 4-6
make direct-agent call, 4-82
make direct-agent call, overview, 4-6
make predictive call, 4-91
make predictive call, overview, 4-7
make supervisor-assist call, 4-103
make supervisor-assist call, overview, 4-7
monitor, 8-3
monitor call, 8-1, 8-13
monitor call via device, 8-2, 8-22
monitor device, 8-2, 8-31
monitor stop, 8-3, 8-46
monitor stop on call, 8-42
monitor stop on call (private), 8-2
pickup call, 4-113
pickup call, overview, 4-7
query ACD split, 6-2
query agent login, 6-6
query agent state, 6-13
query trunk group, 6-1
reconnect call, 4-118
reconnect call, overview, 4-8
retrieve call, 4-126
retrieve call, overview, 4-8
route end (TSAPI v1), 10-10
route end (TSAPI v2), 10-6
route register, 10-17
route register cancel, 10-14
route request (TSAPI v1), 10-36
route request (TSAPI v2), 10-20
route select (TSAPI v1), 10-49
route select (TSAPI v2), 10-39
selective listen retrieve, 4-143
selective listening hold, 4-137
send DTMF tone, 4-130
set advice of charge, 5-2, 5-6, 8-31
set billing rate, 5-18
set do not disturb feature, 5-23
set forwarding feature, 5-26
set MWI feature, 5-31

single step conference call, 4-148
supported, 3-2
supported groups, 3-1
system status group, overview, 11-1
system status request, 11-3
system status request, overview, 11-1
system status start, 11-10, 11-19
system status stop, overview, 11-1
transfer call, 4-157
transfer call, overview, 4-8
unsupported, 3-5

Set advice of charge, 8-31
ack parameters, 5-3
ack private parameters, 5-3
description, 5-2
detailed information, 5-3
nak parameters, 5-3
private parameter syntax, 5-5
private parameters, 5-3
service parameters, 5-3
syntax, 5-4

Set agent state
ack parameters, 5-11
ack private parameters, 5-11
description, 5-6
detailed information, 5-12
nak parameters, 5-11
private data v2-4 syntax, 5-17
private data v5 syntax, 5-16
private data v6 syntax, 5-15
private parameters, 5-9
service parameters, 5-7
syntax, 5-13

Set billing rate
ack parameters, 5-19
description, 5-18
detailed information, 5-20
nak parameters, 5-19
private parameter syntax, 5-22
private parameters, 5-19
service parameters, 5-19
syntax, 5-21

Set do not disturb feature
ack parameters, 5-23
description, 5-23
detailed information, 5-23
nak parameters, 5-23
service parameters, 5-23
syntax, 5-25

Set feature service group
supported services, 3-3

Set forwarding feature
ack parameters, 5-27
description, 5-26
nak parameters, 5-27
service parameters, 5-27
syntax, 5-29

Set MWI feature
ack parameters, 5-31
Issue 1 — December 2001

DEFPROG.PDF R10.1 V1IN-14

Index
description, 5-31
detailed information, 5-31
nak parameters, 5-31
service parameters, 5-31
syntax, 5-33

Single step conference call
ack parameters, 4-151
ack private parameters, 4-151
description, 4-148
detailed information, 4-153
feature availability, 4-154
nak parameters, 4-152
private data v5 syntax, 4-156
private parameters, 4-149
service parameters, 4-149
syntax, 4-155

Single-digit dialing
make call, 4-77

Skill hunt groups
make call, 4-77
monitor calls via device, 8-26
monitor device, 8-35

Snapshot call service, 7-2
ack parameters, 7-3
CSTA connection states, 7-2
nak parameter, 7-3
service parameters, 7-3
syntax, 7-4

Snapshot device service, 7-6
ack parameters, 7-7
ack private parameter, 7-7
nak parameter, 7-7
private data v2-4 syntax, 7-12
private data v5 syntax, 7-11
service parameters, 7-7
syntax, 7-9

Snapshot service group
overview, 7-1
supported services, 3-3

Split button, 9-168
Start button, 9-168
State of added station

single step conference call, 4-154
Static device identifier, 3-29
Station

monitor calls via device, 8-26
Station device type, 3-28
Station Message Detail Recording (SMDR)

make call, 4-77
Structure members, naming conventions, 3-19
Subdomain boundary, switching, 9-122
Support for customers, 1-6
Supported services, 3-1
Switch administration

selective listening hold, 4-140
selective listening retrieve, 4-140

Switch hook operation, 9-165
Switch operation

after clear call, 4-18
alternate call, 4-67
clear connection, 4-22
consultation call, 4-67
hold call, 4-67
make call, 4-77
monitor stop, 8-46
reconnect call, 4-22, 4-128
retrieve call, 4-128

