

�

Guidelines for

Designing and Writing

a CTI Application

In a

Multiple CTI Application Environment

OBJECTIVE

This paper is intended for software application developers who write CTI applications and CTI middleware for the Lucent’s DEFINITY® ECS and ProLogix environments. It discusses the issues related to the sharing of telephony and ACD resources. It provides guidelines for multi-vendor, multi-application CTI environments.

August 1998

�
Guidelines for Designing and Writing a CTI Application In a Multiple CTI Application Environment

OBJECTIVE

This paper is intended for software application developers (both within and outside of Lucent Technologies) who write CTI applications and CTI middleware for the Lucent’s DEFINITY® ECS and ProLogix environments. It discusses the issues related to the sharing of telephony and ACD resources. It provides guidelines for multi-vendor, multi-application CTI environments.

Note that Lucent is evaluating several enhancements for future releases of ASAI to further support such environments. This document will be updated when such enhancements are made generally available.

BACKGROUND

There are three types of CTI “applications”:

Type 1 -- Those built to the CallVisor® ASAI interface directly (example: IBM’s CallPath® applications)

Type 2 -- Those built to the CallVisor PC or CV LAN API (example: Geotel routing application)

Type 3 -- Those built to TSAPI specs (example: FastCall®)

All three types of CTI applications have some things in common and some things that set them apart. Some applications require separate ASAI links. All can potentially contend for the same DEFINITY resources. The functionality available to each varies slightly.

Type 1 applications have access to a subset of ASAI capabilities (those made available by the specific CTI server libraries used), and any additional functionality offered by such libraries by combining several raw ASAI capabilities into a single API call.

Type 2 applications have access to all the raw ASAI capabilities at the API.

Type 3 applications have a standard set of features available that may or may not map one-to-one to ASAI messages. When running in a DEFINITY environment, type 3 applications require the CallVisor/PC library and the DEFINITY G3PD driver (provided with PassageWay® Telephony Services and planned CentreVu Computer Telephony (will be referred to as Tserver within this document)) to get access to CTI functionality. CallVisor/PC maps the raw ASAI messages one-to-one to API function calls. The G3PD translates these messages into standard CSTA function calls and presents this standard API to the TServer (to which applications interface). The TServer presents additional DEFINITY-specific information through its API via Private Data.

Because the CallVisor/PC maps messages one-to-one, whenever a type 2 application makes a request, it is sent to the DEFINITY directly. Multiple requests for monitors from such applications result in multiple requests to the DEFINITY, which in turn result in multiple monitors generating the same event report.

Type 3 applications using the DEFINITY G3PD driver share a single DEFINITY resource. This is because the G3PD multiplexes the requests in such a way that it allows multiple applications to request a monitor on the same device, while only one such request is transmitted to the DEFINITY. This saves message traffic between such server and DEFINITY and relieves the DEFINITY of the burden of duplicate event reporting.

There are several resources that are scarce on the DEFINITY and when multiple types of applications request such resources, it is a first-come first-served situation. Others get denied access to such resources. Until recently, most (if not all) call centers used only one type of CTI application and such contention was usually not a problem. Recently, more and more customers are installing two or more applications in their call centers. These applications are usually a combination of Type 1, Type 2 and Type 3 (but mostly Type 2 and Type 3).

DEFINITY RESOURCES

The following is an attempt to summarize which DEFINITY resources are scarce, suggest workarounds and point out in general how an application should behave – with this sharing in mind.

Take_Control

There is only one such monitor allowed per DEFINITY per call. One reason for this is to avoid the complications of multiple applications operating on any or all parties of a call and give only one application at a time this privilege. This capability is available only to Type 1 and Type 2 software (not available at the TServer API interface). However be aware that the TServer does use take_control when it issues the following commands: Consultation Call, Direct Agent Call, Make Predictive Call, Snapshot Call, Clear Call, and Call Monitor. Therefore this issue is of concern to customers who deploy a combination of CTI application types mentioned above or who use more than one server. It is not of concern in environments with only Type 3 applications using a single server. The Take_Control capability should only be used on as-needed basis. For example:

If an application needs to perform a telephony function for a call/device/connection that it does not have access to, it should invoke take_control, perform the telephony function and then relinquish control of the call.

If the application already has access to the device in the call for which the telephony function is to be invoked (for example domain control of a station), then the application should use this type of monitor for performing the telephony function, rather than using take_control.