Switch-hook flash field, 4-159
Switching subdomain boundary, 9-122
Synthesized message retrieval

set MWI feature, 5-32
System capacity, 3-40
System starts

set MWI feature, 5-32
System status event

description, 11-29
detailed information, 11-31
overview, 11-2
private data v2-3 syntax, 11-35
private data v4 syntax, 11-34
private data v5 syntax, 11-33
private parameters, 11-31
service parameters, 11-30
syntax, 11-32

System status events
not supported, 11-2

System status group
unsupported services, 3-6

System status request
ack parameters, 11-4
ack private parameters, 11-4
description, 11-3
detailed information, 11-5
multiple links, 11-5
nak parameters, 11-5
overview, 11-1
private data v2-3 syntax, 11-9
private data v4 syntax, 11-8
private data v5 syntax, 11-7
service parameters, 11-4
syntax, 11-6

System status service group
supported services, 3-5

System status service group, overview, 11-1
System status start

ack parameters, 11-11
ack private parameters, 11-12
description, 11-10
detailed information, 11-13
nak parameters, 11-12
overview, 11-1
private data v2-3 syntax, 11-18
private data v4 syntax, 11-17
private data v5 syntax, 11-16
private parameters, 11-11
service parameters, 11-11
Issue 1 — December 2001

IN-15DEFPROG.PDF R10.1 V1

Index
syntax, 11-14
System status stop

ack parameters, 11-19
description, 11-19
detailed information, 11-19
nak parameters, 11-19
overview, 11-1
service parameters, 11-19
syntax, 11-20

T

Talk state
mapped to agent activity, 6-16

Telephony servers
multiple, 3-43

Temporary bridged appearance
clear connection, 4-23
reconnect call, 4-23

Temporary bridged appearances, 9-165, 9-180
Terminating Extension Group (TEG), 9-181

make call, 4-77
monitor calls via device, 8-26
monitor device, 8-35

Tone cadence and level
send DTMF tone, 4-133

Transfer, 9-181
Transfer call

ack parameters, 4-158
ack private parameters, 4-158
description, 4-157
detailed information, 4-159
nak parameters, 4-159
overview, 4-8
private data v5 syntax, 4-162
selective listening hold, 4-139
selective listening retrieve, 4-139
service parameters, 4-158
syntax, 4-161

Transferred event
description, 9-146
detailed information, 9-151
private data v2-3 syntax, 9-162
private data v4 syntax, 9-159
private data v5 syntax, 9-156
private data v6 syntax, 9-153
private parameters, 9-149
report, 9-146
service parameters, 9-147
syntax, 9-152
trunkList parameter, 9-150
userInfo parameter, 9-150

Transferring call, with screen pop information, 3-7
Transferring calls

CSTA services used, 3-8
Trunk group

device type, 3-29
Trunk group access, 9-169
Trunk group administration

charge advice event, 9-10
Trunk to trunk transfer

transfer call, 4-160
TrunkList parameter

conferenced event, 9-17
tranferred event, 9-150

Trunks
device types, 3-29

Trunk-to-trunk transfer, 9-181
TSAPI version control, 3-11

U

UserInfo parameter
maximum size, 4-21, 4-35, 4-44, 4-53, 4-72, 4-94, 4-105,

4-120, 9-17, 9-35, 9-46, 9-48, 9-86, 9-88, 9-150
not supported by switch, 9-130

User-to-user info
passing info to remote applications, 3-10

User-to-user information (UUI)
for screen pop, 3-7

V

VDN
make call, 4-74, 4-77
monitor device, 8-35

VDN destination
make call, 4-77

Vector-controlled split
monitor calls via device, 8-26
monitor device, 8-35

Version control
private data, 3-12
TSAPI, 3-11

Voice (synthesized) message retrieval
set MWI feature, 5-32

W

WorkMode private parameter, 5-12
Issue 1 — December 2001

DEFPROG.PDF R10.1 V1IN-16

We’d like your opinion.
Avaya welcomes your feedback on this document. Your comments can be of great value in helping us im-
prove our documentation.

1. Please rate the effectiveness of this document in the following areas:

2. Please check the ways you feel we could improve this document:

3. Please add details about your major concerns.___
__

4. What did you like most about this document? __

__

5. What did you like least about this document? __

__

6. Feel free to write any comments below or on an attached sheet. _____________________________

__

If we may contact you concerning your comments, please complete the following:

Name: ________________________________Telephone Number: (____) ______________________
Company/Organization: ___________________________________ Date: ______________________
Address: __
__

Please FAX your response to (732) 817-5305.