If the application needs information that is only available by doing a take_control, it should invoke the take_control, save the information presented, and then immediately relinquish control of the call.

Passive applications (applications that do not need to perform telephony functions, but only monitor call activity) should never invoke take_control.

�
Applications using this capability should recover gracefully if the request is denied as a result of a collision. It is a common misunderstanding that the only way a call can be tracked for life within a DEFINITY is if take_control is established. In fact, a call may be tracked for its entire life through the use of VDN or ACD split notification capabilities (yes, even after transfer!). A call who enters a VDN or ACD with notification enabled, will continue to report events related to the call until the call ends. Please refer to the next section for specifics on this.

VDN Monitoring/Notification

When a call traverses multiple monitored VDNs, notification ceases on the previous VDN as the call enters a subsequent VDN with active monitors. Thus, say the first VDN had six active monitors and the second one has only one monitor; when the call enters the second VDN, call event reporting ceases on all six previously active monitors and continues only on the single monitor for the second VDN.

When only one application monitors several VDNs, it is best to enable monitoring only for the first VDN that the call enters. The application may then track the call through the first VDN monitor, regardless of what other VDNs the call may enter (and thus avoid the need to track through multiple monitors).

When multiple applications monitor an overlapping set of VDNs, it is best to enable monitoring for all the VDNs that a call may enter. This guarantees that the application will continue to receive call events for each VDN.

Domain Control on Splits/Skills

“Domain Control” is the native ASAI terminology for monitoring an entity. There is only one such monitor allowed per DEFINITY per split (or skill). This capability is available to all the types of applications listed above, and it is thus of concern to all. This capability should only be used by applications that require real-time reporting of the login/logout of agents in a call center. Lucent TServer applications invoking this capability through the same server may do so freely since only one such monitor is requested from the DEFINITY, regardless of how many applications have invoked it at the TSAPI/JTAPI interface. However, with two or more TServer boxes, each box requires access to such resource, creating contention.

Be aware that the Logout event is reported on any ASAI link version, however the Login event is only reported on ASAI link versions 2 or above (DEFINITY G3V4 or later). If both login and logout are desired, an ASAI link version 2 or above is required. The Lucent TServer automatically enables the latest version of the ASAI link, so this is another good reason to obtain this information from the TServer.

�
Some possible workarounds follow (choose the best for each customer situation):

If login/logout is not required in real-time, applications may query the DEFINITY for an agent's status by doing an ASAI “Agent Status query” or a TSAPI “Query Device Info” or a JTAPI “????”. In Release 6, this query has been enhanced for the EAS environment: when an agent is logged into a skill, the query response provides the agent’s logical extension, in addition to the other information. The drawback of this is increased burden on the application and on the DEFINITY CPU and links.

If login/logout events are required in real-time by a Type 1 and/or Type 2 application, a possible workaround is to get access to this information via a TSAPI call. In other words, the application may receive call-related events and perform telephony functions as usual, but would make a TSAPI function call only to receive the login/logout event information for a split/skill. This, of course, assumes the application has access to a TSAPI server (either directly on the server or as a remote client).

Vendors whose applications do not have TSAPI access may want to negotiate with each other and have only one application access the information from the DEFINITY and pass it on to the other(s). This usually requires special development.

Define a dummy skill (per application) and add it to the skill set for the agents of interest. This skill should never be offered any calls (not appear in any vector), and should only be used for the purpose of monitoring login/logout events. This works only in an EAS environment and assumes that the customer can spare a couple of skills for this purpose (within the total number of skills restriction).

Log In/Out of Agents by Applications

There is no limit on which or how many applications may log in or log out a particular agent. However, there exists the possibility of collisions when more than one application attempts to either change the agent’s work mode or log and agent in or out of a DEFINITY. When an agent is already logged in and a subsequent request is made for login, the DEFINITY ASAI response is “Negative Acknowledgment”, however the reason code indicates that the agent is already logged in. Applications should pay attention to this reason code and handle it as a successful attempt, despite the Negative Acknowledgment. For a particular customer site, it would be desirable to have only one CTI application be in control of the login/logout and other interested applications monitor this activity through the actual skills or through the use of dummy skills (see above). Thus it is desirable, when writing such applications, to provide a customer-settable option that enables or disables login/logouts.

�
User-to-User Information

The limit on this information for CTI applications is 32 bytes per call per DEFINITY. This capability is available to all the types of applications listed above, and it is thus of concern to all. UUI information may be inserted in the call at origination time, during routing, and/or at disconnect time. Information inserted during routing or disconnect replaces the information inserted previously. Until DEFINITY Release 6.3, the ASAI UUI information was passed from DEFINITY to other network switches within the UUI IE in the ISDN SETUP and/or DISConnect message. Since ASAI was the only application able to generate UUI, there was never a problem fitting this information in the UUI IE. Starting with Release 6.3, ASAI UUI now must share the UUI IE with other DEFINITY applications. Since there is an upper limit on the entire message size, the more ASAI UUI, the less other applications have available. There is a priority scheme assigned in case the total amount of information exceeds the pre-administered limit. ASAI UUI has first priority�, so other information may be lost as a result of applying the priority rules.

Guidelines:

To avoid loss of information, applications should not pass UUI information at disconnect time unless they are assured that the information being replaced was theirs (not another application’s).

Applications should pass only the necessary UUI information and it should be packed in the most efficient manner. UUI may be encoded as ASCII or binary.

Although currently DEFINITY keeps the UUI information until overwritten, applications should save any UUI information it is interested in retaining (not rely on DEFINITY to store it). In the future, this information may be overwritten by either network or application-provided information during the call.

Use of Queries

There isn’t a set limit on the number of queries that an application can do. However, it is possible for an application to impact the DEFINITY’s performance and the performance of other connected adjuncts by abusively using queries or sending large amounts of queries in a short period of time. It is recommended that applications who require a large number of queries do the queries in a somewhat evenly-distributed manner. For example, when ASAI links go down and come back up, applications typically need to re-establish monitors and retrieve as much information as possible to recover in a sane manner. It is recommended that such queries be grouped in bundles and no more than 50 queries be sent in a one second interval (per ASAI link). In general, the same recommendation is made for any burst of messages, not just queries.

�
Notification (VDN or Split Monitor)

Prior to Release 6.3, only three monitors were allowed for a given VDN (or ACD split) within a DEFINITY ECS. Starting with Release 6.3, this limit has been increased to six monitors for a G3r (it remains at three for all other smaller DEFINITYs). Although the limit has increased, vendors writing applications should be aware that it is still possible to reach the limit. The recommendation here is that, if at all possible, applications should be written to (or ported to) the TSAPI (or JTAPI) interface. Also, if at all possible, applications should monitor only those VDNs or splits of interest, not every VDN or split in the system. In ideal cases, applications have separate and distinct sets of VDNs/splits that they monitor (and it is known ahead of time that calls will never traverse the application’s boundaries).

For calls going from VDN to VDN – Applications that want to monitor calls beyond the domain of a single VDN need to insure that all VDNs of interest (those that can be reached by such calls) are being monitored. Otherwise, if application_1 is monitoring only VDN_1 and application_2 is monitoring VDN_2, when the call reaches VDN_2, application_1 ceases to receive events (events go to application_2).

Station Monitors

Note: “station monitor” is the TSAPI terminology and is equivalent to “station domain control” in ASAI terminology. These terms are used interchangeably, depending on context. Prior to Release 6.3, only two monitors were allowed for a given station device within a DEFINITY ECS. Starting with Release 6.3, this limit has been increased to four monitors for a G3r (it remains at two for all other smaller DEFINITYs). Although this limit has increased, vendors writing applications should be aware that it is still possible to reach this limit. The guideline here is that, if at all possible, applications should be written to (or ported to) the TSAPI (or JTAPI) interface.

Multiple Sources Operating on Same Call/Device

Application writers should not assume specific scenarios with a well defined order of events. In an environment where multiple applications perform telephony functions, or where the user is allowed to use the telephone set, any sequence of operations is possible. For example, a user might originate a call through a CTI application, may place it on hold manually, and may complete a transfer through another CTI application. Although, through training, it is possible to get the user to do all telephony functions via one means, it is impossible to force (or guarantee) that this will happen. Remember that DEFINITY presents a real-time, true view of call-related events as they take place, regardless of how they are triggered. Also, what is known and understood today about the DEFINITY’s set of features and order of events, may change as new features are introduced in the future.

In general, application writers should not assume that their application is the only one operating on a call or on a device. For example, multiple applications may add or drop devices to/from a call, on a first-come, first-served basis.