Excellent Good Fair Poor

Ease of Finding Information

Clarity

Completeness

Accuracy

Organization

Appearance

Examples

Illustrations

Overall Satisfaction

❑ Improve the overview or introduction ❑ Make it more concise

❑ Improve the table of contents ❑ Add more step-by-step procedures/tutorials

❑ Improve the organization ❑ Add more troubleshooting information

❑ Add more figures ❑ Make it less technical

❑ Add more examples ❑ Add more or better quick reference aids

❑ Add more details ❑ Improve the index

CentreVu® Computer-Telephony®

Release 10.1, Version 1
Programmer’s Guide for
DEFINITY® Enterprise Communications Server
Issue 1 — December 2001

	Title Page
	Contents
	Introduction
	Purpose and Scope
	Intended Audience
	Terminology
	Conventions
	Related Documents
	CSTA Services Documents

	New Features for Private Data Version 6
	Customer Support
	How to Comment on This Document

	TSAPI Architecture Overview
	Purpose of CSTA
	CSTA Standard and API Specification
	CSTA Communication Layers Model
	CSTA Client/Server Operational Model

	CSTA Client/Server Session and Operation Invocation Model
	Call Control and Call Events
	G3 CSTA System Overview
	G3 CSTA Software Overview
	DEFINITY Generic 3 PBX Driver (G3PD)

	G3 Private Data Library Overview
	TSAPI Software Components Overview
	TSAPI Library
	Telephony Server (Tserver) EXE/NLM
	Multiple CTI Links to a G3PD

	Progress and Status of the CTI Link on NetWare
	Progress and Status of the CTI Link on Windows NT

	G3 CSTA Service Groups
	Supported Services and Service Groups���
	Transferring or Conferencing a Call Together with Screen Pop Information
	CSTA Services Used to Conference or Transfer Calls���
	Using Original Call Information to Pop a Screen���
	Using UUI to Pass Information to Remote Applications

	TSAPI Version Control���
	Private Data Version Control���
	Private Data Version Feature Support
	CSTAGetAPICaps Confirmation Interface Structures for Private Data Versions 4, 5, and 6
	Private Data Feature Summary���

	Migration from Private Data Version 5 to Private Data Version 6
	Private Data Function Changes
	Set Agent State

	Private Data Sample Code
	Sample Code 1
	Sample Code 2
	Sample Code 3

	G3 CSTA Objects���
	CSTA Object: Device
	Device Type���
	Device Class���
	Device Identifier���
	Device Identifier Syntax���

	CSTA Device ID Type (Private Data Version 4 and Earlier) ���
	CSTA Device ID Type (with Private Data Version 5 and Later) ���
	CSTA Object: Call���
	Call Identifier (callID)���
	Call Identifier Syntax���
	Call State���

	CSTA Object: Connection���
	Connection Identifier (connectionID)���
	Connection Identifier Conflict�
	Connection Identifier Syntax���
	Connection State���
	Connection State Syntax���

	G3 CSTA System Capacity
	Multiple Telephony Server Considerations
	Multiple CTI Link Considerations���
	Format and Conventions���
	Common ACS Parameter Syntax���
	CSTAUniversalFailureConfEvent���
	ACSUniversalFailureConfEvent

	Call Control Service Group
	Overview
	Alternate Call Service���
	Answer Call Service���
	Clear Call Service���
	Clear Connection Service���
	Conference Call Service���
	Consultation Call Service���
	Consultation Direct-Agent Call Service ���
	Consultation Supervisor-Assist Call Service ���
	Deflect Call Service���
	Hold Call Service���
	Make Call Service���
	Make Direct-Agent Call Service���
	Make Predictive Call Service���
	Make Supervisor-Assist Call Service���
	Pickup Call Service���
	Reconnect Call Service���
	Retrieve Call Service���
	Transfer Call Service���

	Alternate Call Service���
	Answer Call Service���
	Clear Call Service���
	Clear Connection Service���
	Conference Call Service���
	Consultation Call Service���
	Consultation Direct-Agent Call Service���
	Consultation Supervisor-Assist Call Service���
	Deflect Call Service���
	Hold Call Service���
	Make Call Service���
	Make Direct-Agent Call Service���
	Make Predictive Call Service���
	Make Supervisor-Assist Call Service���
	Pickup Call Service���
	Reconnect Call Service���
	Retrieve Call Service���
	Send DTMF Tone Service (Private Data Version 4 and Later)���
	Selective Listening Hold Service (Private Data Version 5 and Later)���
	Selective Listening Retrieve Service (Private Data Version 5 and Later)���
	Single Step Conference Call Service (Private Data Version 5 and Later)���
	Transfer Call Service���

	Set Feature Service Group
	Overview
	Set Advice of Charge Service (Private Data Version 5 and Later)���
	Set Agent State Service���
	Set Billing Rate Service (Private Data Version 5 and Later)���
	Set Do Not Disturb Feature Service���
	Set Forwarding Feature Service���
	Set Message Waiting Indicator (MWI) Feature Service���

	Query Service Group
	Overview���
	Query ACD Split Service ���
	Query Agent Login Service ���
	Query Agent State Service���
	Query Call Classifier Service
	Query Device Info
	Query Device Name Service
	Query Do Not Disturb Service
	Query Forwarding Service
	Query Message Waiting Service
	Query Station Status Service
	Query Time Of Day Service
	Query Trunk Group Service
	Query Universal Call ID Service (Private)

	Snapshot Service Group
	Overview���
	Snapshot Call Service���
	Snapshot Device Service ���

	Monitor Service Group
	Overview���
	Change Monitor Filter Service — cstaChangeMonitorFilter()���
	Monitor Call Service — cstaMonitorCall()���
	Monitor Calls Via Device Service — cstaMonitorCallsViaDevice���
	Monitor Device Service — cstaMonitorDevice()���
	Monitor Ended Event — CSTAMonitorEndedEvent���
	Monitor Stop On Call Service (Private) — attMonitorStopOnCall()���
	Monitor Stop Service — cstaMonitorStop()������
	Event Filters and Monitor Services ���
	Local Connection Info and Monitor Services ���

	Change Monitor Filter Service ���
	Monitor Call Service ���
	Monitor Calls Via Device Service ���
	Monitor Device Service���
	Monitor Ended Event Report���
	Monitor Stop On Call Service (Private)���
	Monitor Stop Service ���

	Event Report Service Group
	CSTAEventCause and LocalConnectionState���
	Event Minimization Feature on G3 PBX���

	Call Cleared Event���
	Charge Advice Event (Private)���
	Conferenced Event���
	Connection Cleared Event���
	Delivered Event���
	Diverted Event���
	Entered Digits Event (Private)���
	Established Event���
	Failed Event��
	Held Event���
	Logged Off Event���
	Logged On Event���
	Network Reached Event���
	Originated Event���
	Queued Event���
	Retrieved Event���
	Service Initiated Event���
	Transferred Event���
	Event Report Detailed Information��
	Analog Sets��
	Redirection
	Redirection on No Answer
	Switch Hook Operation���

	ANI Screen Pop Application Requirements
	Announcements
	Answer Supervision
	Attendants and Attendant Groups
	Attendant Specific Button Operation
	Attendant Auto-Manual Splitting
	Attendant Call Waiting
	Attendant Control of Trunk Group Access���
	AUDIX���
	Automatic Call Distribution (ACD)
	Announcements
	Interflow
	Night Service
	Service Observing
	Auto-Available Split

	Bridged Call Appearance
	Busy Verification of Terminals
	Call Coverage
	Call Coverage Path Containing VDNs
	Call Forwarding All Calls ���
	Call Park
	Call Pickup
	Call Vectoring
	Call Prompting
	Lookahead Interflow
	Multiple Split Queueing

	Call Waiting���
	Conference
	Consult
	CTI Link Failure
	Data Calls
	DCS
	Direct Agent Calling and Number of Calls In Queue
	Drop Button Operation
	Expert Agent Selection (EAS)
	Logical Agents

	Hold
	Integrated Services Digital Network (ISDN)
	Multiple Split Queueing
	Personal Central Office Line (PCOL)
	Primary Rate Interface (PRI)
	Ringback Queueing
	Send All Calls (SAC)
	Service-Observing
	Temporary Bridged Appearances
	Terminating Extension Group (TEG)
	Transfer
	Trunk-to-Trunk Transfer

	Routing Service Group
	Overview���
	Route End Event���
	Route End Service (TSAPI Version 2)���
	Route End Service (TSAPI Version 1)���
	Route Register Abort Event���
	Route Register Cancel Service ���
	Route Register Service���
	Route Request Service (TSAPI Version 2)���
	Route Request Service (TSAPI Version 1)���
	Route Select Service (TSAPI Version 2)���
	Route Select Service (TSAPI Version 1)���
	Route Used Event (TSAPI Version 2)���
	Route Used Event (TSAPI Version 1)���

	System Status Service Group
	Overview���
	System Status Request Service — cstaSysStatReq()
	System Status Start Service — cstaSysStatStart()
	System Status Stop Service — cstaSysStatStop()
	Change System Status Filter Service — cstaChangeSysStatFilter()
	System Status Event — CSTASysStatEvent
	System Status Events — Not Supported���

	System Status Request Service���
	System Status Start Service ���
	System Status Stop Service ���
	Change System Status Filter Service ���
	System Status Event

	Enhanced Voice Terminal Display
	Considerations
	Interactions
	Administration
	Implementation of Enhanced Voice Terminal Display

	Index
	Feedback Form