Agent Allocation by Application

Vendors whose applications implement their own ACD in a DEFINITY environment should be aware of the implications of having two entities (the DEFINITY and the application) control the same resource (the agent’s phone). When selection of the next available agent is done by an application outside the DEFINITY (and the DEFINITY ACD is enabled), race conditions and interactions should be expected. The application may believe the agent is available, when it fact, he/she is not. Unless the agent has no access to the physical phone, the agent may, at any time, use the phone to place outbound personal (or business) calls or receive inbound (or transferred) calls at the same time the application is attempting to route a call to this agent; this creates a race situation. Very few of these have solid workarounds. Thus the task of selection of agents by the application is complex to implement, hard to debug, unreliable, and field maintenance is difficult and slow.

Please note that the above does not refer to Routing applications in general. Routing applications may route calls to VDNs, splits, skills, hunt groups, or trunk groups. In general, routing applications should not route calls directly to an agent’s phone unless they can guarantee that the agent is available to take the call. Some applications must route directly to an agent because of specific customer requirements, but the above warnings still apply.

Issues with Duplicated CTI Environments

It is difficult to envision correct operation in an environment where duplicate applications attempt to operate simultaneously on the same physical device. An example of this situation is the co-existance of inbound and outbound screen pop agent applications.

Systems that require duplication of the CTI application should be designed such that only one of the applications is active, while the other is passive. This means that only one application does telephony functions, only one does routing, only one requests feature activations (e.g. login/logout), and only one does queries. The other is passively monitoring events that result from either manual action at the phone or by another CTI application. In the example mentioned above, the inbound application only operates when the call is associated with the “inbound” VDN(s), and the outbound application only operates when the call is associated with the “outbound” VDN(s).

Duplicated CTI applications that require login/logout information will need to use separate skills (see above section on Domain Control for Skills), one skill being the actual skill, the other a dummy skill.

�
OTHER CAPACITIES AND GUIDELINES

This section is not a complete list of all capacities that must be observed. It only points out some critical capacities, and some that are not well understood. The more complete list of capacities is available with the standard documentation.

The total amount of ASAI traffic that a DEFINITY system can handle is 240 messages per second. Total system traffic is the sum of all traffic carried by all ASAI links. With BRI ASAI links, the limit is 30 messages per second per link, up to 8 physical links per system. With TCP/IP links, the limit is 240 (full duplex) messages per logical link. Although in Release 6.3, up to 16 ASAI links may be connected to a G3r, the total per-system traffic is still 240 messages per second. This means that if one link carries the maximum of 240 (full duplex) messages per second, no other links may be utilized.

Although this isn’t something that applications can do much about at design or runtime, these limits must be observed when engineering a site with multiple CTI applications.

Up to 127 Adjunct Routed calls may be outstanding at any one time on each logical ASAI link. In this context, “outstanding” means an Adjunct Route Request has not been responded to by the application and the DEFINITY is awaiting such response. This limit should particularly be taken into account when Multiple Adjunct Routing steps are used in a vector. A single application may run over multiple logical ASAI links if so designed.

CONCLUSIONS

Unless applications and middleware providers observe these guidelines, problems may surface at the customer site in a multi-application environment. It is important to understand and consider these before the application is installed, and ideally before the application is written. Such problems are order-of-magnitude harder and costlier to resolve in the field.

�
INCREASED ASAI CAPACITIES FOR RELEASE 6.3

Increased on DEFINITY ECS G3r Only (No change for other models):

�
PRIOR TO ASAI R6.3�
NEW WITH ASAI R6.3�
�
Max ASAI Logical Links�
8�
16�
�
ASAI Monitors Per Station�
2�
4�
�
ASAI Monitors Per VDN or ACD�
3�
6�
�
Login/Logout Monitors Per Skill or Split�
1�
1 (Unchanged)�
�

System-Wide Limits are Unchanged for ALL Switch Models:

�
PRIOR TO ASAI R6.3�
WITH ASAI R6.3�
�
Monitors Per System�
250/2000/6000 *�
250/2000/6000 �
�
Notifications Per System �
50/300/10000�
50/300/10000�
�
Login/Logout Monitors of Skill or Split per System�
32/99/600�
32/99/600�
�
* The above xx/yy/zz indicate limit numbers for G3R6.3vs/G3R6.3si/G3r

� By default, but it is customer administrable on the DEFINITY ECS.

Lucent Technologies Proprietary �PAGE �11�

1/15/98

